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Evaluation Metrics

Confusion matrix: Records the percentages of examples in the
testing set that fall into each group
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Precision-Recall

Correct answers Questions answered

" Objects

\ Misclassified
correctly

ClasW objects

TP FP

Recall= C.) = fraction of all objects correctly classified
o

Precision= - = fraction of all questions correctly answered

precision - recall
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Evaluation

* Problem: if the sample size 1s relatively small one split
may be lucky or unlucky hence biasing the statistics

* Solution: use multiple train/test splits and average their
results

* Random resampling validation techniques:
— random sub-sampling
— k-fold cross-validation

— bootstrap-based validation
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Random Sub-sampling

* Split the data into train
and test set with some
split ratio (typically
70:30)

* Repeat this k times for
different random splits

* Average the results of
statistics
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K-fold Cross-validation

* Split the data into k equal

size groups Split into k groups
of equal size

* Use each group once as a
test set, and the Test = ith group, Train on the rest
remaining groups as the
training set

* Repeat this k times for k
groups Learning Classify/Evaluate

* Average the results of
statistics Average Stats
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Bootstrap-based Validation

* Bootstrap technique - used

primarily to estimate the

sampling distribution of an

estimator

* Generate randomly with

replacement a training dataset

of size n that equals the
original data size

* Some examples are repeated
in the training set, some are

mis sing

* Build a test set from examples

not used in the training set.
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Parametric Models

A parametric model implements a very restricted family of
functions f(x; w), leaving only a few parameters w to be
learned. It thus expresses a strong presupposition (= prior)
about the structure of the data.

Example: parametric density estimation

Assume density is isotropic Gaussian: f(x,; w) = N(x,; u, 0*I)
=> need only determine optimal mean w* and variance o**
ML quickly gives

1 1
¥ — 2% — _ 2
w*= - Skxk, 0¥ = — zkllxk wll=.
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Non-Parametric Models

Non-parametric models make only weak, general prior
assumptions about the data, such as smoothness. f(x; w) is
constructed directly over the memorized training data X; the
construction involves no or few parameters w to be learned.

Example: k-nearest neighbor methods

The model’s output f(x; w) for some new datum x is calculated
by combining (in some fixed way) the memorized responses
for the k nearest neighbors of xin the training data. Example:

(regression) interpolate between nearest neighbor responses

(classification) take majority vote of nearest neighbor classes
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K Nearest Neighbor Classifier

m The kNN classifier is based on non-parametric density
estimation techniques

e Let us assume we seek to estimate the density function P(x) from a
dataset of examples

e P(x) can be approximated by the expression

V is the volume surrounding x
P(x)= NV where ¢ N is the total number of examples
k is the number of examples inside V

e The volume V is determined by the

o
D-dim distance R,P(x) between x : ® % o |- V=rRe
i - °®
and its k nearest neighbor ° Far / - <
° X = R
K K o
P(x) = — = 5 o o™,
NV N-c,-Ry(x) e® ° o
® L ]
= Where c; is the volume of the ° . °

unit sphere in D dimensions
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K Nearest Neighbor Classifier

s We use the previous result to estimate the posterior probability

e The unconditional density is, again, estimated with

K.
P =
(X|w) NV
e And the priors can be estimated by
N
P(o. )= —
©)=3
e The posterior probability then becomes
K N,
P(x) K K
¢ Yielding discriminant functions NV
ki
gi(x)_?

= This is known as the k Nearest Neighbor classifier
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K Nearest Neighbor Classifier

m The kNN classifier is a very intuitive method

e Examples are classified based on their similarity with training data

= For a given unlabeled example x e NP, find the k “closest” labeled examples in the
training data set and assign x, to the class that appears most frequently within the k-

subset
= The kNN only requires
e Anintegerk
e A set of labeled examples
¢ A measure of “closeness”
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kNN in Action: Example 1

m We generate data for a 2-dimensional 3-
class problem, where the class-conditional
densities are multi-modal, and non-linearly
separable

s We used kNN with

e k =five
e Metric = Euclidean distance

m.l.‘
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kNN in Action: Example 2

s We generate data for a 2-dim 3-class
problem, where the likelihoods are
unimodal, and are distributed in rings
around a common mean

e These classes are also non-linearly separable
s We used kNN with

e k =five

e Metric = Euclidean distance

<1 45 1] [1E7 -1 0.5 1] [1E7
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kNN versus 1NN
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What 1s Cluster Analysis?

* Finding groups of objects such that the objects in a group
will be similar (or related) to one another and different from
(or unrelated to) the objects 1n other groups

Inter-cluster
Intra-cluster distances are
distances are maximized

minimized @
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What 1s a natural grouping among these objects?
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Notion of a Cluster can be Ambiguous
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What 1s Similarity?

* 'The quality or state of being similar

likeness, resemblance - Webster's Dictionary
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Deﬁning Distance Measures

Hil

Definition Let O1 and O2 be two objects from the
universe of possible objects. The distance dissimilarity

between O1 and O2 is a real number denoted by D(0O1,02)

Peter Piotr

¢ ¢
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What properties should a distance measure have?

* DA,B) = DB,A) Symmetry

Otherwise you conld claim: Alex looks like Bob, but Bob looks nothing
like Alex.

* D(AA) = 0 Constancy of Self-Similarity
Otherwise you could claim: Alex looks more like Bob, than Bob does.
* D(A,B) = 0 It A= B Positivity Separation

Otherwise there are objects in your world that are different, but you
cannot tell apart.

* D(AB) <= D(A,C) + DB,C) Triangular Inequality

Otherwise you could claim: Alex s very like Bob, and Alex is very like
Carl, but Bob is very unlike Carl
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Types of Clustering

e Hierarchical
— Bottom Up:

* Start with objects and group most similar ones.
— Top down:

 Start with all objects and divide into groups so as to maximize
within-group similarity.

— Single-link, complete-link, group-average
* Non-hierarchical

— K-means

— EM-algorithm
* Graph based model

— Spectral clustering
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Pertectly clustered using a hierarchy
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Cluster Number

We can look at the dendrogram to determine the correct number of

clusters. In this case, the two highly separated subtrees are highly

—
o

— M W Ay 00D

suggestive of two clusters.
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Use of a dendrogram to detect outliers

The single isolated branch is suggestive of a
data point that is very different to all others
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Hierarchical Clustering

* Bottom-up:
Start with a separate cluster for each object

2. Determine the two most similar clusters and merge into a new
cluster. Repeat on the new clusters that have been formed.

3. Terminate when one large cluster containing all objects has been

formed
Example of a similarity measure:

. Top-down

1. Start from a cluster of all objects

2. Iteratively determine the cluster that is least coherent and split it.

3. Repeat until all clusters have one object.
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Distance Matrix
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Similarity Measures tor Hierarchical Clustering

* Single-link

— Similarity of two most similar members
¢ Complete-link

— Similarity of two least similar members
* Group-average

— Average similarity between members
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Complete-Link

* Similarity function focuses on global cluster quality
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Group-Average

* Instead of greatest similarity between elements of clusters or
the least similarity the merge criterion is average similarity.

¢ Compromise between single-link and complete-link
clustering
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