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• Suppose A is a square matrix. A is called orthogonal 

matrix if 

 

 

   where I is an identity matrix,   AT is the transpose of 

A.  

•  For an orthogonal matrix, we have 

Orthogonal Matrix 

 T T
A A AA I

1  T
A A

Ref: Mingyue Ding 
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Eigenvalue & Eigenvector 

• Suppose A is a square matrix. If having a number, l, and a 

non-zero vector, X , satisfy 

 

 

                                                                        

• We called l the eigenvalue of  A, and  X is the eigenvector 

of A 

• If we know the eigenvalues of A, the eigenvectors can be 

determined by substituting the eigenvalues into above 

equation. 

 

l

lAX X
l

Ref: Mingyue Ding 
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Calculation of Eigenvalues 

• We can determine the eigenvalues of A by solving 

the following equation: 

 

 

 where I is an identity matrix 

0l A I

Ref: Mingyue Ding 
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Singular Values 

• Suppose A is a mxn matrix and its rank is r (         ).  

 We can calculate the non-zero eigenvalues of           ,  

e.g., 

 

• We call                                  as the singular values 

of A 

r n

T
A A

1 2 rl l l 

( 1,2, , )i i i r l 

Ref: Mingyue Ding 
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What is SVD? 

Any   mxn   matrix       with rank of r, can be decomposed into 

 

 

 where                    are orthogonal matrices and       is a diagonal 

matrix containing singular values,                               . This 

factored matrix representation is known as the SVD. 

TA UDV

{ , 1,2, , }i i r 

A

 and U V D

Ref: Mingyue Ding 
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SVD More Formally 

• The diagonal values of  (1, …, n) are called the singular values. It is 

accustomed to sort them: 1   2 …  n 

• The columns of U (u1, …, un) are called the left singular vectors. They 

are the axes of the ellipsoid. 

• The columns of V (v1, …, vn) are called the right singular vectors. They 

are the preimages of the axes of the ellipsoid. 

TA U V 

= 

A U 
TV
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Reduced SVD 

• For rectangular matrices, we have two forms of 

SVD. The reduced SVD looks like this: 

– The columns of U are orthonormal 

– Cheaper form for computation and storage 

A U  TV

= 
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Full SVD 

• We can complete U to a full orthogonal matrix and 

pad  by zeros accordingly 

A U  TV

= 
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Example of SVD 
• Suppose 

 

 

 

 

1) Calculate the eignvalues of  

          

 

2) The non-zero singular values,                 ,e.g., 

 

     

3) V formed from the orthonormal eigenvectors as columns,  

1.2 0.9 4

1.6 1.2 3
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1 225, 6.25l l 

i i l

1 25, 2.5  

Ref: Mingyue Ding 
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Example of SVD 

 

 

• Calculate  
 Where      is the non-zero eigenvector of  

 We have                               
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Ref: Mingyue Ding 
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Example of SVD 

• Now the SVD of A is 
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Ref: Mingyue Ding 
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Matrix Inverse and Solving Linear Systems 

• Matrix inverse: 

 

 

 

 

• So, to solve  
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Application: Image Compression 

• Uncompressed m by n pixel image: m×n numbers 

• Rank q approximation of image: 

– q singular values 

– The first q columns of U (m-vectors) 

– The first q columns of V (n-vectors) 

– Total: q × (m + n + 1) numbers 

Ref: Bernick 
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Example: Yogi (Uncompressed) 

• Source: [Will] 

• Yogi: Rock photographed 
by Sojourner Mars mission. 

• 256 × 264 grayscale 
bitmap  256 × 264 
matrix M 

• Pixel values  [0,1] 

• ~ 67584 numbers 

Ref: Bernick 
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Example: Yogi (Compressed) 

• M has 256 singular values 

• Rank 81 approximation of 

M:  

• 81 × (256 + 264 + 1) = 

~  42201 numbers 

Ref: Bernick 



Fall 2016   Heng Huang                                                  Machine Learning 17 

Example: Yogi (Both) 

Ref: Bernick 



Fall 2016   Heng Huang                                                  Machine Learning 18 

Application: Noise Filtering 

• Data compression: Image degraded to reduce size 

• Noise Filtering: Lower-rank approximation used to 

improve data. 

– Noise effects primarily manifest in terms 

corresponding to smaller singular values. 

– Setting these singular values to zero removes 

noise effects. 

Ref: Bernick 
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Principal Components Analysis (PCA) 
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An Vision Application: Facial Recognition 
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An Vision Application: Facial Recognition 



Fall 2016   Heng Huang                                                  Machine Learning 22 

Why Do We Care 
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Projection 
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Principal Components Analysis 
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Minimize Reconstruction Error 
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PCA 
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Justifying Use of Eigenvectors 
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PCA 
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PCA Algorithm 
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PCA Example 
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PCA and SVD 

• We can compute the principal components by SVD of X: 

 

 

 

 

• Thus, the left singular vectors of X are the principal 

components! We sort them by the size of the singular values 

of X. 
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PCA for Image Compression 
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Eigenfaces 
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Computational Complexity 
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A Clever Workaround 
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Principle Components 


