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Kernel Methods : Intuitive Idea 

• Find a mapping f such that, in the new space, 

problem solving is easier (e.g. linear) 

• The kernel represents the similarity between two 

objects (documents, terms, …), defined as the dot-

product in this new vector space 

• But the mapping is left implicit 

• Easy generalization of a lot of dot-product (or 

distance) based pattern recognition algorithms 
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Kernel Methods : The Mapping 

Original Space Feature (Vector) Space 

f 

f 

f 
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Benefits from kernels 

• Generalizes (nonlinearly) pattern recognition algorithms in 

clustering, classification, density estimation, … 

– When these algorithms are dot-product based, by replacing the 

dot product (x•y) by k(x,y)=f(x)•f(y) 

 e.g.: linear discriminant analysis, logistic regression, perceptron, 

SOM, PCA, ICA, … 

    This often implies to work with the “dual” form of the algo. 

– When these algorithms are distance-based, by replacing d(x,y) 

by k(x,x)+k(y,y)-2k(x,y) 

• Freedom of choosing f implies a large variety of learning 

algorithms 
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Kernel Function in Linear Regression Model 
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Constructing Kernels 

• Another powerful technique is to build them out of 

simpler kernels 
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Constructing Kernels 

• Approach 1: Choose a feature space mapping and then 

use this to find the kernel 
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Constructing Kernels 

• Approach 2: Construct kernel functions directly such that 
it corresponds to a scalar product in some feature space 

We also can use nonlinear 

feature mapping 
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Example of Kernels (I) 

• Polynomial Kernels: k(x,y)=(x•y)d 

– Assume we know most information is contained in monomials (e.g. 

multiword terms) of degree d (e.g. d=2: x1
2, x2

2, x1x2) 
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Examples of Kernels (II) 

• Stationary kernels – invariant to translations in input space 

– k(x,x’) = k(x-x’) 

• Homogeneous kernels (RBF) – depend only on the magnitude of the 
distance 

– k(x,x’) = k(||x-x’||) 

• Simple Polynomial Kernel – terms of degree 2 

– k(x,x’) = (xTx)2 

• Generalized Polynomial kernel – degree M 

– k(x,x’) = (xTx+c)M , c>0 

• Gaussian Kernels – not related to gaussian pdf ! 

– k(x,x’) = exp (-||x-x’||2/2s2) 

• Sigmoidal Kernels  

– k(x,x’) = tanh(axTx+b) 
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Examples of Kernels (III) 

Polynomial 

kernel (n=2) 

 f 

RBF kernel 

(n=2) 
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Gaussian RBF kernel 

• Another popular kernel function (most powerful) is the 
Gaussian RBF kernel: 

 k(x,x’) = exp (-||x-x’||2/2s2) 

 

• Powerful kernel as its effect is to create a small classification 
“hyperball” around an instance. This kernel doesn’t have a 
projection formula since its dimension is infinite (you can 
create as many “balls” as you want). 

• Where s is a measure of the radius of the “hyperball” around 
an instance. 

• You want this ball to be big enough so “hyperballs” connect 
with each other (pattern recognition) but not too big to 
overlap the other class. 
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Gaussian RBF kernel 
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Construction of Probabilistic Kernels 

• Kernels from probabilistic generative model 

– Can be used in discriminative setting 

 

• Given a generative model p(x), define a kernel by 

    k(x, x' ) = p(x) p(x') 

– Can be interpreted as inner product in the one 

dimensional feature space defined by mapping p(x) 

– Two inputs x and x' are similar if they both have 

highprobabilities 
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Construction of Probabilistic Kernels 

• We can further extend this class of kernels by considering 

sums over products of different probability distributions 

with positive weighting coefficients 

 

 

 

• For continuous latent variables, we have 
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Construction of Probabilistic Kernels 

• Consider parametric generative model p(x|q) 

• Find a kernel that measures similarity of two input vectors 

induced by the generative model. 

• Consider the gradient w.r.t parameter θ that defines a vector in 

feature space having the same dimensionality as the parameter 

vector θ. 

• Fisher Score 

 

• Fisher Kernel 

 

• Fisher Information Matrix 
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Constructing Kernels in General 

• A simpler way to test without having to construct Ф(x): 

– Use the necessary and sufficient condition that for a 

function k(x,x’) to be a valid kernel, the Gram matrix K, 

whose elements are given by k(xn,xm), should be positive 

semidefinite for all possible choices of the set {xn} 
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What Is A Proper Kernel 

Definition: A finitely positive semi-definite function  

is a symmetric function of its arguments for which matrices formed 

by restriction on any finite subset of points is positive semi-definite.  

:k x y R 

0T K   

Theorem: A function                         can be written  

as                                        where            is a feature map 

                        iff  k(x,y) satisfies the semi-definiteness property.  

:k x y R 
( , ) ( ), ( )k x y x y    ( )x

( )x x F  

Relevance: We can now check if  k(x,y) is a proper kernel using 

only properties of k(x,y) itself,  

i.e.  without the need to know the feature map! 
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Mercer’s Theorem 

Theorem: X is compact, k(x,y) is symmetric continuous function s.t. 

                                     is a positive semi-definite operator:                  

i.e. 

 

 

then there exists an orthonormal feature basis of eigen-functions  

such that: 

 

 

Hence: k(x,y) is a proper kernel. 
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A Bad Kernel … 

• … would be a kernel whose kernel matrix is mostly diagonal: 
all points orthogonal to each other, no clusters, no 
structure … 

 

 

 

 

 

 

 

• If mapping in a space with too many irrelevant features, 
kernel matrix becomes diagonal 



Fall 2016   Heng Huang                                                  Machine Learning 23 

Support Vector Machine for Regression 
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Linear Model 
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Linear Model 
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Linear Model 
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Linear Model 
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Linear Model 
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Optimization 
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Optimization 
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Optimization 
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Solution 

 at the optimal solution the Lagrange multipliers 

are non-zero only for points outside the e band. 


