Machine Learning CSE 6363 (Fall 2016)

Lecture 10 Kernel Learning and SVR

Heng Huang, Ph.D. Department of Computer Science and Engineering

Kernel Methods : Intuitive Idea

- Find a mapping \$\phi\$ such that, in the new space,
 problem solving is easier (e.g. linear)
- The *kernel* represents the similarity between two objects (documents, terms, ...), defined as the dot-product in this new vector space
- But the mapping is left implicit
- Easy generalization of a lot of dot-product (or distance) based pattern recognition algorithms

Kernel Methods : The Mapping

Benefits from kernels

- Generalizes (nonlinearly) pattern recognition algorithms in clustering, classification, density estimation, ...
 - When these algorithms are dot-product based, by replacing the dot product (x•y) by k(x,y)=\$\phi(x)•\$\phi(y)\$
 - e.g.: linear discriminant analysis, logistic regression, perceptron, SOM, PCA, ICA, ...
 - This often implies to work with the "dual" form of the algo.
 - When these algorithms are distance-based, by replacing d(x,y)
 by k(x,x)+k(y,y)-2k(x,y)
- Freedom of choosing \$\u03c6\$ implies a large variety of learning algorithms

Kernel Function in Linear Regression Model

regularized sum-of-squares error function $J(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \left\{ \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}_{n}) - t_{n} \right\}^{2} + \frac{\lambda}{2} \mathbf{w}^{\mathrm{T}} \mathbf{w}$ $\mathbf{w} = -\frac{1}{\lambda} \sum_{n=1}^{N} \left\{ \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}_{n}) - t_{n} \right\} \boldsymbol{\phi}(\mathbf{x}_{n}) = \sum_{n=1}^{N} a_{n} \boldsymbol{\phi}(\mathbf{x}_{n}) = \boldsymbol{\Phi}^{\mathrm{T}} \mathbf{a}$ Φ is the design matrix, whose n^{th} row is given by $\phi(\mathbf{x}_n)^{\text{T}}$. $\mathbf{a} = (a_1, \ldots, a_N)^{\mathrm{T}}$ $a_n = -\frac{1}{1} \left\{ \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}_n) - t_n \right\}$ substitute $\mathbf{w} = \mathbf{\Phi}^{\mathrm{T}} \mathbf{a}$ into $J(\mathbf{w})$ $J(\mathbf{a}) = \frac{1}{2}\mathbf{a}^{\mathrm{T}} \boldsymbol{\Phi} \boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\Phi} \boldsymbol{\Phi}^{\mathrm{T}} \mathbf{a} - \mathbf{a}^{\mathrm{T}} \boldsymbol{\Phi} \boldsymbol{\Phi}^{\mathrm{T}} \mathbf{t} + \frac{1}{2} \mathbf{t}^{\mathrm{T}} \mathbf{t} + \frac{\lambda}{2} \mathbf{a}^{\mathrm{T}} \boldsymbol{\Phi} \boldsymbol{\Phi}^{\mathrm{T}} \mathbf{a}$ define the *Gram* matrix $\mathbf{K} = \mathbf{\Phi} \mathbf{\Phi}^{\mathrm{T}}$ $K_{nm} = \phi(\mathbf{x}_n)^{\mathrm{T}} \phi(\mathbf{x}_m) = k(\mathbf{x}_n, \mathbf{x}_m)$ $J(\mathbf{a}) = \frac{1}{2}\mathbf{a}^{\mathrm{T}}\mathbf{K}\mathbf{K}\mathbf{a} - \mathbf{a}^{\mathrm{T}}\mathbf{K}\mathbf{t} + \frac{1}{2}\mathbf{t}^{\mathrm{T}}\mathbf{t} + \frac{\lambda}{2}\mathbf{a}^{\mathrm{T}}\mathbf{K}\mathbf{a}.$ Setting the gradient of $J(\mathbf{a})$ with respect to a to zero. $\mathbf{a} = (\mathbf{K} + \lambda \mathbf{I}_N)^{-1} \mathbf{t}.$ $y(\mathbf{x}) = \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}) = \mathbf{a}^{\mathrm{T}} \boldsymbol{\Phi} \boldsymbol{\phi}(\mathbf{x}) = \mathbf{k}(\mathbf{x})^{\mathrm{T}} \left(\mathbf{K} + \lambda \mathbf{I}_{N}\right)^{-1} \mathbf{t}$

Fall 2016

5

Constructing Kernels

• Another powerful technique is to build them out of simpler kernels

Given valid kernels $k_1(\mathbf{x}, \mathbf{x'})$ and $k_2(\mathbf{x}, \mathbf{x'})$, the following new kernels will also be valid:

$$k(\mathbf{x}, \mathbf{x}') = ck_1(\mathbf{x}, \mathbf{x}') \tag{6.13}$$

$$k(\mathbf{x}, \mathbf{x}') = f(\mathbf{x})k_1(\mathbf{x}, \mathbf{x}')f(\mathbf{x}')$$
(6.14)

$$k(\mathbf{x}, \mathbf{x}') = q(k_1(\mathbf{x}, \mathbf{x}'))$$
(6.15)

$$k(\mathbf{x}, \mathbf{x}') = \exp(k_1(\mathbf{x}, \mathbf{x}'))$$
(6.16)

$$k(\mathbf{x}, \mathbf{x}') = k_1(\mathbf{x}, \mathbf{x}') + k_2(\mathbf{x}, \mathbf{x}')$$
(6.17)

$$k(\mathbf{x}, \mathbf{x}') = k_1(\mathbf{x}, \mathbf{x}')k_2(\mathbf{x}, \mathbf{x}')$$
(6.18)

$$k(\mathbf{x}, \mathbf{x}') = k_3(\boldsymbol{\phi}(\mathbf{x}), \boldsymbol{\phi}(\mathbf{x}')) \tag{6.19}$$

$$k(\mathbf{x}, \mathbf{x}') = \mathbf{x}^{\mathrm{T}} \mathbf{A} \mathbf{x}' \tag{6.20}$$

$$k(\mathbf{x}, \mathbf{x}') = k_a(\mathbf{x}_a, \mathbf{x}'_a) + k_b(\mathbf{x}_b, \mathbf{x}'_b)$$
(6.21)

$$k(\mathbf{x}, \mathbf{x}') = k_a(\mathbf{x}_a, \mathbf{x}'_a)k_b(\mathbf{x}_b, \mathbf{x}'_b)$$
(6.22)

Heng Huang

Machine Learning 6

Constructing Kernels

• Approach 1: Choose a feature space mapping and then use this to find the kernel

Heng Huang

Constructing Kernels

• Approach 2: Construct kernel functions directly such that it corresponds to a scalar product in some feature space

$$k(x, x') = \boldsymbol{\phi}(x)^{\mathrm{T}} \boldsymbol{\phi}(x') = \sum_{i=1}^{M} \phi_i(x) \phi_i(x')$$

$$k(\mathbf{x}, \mathbf{z}) = (\mathbf{x}^{\mathrm{T}} \mathbf{z})^{2} = (x_{1}z_{1} + x_{2}z_{2})^{2}$$

= $x_{1}^{2}z_{1}^{2} + 2x_{1}z_{1}x_{2}z_{2} + x_{2}^{2}z_{2}^{2}$
= $(x_{1}^{2}, \sqrt{2}x_{1}x_{2}, x_{2}^{2})(z_{1}^{2}, \sqrt{2}z_{1}z_{2}, z_{2}^{2})^{\mathrm{T}}$
= $\phi(\mathbf{x})^{\mathrm{T}}\phi(\mathbf{z}).$

We also can use nonlinear feature mapping

Fall 2016

Heng Huang

Example of Kernels (I)

- Polynomial Kernels: $k(x,y) = (x \cdot y)^d$
 - Assume we know most information is contained in monomials (e.g. multiword terms) of degree d (e.g. d=2: x_1^2 , x_2^2 , x_1x_2)

Examples of Kernels (II)

- Stationary kernels invariant to translations in input space
 - k(x,x') = k(x-x')
- Homogeneous kernels (RBF) depend only on the magnitude of the distance

- k(x,x') = k(||x-x'||)

- Simple Polynomial Kernel terms of degree 2
 - $k(x,x') = (x^T x)^2$
- Generalized Polynomial kernel degree M

-
$$k(x,x') = (x^Tx+c)^M, c>0$$

• Gaussian Kernels – not related to gaussian pdf !

-
$$k(x,x') = \exp(-||x-x'||^2/2\sigma^2)$$

• Sigmoidal Kernels

$$- k(x,x') = tanh(ax^{T}x+b)$$

Examples of Kernels (III)

Gaussian RBF kernel

- Another popular kernel function (most powerful) is the Gaussian RBF kernel: $k(x,x') = \exp(-||x-x'||^2/2\sigma^2)$
- Powerful kernel as its effect is to create a small classification "hyperball" around an instance. This kernel doesn't have a projection formula since its dimension is infinite (you can create as many "balls" as you want).
- Where σ is a measure of the radius of the "hyperball" around an instance.
- You want this ball to be big enough so "hyperballs" connect with each other (pattern recognition) but not too big to overlap the other class.

Gaussian RBF kernel

Heng Huang

Construction of Probabilistic Kernels

• Kernels from probabilistic generative model

- Can be used in discriminative setting

• Given a generative model p(x), define a kernel by

$$k(x, x') = p(x) p(x')$$

- Can be interpreted as inner product in the one dimensional feature space defined by mapping p(x)
- Two inputs x and x' are similar if they both have highprobabilities

Construction of Probabilistic Kernels

• We can further extend this class of kernels by considering sums over products of different probability distributions with positive weighting coefficients

$$k(\mathbf{x}, \mathbf{x}') = \sum_{i} p(\mathbf{x}|i) p(\mathbf{x}'|i) p(i)$$

• For continuous latent variables, we have

$$k(\mathbf{x}, \mathbf{x}') = \int p(\mathbf{x}|\mathbf{z}) p(\mathbf{x}'|\mathbf{z}) p(\mathbf{z}) \, \mathrm{d}\mathbf{z}$$

Construction of Probabilistic Kernels

- Consider parametric generative model $p(x | \theta)$
- Find a kernel that measures similarity of two input vectors induced by the generative model.
- Consider the gradient w.r.t parameter θ that defines a vector in feature space having the same dimensionality as the parameter vector θ.
- Fisher Score $\mathbf{g}(\boldsymbol{\theta}, \mathbf{x}) = \nabla_{\boldsymbol{\theta}} \ln p(\mathbf{x}|\boldsymbol{\theta})$
- Fisher Kernel $k(\mathbf{x}, \mathbf{x}') = \mathbf{g}(\boldsymbol{\theta}, \mathbf{x})^{\mathrm{T}} \mathbf{F}^{-1} \mathbf{g}(\boldsymbol{\theta}, \mathbf{x}')$
- Fisher Information Matrix $\mathbf{F} = \mathbb{E}_{\mathbf{x}} \left[\mathbf{g}(\boldsymbol{\theta}, \mathbf{x}) \mathbf{g}(\boldsymbol{\theta}, \mathbf{x})^{\mathrm{T}} \right]$

Fall 2016

Constructing Kernels in General

- A simpler way to test without having to construct $\Phi(x)$:
 - Use the necessary and sufficient condition that for a function k(x,x') to be a valid kernel, the Gram matrix K, whose elements are given by k(x_n,x_m), should be positive semidefinite for all possible choices of the set {x_n}

$$K_{training} = \begin{bmatrix} k(\mathbf{x}_{1}, \mathbf{x}_{1}) & k(\mathbf{x}_{1}, \mathbf{x}_{2}) & \dots & k(\mathbf{x}_{1}, \mathbf{x}_{m}) \\ k(\mathbf{x}_{2}, \mathbf{x}_{1}) & k(\mathbf{x}_{2}, \mathbf{x}_{2}) & \dots & k(\mathbf{x}_{2}, \mathbf{x}_{m}) \\ \dots & \dots & \dots & \dots \\ k(\mathbf{x}_{m}, \mathbf{x}_{1}) & k(\mathbf{x}_{m}, \mathbf{x}_{2}) & \dots & k(\mathbf{x}_{m}, \mathbf{x}_{m}) \end{bmatrix}$$

<u>Definition</u>: A finitely positive semi-definite function $k: x \times y \rightarrow R$ is a symmetric function of its arguments for which matrices formed by restriction on any finite subset of points is positive semi-definite. $\alpha^T K \alpha \ge 0 \quad \forall \alpha$

<u>Theorem:</u> A function $k: x \times y \to R$ can be written as $k(x, y) = \langle \Phi(x), \Phi(y) \rangle$ where $\Phi(x)$ is a feature map $x \to \Phi(x) \in F$ iff k(x, y) satisfies the semi-definiteness property.

<u>Relevance:</u> We can now check if k(x,y) is a proper kernel using only properties of k(x,y) itself, i.e. without the need to know the feature map!

Fall 2016

<u>Theorem</u>: X is compact, k(x,y) is symmetric continuous function s.t. $T_k f \Box \int k(.,x) f(x) dx$ is a positive semi-definite operator: $T_k \ge 0$ *i.e.* $\int \int k(x,y) f(x) f(y) dx dy \ge 0 \quad \forall f \in L_2(X)$

then there exists an orthonormal feature basis of eigen-functions such that:

$$k(x, y) = \sum_{i=1}^{\infty} \Phi_i(x) \Phi_j(y)$$

Hence: k(x,y) is a proper kernel.

• ... would be a kernel whose kernel matrix is mostly diagonal: all points orthogonal to each other, no clusters, no structure ...

1	0	0		0
0	1	0		0
		1		
0	0	0	••••	1

• If mapping in a space with too many irrelevant features, kernel matrix becomes diagonal

Fall 2016

Support Vector Machine for Regression

- **Regression** = find a function that fits the data.
- A data point may be wrong due to the noise
- Idea: Error from points which are close should count as a valid noise
- Line should be influenced by the real data not the noise.

• Training data:

$$\{(x_1, y_1), ..., (x_i, y_i)\}, x \in R^n, y \in R$$

• Our goal is to find a function f(x) that has at most ε deviation from the actually obtained target for all the training data.

$$f(\mathbf{x}) = \mathbf{w}^{\mathsf{T}}\mathbf{x} + b = \langle \mathbf{w}, \mathbf{x} \rangle + b$$

Linear function:

$$f(\mathbf{x}) = \mathbf{w}^{\mathrm{T}}\mathbf{x} + b = \langle \mathbf{w}, \mathbf{x} \rangle + b$$

We want a function that is:

- flat: means that one seeks small w
- all data points are within its ε neighborhood

The problem can be formulated as a **convex optimization problem:**

minimize
$$\frac{1}{2} \|w\|^2$$

subject to
$$\begin{cases} y_i - \langle w_i, x_i \rangle - b \le \varepsilon \\ \langle w_i, x_i \rangle + b - y_i \le \varepsilon \end{cases}$$

All data points are assumed to be in the ε neighborhood

Fall 2016

Heng Huang

• Real data: not all data points always fall into the ε neighborhood

$$f(\mathbf{x}) = \mathbf{w}^{\mathsf{T}}\mathbf{x} + b = \langle \mathbf{w}, \mathbf{x} \rangle + b$$

• Idea: penalize points that fall outside the ε neighborhood

Linear function:

$$f(\mathbf{x}) = \mathbf{w}^{\mathsf{T}}\mathbf{x} + b = \langle \mathbf{w}, \mathbf{x} \rangle + b$$

Idea: penalize points that fall outside the ε neighborhood

minimize
$$\frac{1}{2} \|w\|^2 + C \sum_{i=1}^l \left(\xi_i + \xi_i^*\right)$$

subject to
$$\begin{cases} y_i - \langle w_i, x_i \rangle - b \le \varepsilon + \xi_i \\ \langle w_i, x_i \rangle + b - y_i \le \varepsilon + \xi_i^* \\ \xi_i, \xi_i^* \ge 0 \end{cases}$$

 $\left|\xi\right|_{\varepsilon} = \begin{cases} 0 & \text{for } \left|\xi\right| \le \varepsilon \\ \left|\xi\right| - \varepsilon & \text{otherwise} \end{cases}$

ε-intensive loss function

Optimization

Lagrangian that solves the optimization problem

$$L = \frac{1}{2} \langle w, w \rangle + C \sum_{i=1}^{l} (\xi_i + \xi_i^*)$$

- $\sum_{i=1}^{l} a_i (\varepsilon - \xi_i - y_i + \langle w, x_i \rangle + b) - \sum_{i=1}^{l} a_i^* (\varepsilon + \xi_i^* + y_i - \langle w, x_i \rangle - b)$
- $\sum_{i=1}^{l} (\eta_i \xi_i + \eta_i^* \xi_i^*)$

Subject to $a_i, a_i^*, \eta_i, \eta_i^* \ge 0$ **Primal variables** w, b, ξ_i, ξ_i^*

Fall 2016

Optimization

Derivatives with respect to primal variables

$$\frac{\partial L}{\partial b} = \sum_{i=1}^{l} (a_i^* - a_i) = 0 \qquad \qquad \frac{\partial L}{\partial \xi_i^{(*)}} = C - a_i^{(*)} - \eta_i^{(*)} = 0$$
$$\frac{\partial L}{\partial \xi_i} = \mathbf{w} - \sum_{i=1}^{l} (a_i^* - a_i) \mathbf{x}_i = \mathbf{0} \qquad \qquad \frac{\partial L}{\partial \xi_i} = C - a_i - \eta_i = 0$$
$$L = \frac{1}{2} \langle w, w \rangle + \sum_{i=1}^{l} C \xi_i + \sum_{i=1}^{l} C \xi_i^*$$
$$- \sum_{i=1}^{l} a_i \varepsilon - \sum_{i=1}^{l} a_i \xi_i - \sum_{i=1}^{l} a_i y_i - \sum_{i=1}^{l} a_i \langle \omega, x_i \rangle + \sum_{i=1}^{l} a_i b$$
$$- \sum_{i=1}^{l} a_i^* \varepsilon - \sum_{i=1}^{l} a_i^* \xi_i^* - \sum_{i=1}^{l} a_i^* y_i + \sum_{i=1}^{l} a_i^* \langle \omega, x_i \rangle + \sum_{i=1}^{l} a_i^* b$$
$$- \sum_{i=1}^{l} \eta_i \xi_i - \sum_{i=1}^{l} \eta_i^* \xi_i^*$$

Fall 2016

Heng Huang

Optimization

$$L = \frac{1}{2} \langle w, w \rangle + \sum_{i=1}^{l} \xi_{i} \underbrace{(C - \eta_{i} - a_{i})}_{=0(C - \eta_{i}^{(*)} - a_{i}^{(*)} = 0)} + \sum_{i=1}^{l} \xi_{i}^{*} \underbrace{(C - \eta_{i}^{*} - a_{i}^{*})}_{=0(C - \eta_{i}^{(*)} - a_{i}^{(*)} = 0)} - \sum_{i=1}^{l} (a_{i} + a_{i}^{*}) \varepsilon - \sum_{i=1}^{l} (a_{i} + a_{i}^{*}) y_{i} - \sum_{i=1}^{l} \underbrace{(a_{i} - a_{i}^{*})}_{=\langle w, w \rangle(\omega = \sum_{i=1}^{l} (a_{i} + a_{i}^{*}) x_{i})} + \sum_{i=1}^{l} \underbrace{(a_{i}^{*} - a_{i})}_{=0(\sum_{i=1}^{l} (a_{i}^{*} - a_{i}) = 0)} = -\frac{1}{2} \langle w, w \rangle - \sum_{i=1}^{l} (a_{i} + a_{i}^{*}) \varepsilon - \sum_{i=1}^{l} (a_{i} + a_{i}^{*}) y_{i}$$

Maximize the dual

$$L(a, a^*) = -\frac{1}{2} \sum_{i=1}^{l} (a_i - a_i^*) (a_j - a_j^*) \langle x_i, x_j \rangle \qquad \text{subject to} \qquad : \begin{cases} \sum_{i=1}^{l} (a_i - a_i^*) = 0 \\ a_i, a_i^* \in [0, C] \end{cases}$$
$$-\sum_{i=1}^{l} (a_i + a_i^*) \varepsilon - \sum_{i=1}^{l} (a_i + a_i^*) y_i \end{cases}$$

Fall 2016

Heng Huang

Machine Learning 31

Solution

$$\frac{\partial L}{\partial \mathbf{w}} = \mathbf{w} - \sum_{i=1}^{l} (a_i^* - a_i) \mathbf{x}_i = \mathbf{0}$$
$$\mathbf{w} = \sum_{i=1}^{l} (a_i - a_i^*) \mathbf{x}_i$$

We can get:

$$f(\mathbf{x}) = \sum_{i=1}^{l} (a_i - a_i^*) \langle \mathbf{x}_i, \mathbf{x} \rangle + b$$

at the optimal solution the Lagrange multipliers are non-zero only for points outside the ε band.