Machine Learning CSE 6363 (Fall 2016)

Lecture 13 SVD and PCA

Heng Huang, Ph.D. Department of Computer Science and Engineering Orthogonal Matrix

• Suppose A is a square matrix. A is called orthogonal matrix if

$$\mathbf{A}^{\mathrm{T}}\mathbf{A} = \mathbf{A}\mathbf{A}^{\mathrm{T}} = \mathbf{I}$$

where \mathbf{I} is an identity matrix, $\mathbf{A}^{\mathbf{T}}$ is the transpose of \mathbf{A} .

• For an orthogonal matrix, we have

$$\mathbf{A}^{-1} = \mathbf{A}^{\mathbf{T}}$$

Eigenvalue & Eigenvector

- Suppose A is a square matrix. If having a number, $\lambda,$ and a non-zero vector, ${\bf X}$, satisfy

- We called λ the eigenvalue of **A**, and **X** is the eigenvector of **A**
- If we know the eigenvalues of **A**, the eigenvectors can be determined by substituting the eigenvalues into above equation.

Calculation of Eigenvalues

• We can determine the eigenvalues of **A** by solving the following equation:

$$\left|\mathbf{A} - \lambda \mathbf{I}\right| = 0$$

where **I** is an identity matrix

Singular Values

• Suppose **A** is a *mxn* matrix and its rank is $r(r \le n)$. We can calculate the non-zero eigenvalues of $A^{T}A$

e.g.,
$$\lambda_1 \geq \lambda_2 \cdots \geq \lambda_r$$

• We call
$$\mu_i = \sqrt{\lambda_i} (i = 1, 2, \dots, r)$$
 as the singular of **A**

,

values

What is SVD?

Any *mxn* matrix \mathbf{A} with rank of r, can be decomposed into $\mathbf{A} = \mathbf{U}\mathbf{D}\mathbf{V}^{T}$ where \mathbf{U} and \mathbf{V} are orthogonal matrices and \mathbf{D} is a diagonal matrix containing singular values, $\{\mu_i, i = 1, 2, \dots, r\}$. This factored matrix representation is known as the SVD.

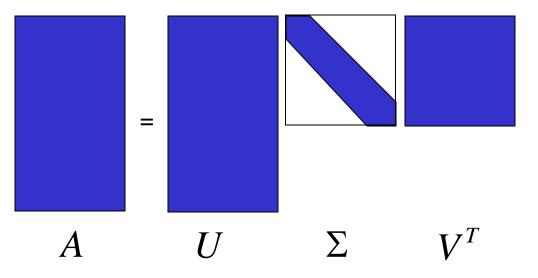
SVD More Formally

- The diagonal values of Σ (μ_1 , ..., μ_n) are called the singular values. It is accustomed to sort them: $\mu_1 \ge \mu_2 \ge ... \ge \mu_n$
- The columns of $U(\mathbf{u}_1, ..., \mathbf{u}_n)$ are called the left singular vectors. They are the axes of the ellipsoid.
- The columns of $V(\mathbf{v}_1, ..., \mathbf{v}_n)$ are called the right singular vectors. They are the preimages of the axes of the ellipsoid.

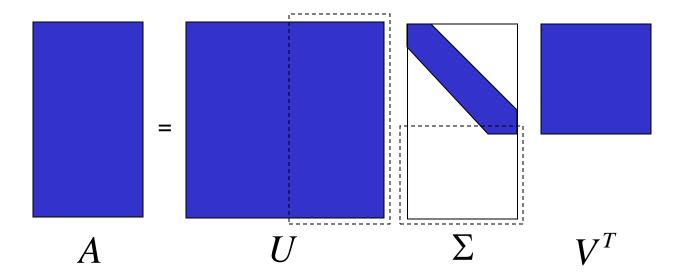
$$A = U\Sigma V^{T}$$
$$= \bigcup_{X \in Y} \bigcup_{X \in Y$$

Reduced SVD

- For rectangular matrices, we have two forms of SVD. The reduced SVD looks like this:
 - The columns of U are orthonormal
 - Cheaper form for computation and storage

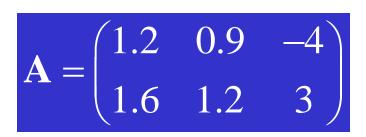


• We can complete U to a full orthogonal matrix and pad Σ by zeros accordingly



Example of SVD

• Suppose



1) Calculate the eignvalues of $\mathbf{A}^T \mathbf{A}$

$$\lambda_1 = 25, \lambda_2 = 6.25$$

2) The non-zero singular values, $\mu_i = \sqrt{\lambda_i}$, e.g.,

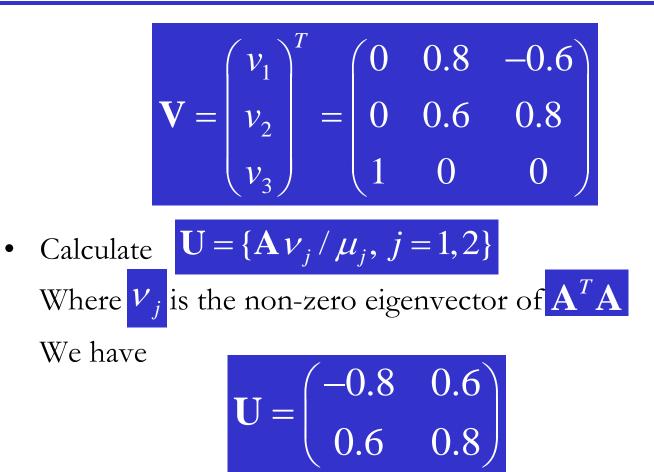
$$\mu_1 = 5, \, \mu_2 = 2.5$$

3) V formed from the orthonormal eigenvectors as columns, $\mathbf{V} = \mathbf{V} = \mathbf{V}$

$$\mathbf{A}^{\mathrm{T}}\mathbf{A} = \mathbf{V}\mathbf{\Sigma}^{\mathrm{T}}\mathbf{U}^{\mathrm{T}}\mathbf{U}\mathbf{\Sigma}\mathbf{V}^{\mathrm{T}} = \mathbf{V}\mathbf{\Sigma}^{\mathrm{T}}\mathbf{\Sigma}\mathbf{V}^{\mathrm{T}}.$$

Fall 2016 Ref: Mingyue Ding

Example of SVD



Heng Huang

Example of SVD

• Now the SVD of **A** is

$$\mathbf{A} = \mathbf{U}\mathbf{D}\mathbf{V}^{T} = \begin{pmatrix} -0.8 & 0.6 \\ 0.6 & 0.8 \end{pmatrix} \begin{pmatrix} 5 & 0 & 0 \\ 0 & 2.5 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0.8 & -0.6 \\ 0 & 0.6 & 0.8 \\ 1 & 0 & 0 \end{pmatrix}^{T}$$

$$\mathbf{A}^{+} = \mathbf{V}\mathbf{D}^{+}\mathbf{U}^{T} = \begin{pmatrix} 0 & 0.8 & -0.6 \\ 0 & 0.6 & 0.8 \\ 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} \frac{1}{5} & 0 \\ 0 & \frac{1}{2.5} \\ 0 & 0 \end{pmatrix} \begin{pmatrix} -0.8 & 0.6 \\ 0.6 & 0.8 \end{pmatrix}^{T}$$

Fall 2016 Ref: Mingyue Ding Heng Huang

Matrix Inverse and Solving Linear Systems

• Matrix inverse: $A = U \sum V^T$

$$A^{-1} = \left(U\sum V^{T}\right)^{-1} = \left(V^{T}\right)^{-1}\sum^{-1}U^{-1} = V\begin{bmatrix}\frac{1}{\sigma_{1}}&&\\&\ddots&\\&&\frac{1}{\sigma_{n}}\end{bmatrix}U^{T}$$

• So, to solve $A\mathbf{x} = \mathbf{b}$

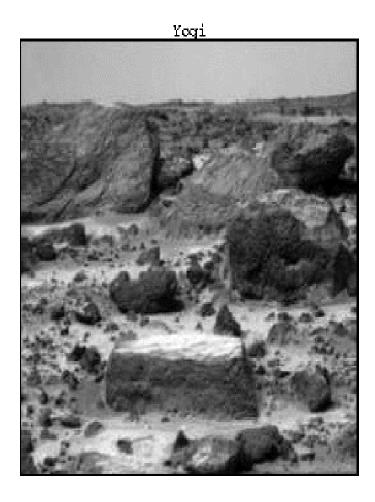
$$\mathbf{x} = V \sum^{-1} U^T \mathbf{b}$$

Application: Image Compression

- Uncompressed m by n pixel image: $m \times n$ numbers
- Rank q approximation of image:
 - -q singular values
 - The first q columns of U(m-vectors)
 - The first q columns of V(n-vectors)
 - Total: $q \times (m + n + 1)$ numbers

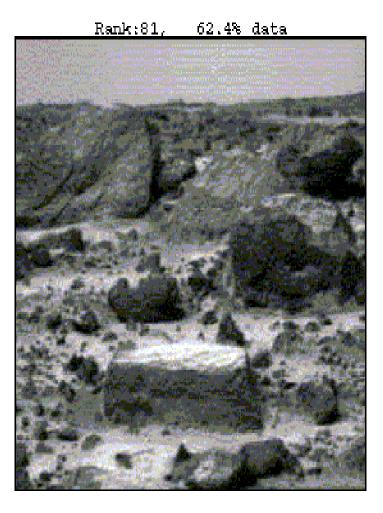
Example: Yogi (Uncompressed)

- Source: [Will]
- Yogi: Rock photographed by Sojourner Mars mission.
- 256 \times 264 grayscale bitmap \rightarrow 256 \times 264 matrix M
- Pixel values $\in [0,1]$
- ~ 67584 numbers

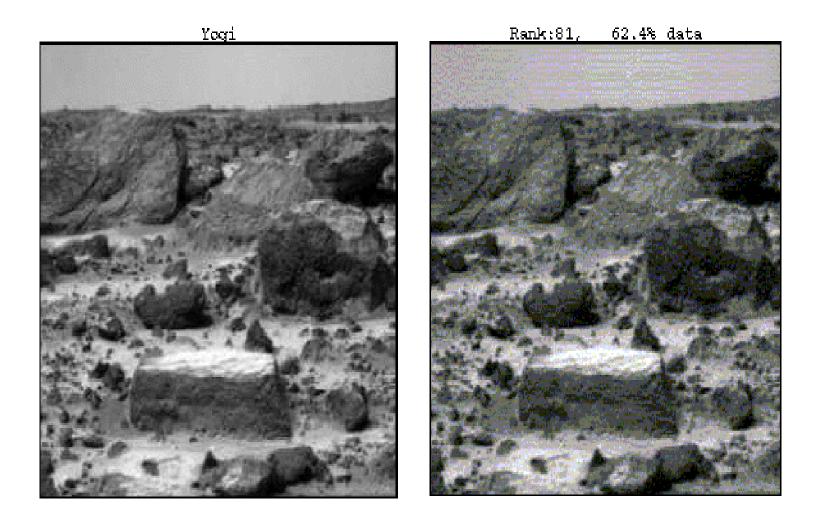


Example: Yogi (Compressed)

- *M* has 256 singular values
- Rank 81 approximation of *M*:
- $81 \times (256 + 264 + 1) =$ ~ 42201 numbers



Example: Yogi (Both)



Fall 2016 Ref: Bernick

Heng Huang

Application: Noise Filtering

- Data compression: Image degraded to reduce size
- Noise Filtering: Lower-rank approximation used to improve data.
 - Noise effects primarily manifest in terms corresponding to smaller singular values.
 - Setting these singular values to zero removes noise effects.

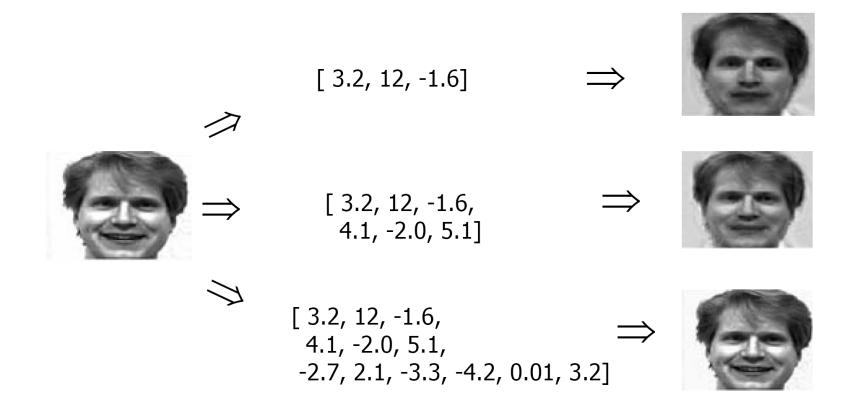
Principal Components Analysis (PCA)

- Idea:
 - Given data points in d-dimensional space, project into *lower dimensional* space while *preserving as much information* as possible
 - Eg, find best planar approximation to 3D data
 - Eg, find best 12-D approximation to 10⁴-D data
 - In particular, choose projection that minimizes squared error in reconstructing original data

An Vision Application: Facial Recognition

- Want to identify specific person, based on facial image
- Robust to ...
 - Facial hair, glasses, …
 - Different lighting
 - ⇒ Can't just use given 256 x 256 pixels
- Need another option!

An Vision Application: Facial Recognition



Why Do We Care

Lower dimensional representations permit

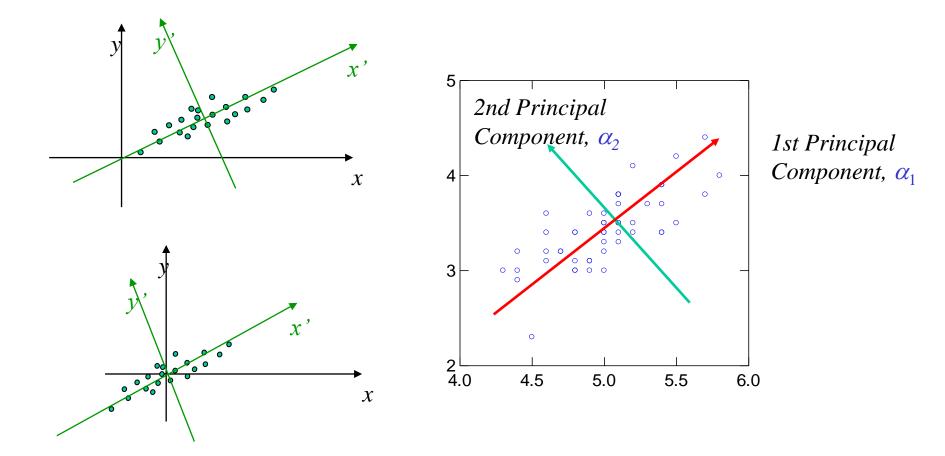
- Compression
- Noise filtering
- As preprocessing for classification:
 - Reduces feature space dimension
 - Simpler Classifiers
 - Possibly better generalization
 - May facilitate simple (nearest neighbor) methods

Projection

- Orthonormal basis \rightarrow trivial projection
- Given basis U = {u₁, ..., u_k}
 can project any d-dim x to k values
 - $\alpha_1 = \mathbf{u}_1^{\mathsf{T}} \mathbf{x}$ $\alpha_2 = \mathbf{u}_2^{\mathsf{T}} \mathbf{x}$... $\alpha_k = \mathbf{u}_k^{\mathsf{T}} \mathbf{x}$
 - $\alpha = \mathbf{U}^{\mathsf{T}}\mathbf{X}$
 - $\mathbf{x} \approx \sum_{i} \alpha_{i} \mathbf{u}_{i} = \sum_{i} (\mathbf{u}_{i}^{\top} \mathbf{x}) \mathbf{u}_{i}$ ["=" if all d values]
- We will use "centered" vectors: $\mathbf{x}' = \mathbf{x} - \mathbf{x}$ where $\mathbf{x} = \frac{1}{N} \sum_{n=1}^{N} \mathbf{x}^n$

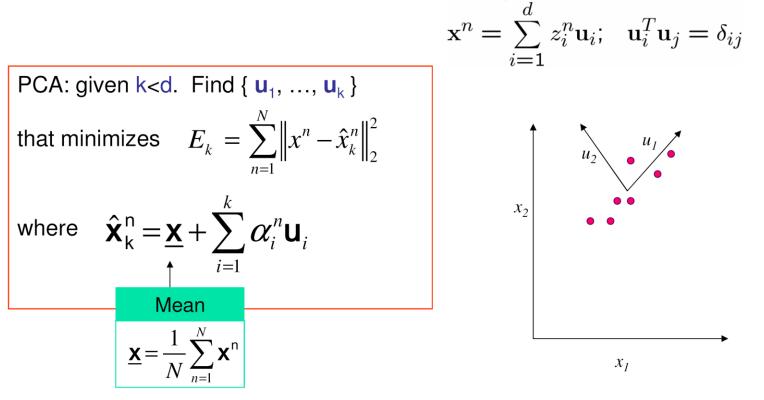
$$\alpha_i = \mathbf{u}_i^\top (\mathbf{x} - \underline{\mathbf{x}})$$

Principal Components Analysis



Minimize Reconstruction Error

- Assume data is set of N d-dimensional vectors, $\mathbf{x}^n = \langle x_1^n \dots x_d^n \rangle$
- Represent each in terms of any d orthogonal basis vectors



PCA

Note
$$\hat{\mathbf{x}}_{0}^{n} = \underline{\mathbf{x}} + \sum_{i=1}^{d} \alpha_{i}^{n} \mathbf{u}_{i} \equiv \mathbf{x}^{n}$$

So... $\mathbf{x}^{n} - \hat{\mathbf{x}}_{k}^{n} = \sum_{i=k+1}^{d} \alpha_{i}^{n} \mathbf{u}_{i} = \sum_{i=k+1}^{d} ((\mathbf{x}^{n} - \underline{\mathbf{x}})^{T} \mathbf{u}_{i}) \mathbf{u}_{i})$
So... $E_{k} = \sum_{n=1}^{N} \left\| \sum_{i=k+1}^{d} ((\mathbf{x}^{n} - \underline{\mathbf{x}})^{T} \mathbf{u}_{i}) \mathbf{u}_{i} \right\|^{2} = \sum_{n=1}^{N} \sum_{i=k+1}^{d} [(\mathbf{x}^{n} - \underline{\mathbf{x}})^{T} \mathbf{u}_{i}]^{2}$
 $= \sum_{i=k+1}^{d} \sum_{n=1}^{N} \left\| \mathbf{u}_{i}^{T} ((\mathbf{x}^{n} - \underline{\mathbf{x}})) (\mathbf{x}^{n} - \underline{\mathbf{x}})^{T} \mathbf{u}_{i} \right\|$
 $= \sum_{i=k+1}^{d} \mathbf{u}_{i}^{T}$
PCA: given k\mathbf{u}, ..., \mathbf{u}_{k} }
that minimizes $E_{k} = \sum_{n=1}^{N} \left\| \mathbf{x}^{n} - \hat{\mathbf{x}}_{k}^{n} \right\|_{2}^{2}$
where $\hat{\mathbf{x}}_{k}^{n} = \underline{\mathbf{x}} + \sum_{i=1}^{k} \alpha_{i}^{n} \mathbf{u}_{i}$
Heng Huang
Machine Learning

26

Justifying Use of Eigenvectors

- Goal
 - minimize: u^T∑u
 - subject to: $\mathbf{u}^{\mathsf{T}} \mathbf{u} = 1$
- Use Lagrange Multipliers... minimize: $f(\mathbf{u}) = \mathbf{u}^{\top} \sum \mathbf{u} - \lambda [\mathbf{u}^{\top} \mathbf{u} - 1]$
- Set derivative to 0:

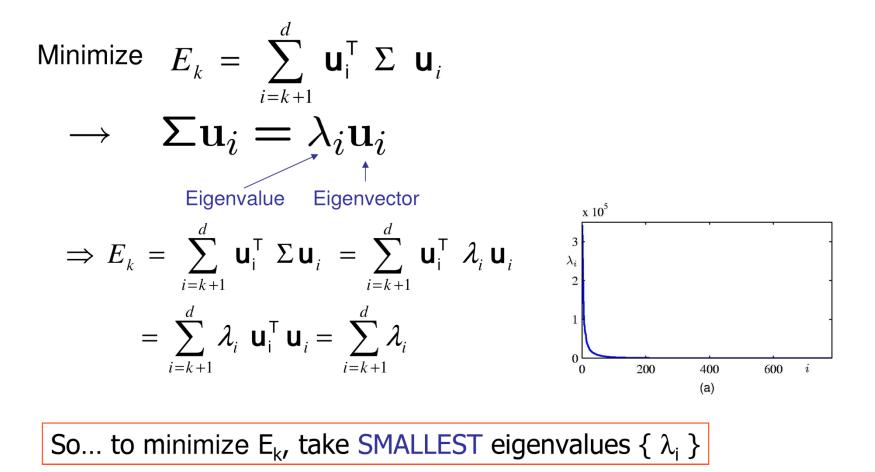
$$\sum \mathbf{u} - \lambda \mathbf{u} = 0$$

- Def'n of eigenvalue λ , eigenvector **u** !
- If multiple vectors **u**_i:
 - Minimize sum of independent terms...
 - Each is eigen value/vector

Fall 2016

Heng Huang

PCA



PCA Algorithm

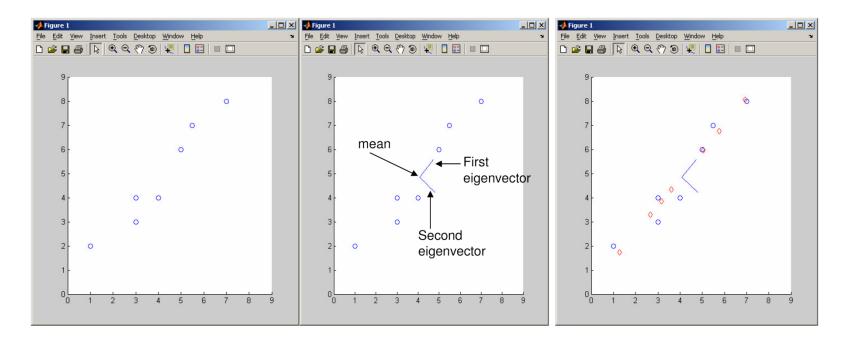
PCA algorithm(X, k): top k eigenvalues/eigenvectors

% X = d × N data matrix,
% ... each data point
$$x^n$$
 = column vector
• $\underline{\mathbf{x}} = \frac{1}{N} \sum_{n=1}^{N} \mathbf{x}^n$

- A \leftarrow subtract mean <u>x</u> from each column vector x^n in X
- $\Sigma \leftarrow A A^{T}$... covariance matrix of A
- { λ_i , \mathbf{u}_i }_{i=1..d} = eigenvectors/eigenvalues of Σ ... $\lambda_1 \ge \lambda_2 \ge ... \ge \lambda_d$
- Return { λ_i, **u**_i }_{i=1..k}
 % top *k* principle components

Fall 2016

PCA Example



Reconstructed data using only first eigenvector (k=1)

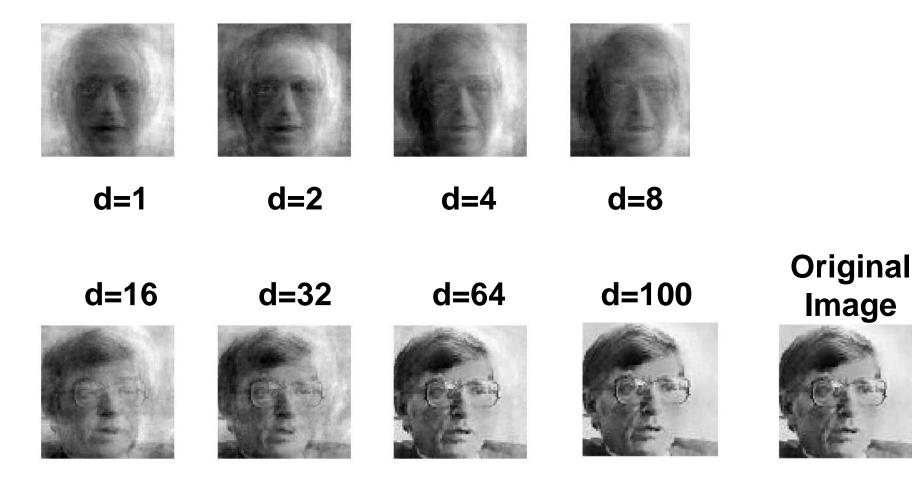
PCA and SVD

• We can compute the principal components by SVD of *X*:

 $\frac{X = U\Sigma V^{T}}{XX^{T} = U\Sigma V^{T} (U\Sigma V^{T})^{T} =$ $= U\Sigma V^{T} V\Sigma^{T} U^{T} = U\tilde{\Sigma}^{2} U^{T}$

• Thus, the left singular vectors of *X* are the principal components! We sort them by the size of the singular values of *X*.

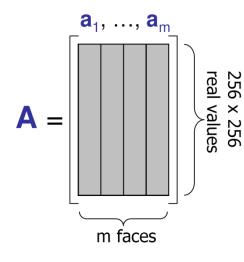
PCA for Image Compression



Fall 2016

Heng Huang

Eigenfaces



- Example data set: Images of faces
 - Famous Eigenface approach [Turk & Pentland], [Sirovich & Kirby]
- Each face a is ...
 - 256 x 256 values (luminance at location)
 - a in $\Re^{256 \times 256}$ (view as 1D vector)
- Form A = [a₁, ..., a_m]
- Compute $\Sigma = AA^{T}$
- Problem: Σ is 64K \times 64K ... HUGE!!!

18

Computational Complexity

- Suppose m instances, each of size d
 - Eigenfaces: m=500 faces, each of size d=64K
- Given $d \times d$ covariance matrix Σ , can compute
 - all d eigenvectors/eigenvalues in O(d³)
 - first k eigenvectors/eigenvalues in O(k d²)

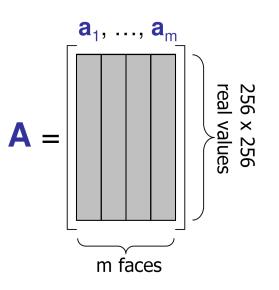
But if d=64K, EXPENSIVE!

A Clever Workaround

- Note that m<<64K
- Use $L = A^T A$ instead of $\Sigma = A A^T$
- If v is eigenvector of L then Av is eigenvector of Σ

Proof: L
$$\mathbf{v} = \gamma \mathbf{v}$$

 $\mathbf{A}^{\mathrm{T}}\mathbf{A} \mathbf{v} = \gamma \mathbf{v}$
 $\mathbf{A} (\mathbf{A}^{\mathrm{T}}\mathbf{A} \mathbf{v}) = \mathbf{A}(\gamma \mathbf{v}) = \gamma \mathbf{A}\mathbf{v}$
 $(\mathbf{A} \mathbf{A}^{\mathrm{T}})\mathbf{A} \mathbf{v} = \gamma (\mathbf{A}\mathbf{v})$
 $\Sigma (\mathbf{A}\mathbf{v}) = \gamma (\mathbf{A}\mathbf{v})$



Principle Components

