Machine Learning
CSE 6363 (Fall 2016)

ILecture 11 Neural Networks

Heng Huang, Ph.D.

Department of Computer Science and Engineering




I inear Units

Linear regression Logistic regression
d d
f(X) — WO + Z ijj f(X) = p(y = 1 | X, W) = g(WO +ZW}"X_]’)
1 /=1 j=1

JSx)=
f p(y=1]|x)
Q_.

X, X,
On-line gradient update: On-line gradient update:
W, < w, +a(y— f(x)) The same W, < W, +a(y—f(x))
° m °

Wy W, +a(y— O W, W, ra(y— fOw,

7

Fall 2016 Heng Huang Machine Learning



Biological Neural Networks

common features

Articficial

Biological
Neural Networks

parallel computations

- distributed
modeld used in ) _
non linear units
Theoretical local processing
Neuroscience adaptation

VA
X

77;’4

Fall 2016 Heng Huang

fiD

Neural Networks

model% used in

Function Approximation
Classification
Data Processing

chvabion  wubput

.Fum (;‘“[on

Machine Learning



Extensions of Simple Linear Units

Feature (basis) functions model nonlinearities

Linear regression Logistic regression
m

FO) =+ Y wd () F(x)= gl + 3w, (x)

Important property:

* The same problem as learning of the weights for linear units , the
input has changed— but the weights are linear in the new input
Problem: too many weights to learn

Fall 2016 Heng Huang Machine Learning



Multi-layer Neural Networks

* Problems of extended linear units:
 fixed basis functions,
* t0o0 many weights

* One possible solution:
» Assume parametric feature (basis) functions
 Learn the parameters together with the remaining
weights

Fall 2016 Heng Huang Machine Learning 5



Multi-layer Neural Networks

Also called a multilayer perceptron (MLP)

Cascades multiple logistic regression units

Example: (2 layer) classifier with non-linear decision boundaries

p(y=1][x)

Input layer Hidden layer Output laver

Fall 2016 Heng Huang Machine Learning



Multi-layer Neural Networks

* Models non-linearities through logistic regression units
« (Can be applied to both regression and binary classification

problems
Input layer Hidden layer Output layer
regression
J(x)=f(x,w)
classification

f Sx)=ply=1[x,w)
O .

Fall 2016 Heng Huang Machine Learning



Multi-layer Neural Networks

* Non-linearities are modeled using multiple hidden logistic
regression units (organized in layers)

* The output layer determines whether it is a regression or a
binary classification problem

Input layer Hidden lavers Output layer .
P %fnput Hiddgn Output regression
Values f(X) = f(X,W)

X1 10000000 — .89 .04 .08 — 10000000 [ >

X, 01000000 — .01 .11 .88 — 01000000

. 00100000 — .01 .97 .27 — 00100000, ) (Jassification

. 00010000 — .99 .97 .71 — 00010000

x, 00001000 — .03 .05 .02 — 00001000 S = p(r=1xw)
00000100 — .22 .99 .99 — 00000100 _ >
00000010 — .80 .01 .98 — 000000100N
00000001 — .60 .94 .01 — 00000001

Fall 2016 Heng Huang Machine Learning



Network Training

e Online Leaming Weight updates based on the error: J ... (D,,w)
_ weioh 0
weights qp.dated after W W, == (D,W)
every training sample W;

— significantly faster than
oftline learning

— better suited for large
datasets

e Offline/Batch
Learning

— welghts updated after
one epoch

Fall 2016 Heng Huang Machine Learning 9



Batch-mode vs Online Mode Learning

e |n batch-mode

— Samples provided and processed together to construct model
— Need to store samples (not the model)

— Classical approach for data mining

* In online-mode

— Samples provided and processed one by one to update model
— Need to store the model (not the samples)
— Classical approach for adaptive systems

* But both approaches can be adapted to handle both contexts
— Samples available together can be exploited one by one

— Samples provided one by one can be stored and then exploited
together

Fall 2016 Heng Huang Machine Learning

10



Example Application -- Driving A Car

Fall 2016

Sharp Stuaight Shap
Ahead Right
30 Output
nits
30x32 Sensor
Input Retina

Machine Learning

11



Example Application -- Driving A Car

* Input: Video image (30 x 32) + range-finder distance (8 x 32)
* Output: 45 units representing steering angle

* Hidden: 45 units completely connected to input and output
* Training: Originally on simulated images. Then in real use

* Results: Drives 3mph along woodland road

* Current Developments: Recently up to 15 decisions per
second, good for 55mph driving along dirt, gravel, and other
difficult surfaces. Trained by a real driver.

Fall 2016 Heng Huang Machine Learning

12



speech
synthesizer ADm J)

i & mii loudspealrer

Nettalk s

i

nlp|ult tle|lzt toe NETtalk

* Built in response to development of achip _ , . .,

which converts phonemes into sounds of language. Needed
something to convert English words into phonemes.

* Input: 29 bits per character, 7 character window (for
context). one-of-n-encoding — for each character, 1 bit 1s on, the
rest are off.

* Hidden units: One layer consisting of 80 hidden units,
completely connected to inputs and outputs.

* Output: 26 units to represent 54 phonemes.

e Training: Training on dictionary pronunciation and on
transcriptions of speech.

Fall 2016 Heng Huang Machine Learning 13



Results

K/
26 output units Q0000000

80 hidden units / T \\

OOOOOOOOOOOOOOOOOOOOOOOO

N NN

0000 0000 0000 0000 0000 0000 OOOO
- i - C 0 u
203 input units (7 groups of 29)
* Understandable speech after 10 learning cycles. After 50 training cycles,
apparent error was 5%

¢ Existing expert system (DecTalk) performed better, but required about
10 person-years of linguistic analysis to generate rules; Nettalk require
about 1 month to produce

* Neural Networks can function as an expert system without the need to
codify the expertise. Learns from examples

Fall 2016 Heng Huang Machine Learning

14



When to Consider Neural Networks

* Input is high-dimensional discrete or real-valued (e.g. raw
sensor input)

* Output 1s discrete or real valued
* Output is a vector of values
* Possibly noise data
* Form of target function is unknown
* Human readability of result is unimportant
* Examples:
— Speech phoneme recognition
— Image classification

— Financial prediction

Fall 2016 Heng Huang Machine Learning 15



Three-layer Back-propagation Neural Network

Fall 2016 Heng Huang Machine Learning 16



Output

* The response function 1s normally nonlinear

* Samples include
— Sigmoid

f(x)=-—

1+

— Piecewise linear

X, If x>0
f(x)=<_".
0,1f x<@

Fall 2016 Heng Huang
Ref: Tagliarini

Machine Learning

17



Backpropagation

(k-1)-th level k-th level (k+1)-th level
l (k)\éz(k)é J wy, (k+1)i éz](kﬂ)of l

x,(k) - output of the unit i on level k
z,(k) - input to the sigmoid function on level k

w, (k) - weight between units j and i on levels (k-1) and k
z,(k)=w, (k)+ > w,_ (k)x,(k-1)
x;(k)=g(z,(k))

Fall 2016 Heng Huang Machine Learning

18



Backpropagation

Update weight w, (k) using a data point D, =<X,y >

0
(k)Y «—w (kh)—-« J (D,
WI,J( ) WI,]( ) aW],’j (k) onlme( u W)
0

O (k)= J (D .w

Let 1( ) Gz], (k) onlzm( u )
8 oJ . (D.,w) &z (k
Then: p S oiine (D, W) = e (Do W) 02, (K) =0, (k)x, (k1)
w, (k) oz, (k) ow, (k)

S.t. 5.(k) is computed fromx, (k) and the next layer &,(k +1)
5, (k) = {Z S, (k+Dw,, (k + 1)}@ (k)(1 - x,(k))

Last unit (is the same as for the regular linear units):

0,(K)=—(y - f(x,w))
It 1s the same for the classification with the log-likelihood

measure of fit and linear regression with least-squares error!!!
Fall 2016 Heng Huang Machine Learning

19



Learning with MLP

* Online gradient descent algorithm
— Weight update for example D,

0

w. (k)< w, (k)—« J (D ,w
1,] ( ) 1,] ( ) awi’j (k) online ( u )
a JOane (Du : W) — a]online (Du 9 W) aZz’ (k) _ 51- (k)x]. (k . 1)
ow, (k) oz,(k)  ow, (k) ‘

w, (k)< w, (k)—ao (k)x, (k-1)

X, (k=1) - j-th output of the (k-1) layer

0,(k) - derivative computed via backpropagation
o - a learning rate

Fall 2016 Heng Huang Machine Learning 20



Online Gradient Descent Algorithm for MLLP

Online-gradient-descent (D, number of iterations)
Initialize all weights w, ; (k)
for i=1:1: number of iterations
do select a data point D, =<x,y> from D

set learning rate «
compute outputs x, (k) for each unit
compute derivatives o, (k) via backpropagation
update all weights (in parallel)

w, (k) < w, (k)—ad (k)x (k-1)

end for
return weights w

Fall 2016 Heng Huang Machine Learning

21



Xofr Example

* Linear decision boundary does not exist

2~

150
- ® o
0.5/-
oL
0.5+
1 ® @
150
-2 | | | L L 1 1 [
2 1.5 A 05 0 0.5 1 15 2

Fall 2016 Heng Huang Machine Learning 22



Xofr

“xample Using Linear Unit

Fall 2016

Heng Huang

Machine Learning

23



Neural Network with 2 Hidden Units

Fall 2016 Heng Huang Machine Learning 24



Neural Network with 10 H

idden Units

Output

Fall 2016

Heng Huang

Machine Learning

25



Example of -

“rror Back-propagation

-1
03
1 W13 »
X > > 3 ,
l ,. W35 05
[k 2
5 Vs
W24 |
X2 o 2 > 4 w45
Woq
Input 0,4 Quitput
layer layer
—1

Fall 2016

Hidden layer

Heng Huang Machine Learning

26



Example of Error Back-propagation

* The effect of the threshold applied to a neuron in
the hidden or output layer 1s represented by its
weight, 0, connected to a fixed input equal to -1

* The initial weights and threshold levels are set
randomly as follows:

wy; = 0.5, wy, = 0.9, w,, = 04, w,, = 1.0, ws = -1.2,
w,: = 1.1,0, =0.8,0, = -0.1, and 0, = 0.3.

Fall 2016 Heng Huang Machine Learning

27



Example of -

“rror Back-propagation

* We consider a training set where inputs x; and x;, are equal

to 1 and desired

output y,s is 0. The actual outputs of neuron

3 and 4 in the hidden layer are calculated as

V3 = sigmoid (xywy3

Vg = sigmoid (x;wyy

+ Xy Wy3 —03) = 1/[1 104104108 — ¢ 5750

+xyWpg —04) =1/ [1 1o LOI+ILOHO-D T — ¢ 8808

* Now the actual output of neuron 5 in the output layer 1s

determined as:

Vs = 5igmoid(y3wy5+ Vawy5—05) =1/ [l+ e

* Thus, the following error 1s obtained:

e=y,5—ys=0-0.5097 =—0.5097

Fall 2016

—(—0.52501 .2+0.88081.l—1-0.3)] —0.5097

Heng Huang



Example of Error Back-propagation

* The next step 1s weighting training. To update the weights
and threshold levels in our network, we propagate the error,
e, from the output layer backward to the input layer.

* First, we calculate the error gradient for neuron 5 in the
output layer:
85 =ys (1—ys)e=0.5097 - (1—0.5097)- (—0.5097) = —0.1274

* Then we determine the weight corrections assuming that the
learning rate parameter, o, is equal to 0.1:

Awss =00+ y3 -85 =0.1-0.5250 - (=0.1274) = —0.0067
Awys =00~ v, -85 =0.1-0.8808 - (—0.1274) = —0.0112
AOs =a-(=1)-85 =0.1-(=1)-(=0.1274) = —0.0127

Fall 2016 Heng Huang Machine Learning

29



Example of Error Back-propagation

e Next we calculate the error gradients for neurons 3 and 4 in

the hidden layer:
83 = v3(1—13)-85 - wys =0.5250- (1-0.5250)-(—0.1274)-(~1.2) = 0.0381
54 =14(1=vg)-8s - wys =0.8808 - (1—0.8808)-(—0.127 4)-1.1=—0.0147
* We determine the weight corrections:

Awiz =@ -x;-83 =0.1-1-0.0381 = 0.0038
Awyy =@ x5 -83 =0.1:1-0.0381 = 0.0038

AB; = (—1)-83 =0.1-(=1)-0.0381=—0.0038 =
Awy, =00 x84 =0.1-1-(=0.0147) = —0.0015
AWay =00 x5 -84 =0.1-1-(=0.0147) = —0.0015
ABy = (=1)-84=0.1-(=1)-(=0.0147) = 0.0015

Fall 2016 Heng Huang

Machine Learning 30



Example of Error Back-propagation

* At last, we update all weights and threshold:
w3 = w3 + Awy = 0.5+0.0038 = 0.5038
Wiy = Wiy +Aw, =0.9-0.0015 = 0.8985
Wy3 = Wag + Awyy = 0.4 +0.0038 = 0.4038
Wag = Wag +Awyy =1.0—0.0015 = 0.9985
Wys = was +Awys =—1.2-0.0067 =—1.2067
wys = wys +Awys =1.1-0.0112 =1.0888 |
6, =0, +A0,=0.8-0.0038 =0.7962 e e

Output
layer o layer

-1

0,=0,+A0,=-0.1+0.0015 =-0.0985 Hidden layer

05 =05 +A05 =03+0.0127 =0.3127

The training process is repeated until the sum of squared errors is
less than 0.001.

Fall 2016 Heng Huang Machine Learning 31



Learning Curve for Operation Exclusive-OR

. Sum-Squared Network Error for 224 Epochs
10 . . T

[—
<
(==

[—
<

1
]

Sum-Squared Error
o

0 50 100 150 200
Epoch

Fall 2016 Heng Huang Machine Learning 32



Final Results of Three-layer Network Learning

Inputs | Desired | Actual Error Sum of
output output squared
X1 1X2 Vd Vs e eITors
1 |1 0 0.0155 —0.0155 0.0010
0|1 | 0.9849 0.0151
1 | O | 0.9849 0.0151
010 0 0.0175 —0.0175

Fall 2016 Heng Huang Machine Learning 33



Solution for Exclusive-OR operation

Fall 2016

_1
+1.5
| —1
+1.’0 :
+1.0
+1.0 +0.5
5 Vs
+1.0 |
N A +1.0
+1.0
+0.5
_'l

Heng Huang Machine Learning

34



Overtitting 1n Neural Network

Error versus weight updates (example 1)

Rl

0.01
0.009 Training set error . i
0.008 | Validation set error + |
0.007
0.006
0.005
0.004
0.003

0.002

Error

0 5000 10000 15000 20000
Number of weight updates

Fall 2016 Heng Huang Machine Learning 35



Alternative Error Function

* Penalize large weights:

E(w) E1 )

2 deD keoutputs

1 X x M=1
0 ’N‘
x
= »
0 1
Fall 2016

M =3

X

Heng Huang

(tra — ora)” + ZZ] w?z-

0 1

Machine Learning

36



Neural Networks for Face Recognition

left strt rght up

Typical input images

* 90% accurate learning head pose, and recognizing 1-of-20 faces

Fall 2016 Heng Huang Machine Learning 37



Learned Hidden Unit Weights

left strt rght up Learned Weights
N
.'/.‘.’é.
\0‘4\

30x32

Typical input images
Fall 2016 Heng Huang Machine Learning 33



