Machine Learning CSE 6363 (Fall 2016)

Lecture 15 Validation, KNN, Clustering

Heng Huang, Ph.D. Department of Computer Science and Engineering

## Evaluation for Classification



### **Evaluation Metrics**

**Confusion matrix:** Records the percentages of examples in the testing set that fall into each group



#### **Misclassification error:**

E = FP + FN

Sensitivity:

$$SN = \frac{TP}{TP + FN}$$
Specificity:
$$SP = \frac{TN}{TN}$$

$$\overline{TN + FP}$$

Machine Learning 3

## Precision-Recall





= fraction of all objects correctly classified

Precision=

= fraction of all questions correctly answered  $F = 2 \cdot \frac{\text{precision} \cdot \text{recall}}{\text{precisionum} \text{grecall}}$ 

- Problem: if the sample size is relatively small one split may be lucky or unlucky hence biasing the statistics
- Solution: use multiple train/test splits and average their results
- Random resampling validation techniques:
  - random sub-sampling
  - k-fold cross-validation
  - bootstrap-based validation

# Random Sub-sampling

- Split the data into train and test set with some split ratio (typically 70:30)
- Repeat this k times for different random splits
- Average the results of statistics



## K-fold Cross-validation

- Split the data into k equal size groups
- Use each group once as a test set, and the remaining groups as the training set
- Repeat this k times for k groups
- Average the results of statistics



## Bootstrap-based Validation

- Bootstrap technique used primarily to estimate the sampling distribution of an estimator
- Generate randomly with replacement a training dataset of size n that equals the original data size
- Some examples are repeated in the training set, some are missing
- Build a test set from examples not used in the training set.

Heng Huang



A **parametric** model implements a very restricted family of functions **f**(**x**; **w**), leaving only a few parameters **w** to be learned. It thus expresses a strong presupposition (= prior) about the structure of the data.

**Example:** parametric density estimation

Assume density is isotropic Gaussian:  $f(\mathbf{x}_k; \mathbf{w}) = N(\mathbf{x}_k; \boldsymbol{\mu}, \sigma^2 \mathbf{I})$ => need only determine optimal mean  $\boldsymbol{\mu}*$  and variance  $\sigma^{2*}$ ML quickly gives

$$\boldsymbol{\mu}^* = \frac{1}{n} \sum_k \mathbf{x}_k, \quad \sigma^{2*} = \frac{1}{n} \sum_k ||\mathbf{x}_k - \boldsymbol{\mu}||^2.$$

Non-parametric models make only weak, general prior assumptions about the data, such as smoothness. **f**(**x**; **w**) is constructed directly over the memorized training data **X**; the construction involves no or few parameters **w** to be learned.

#### **Example:** *k*-nearest neighbor methods

The model's output **f**(**x**; **w**) for some new datum **x** is calculated by combining (in some fixed way) the memorized responses for the *k* nearest neighbors of **x** in the training data. Example: (regression) interpolate between nearest neighbor responses (classification) take majority vote of nearest neighbor classes

## K Nearest Neighbor Classifier

- The kNN classifier is based on non-parametric density estimation techniques
  - Let us assume we seek to estimate the density function P(x) from a dataset of examples
  - P(x) can be approximated by the expression

$$P(x) \cong \frac{k}{NV}$$
 where

V is the volume surrounding x N is the total number of examples k is the number of examples inside V

 The volume V is determined by the D-dim distance R<sub>k</sub><sup>D</sup>(x) between x and its k nearest neighbor

$$\mathsf{P}(\mathsf{x}) \cong \frac{\mathsf{k}}{\mathsf{N}\mathsf{V}} = \frac{\mathsf{k}}{\mathsf{N} \cdot \mathsf{c}_{\mathsf{D}} \cdot \mathsf{R}_{\mathsf{k}}^{\mathsf{D}}(\mathsf{x})}$$

 Where c<sub>D</sub> is the volume of the unit sphere in D dimensions



## K Nearest Neighbor Classifier

#### We use the previous result to estimate the posterior probability

• The unconditional density is, again, estimated with

$$\mathsf{P}(\mathsf{x} | \boldsymbol{\omega}_{\mathsf{i}}) = \frac{\mathsf{k}_{\mathsf{i}}}{\mathsf{N}_{\mathsf{i}}\mathsf{V}}$$

• And the priors can be estimated by

$$P(\omega_i) = \frac{N_i}{N}$$

• The posterior probability then becomes

$$P(\omega_i | x) = \frac{P(x | \omega_i)P(\omega_i)}{P(x)} = \frac{\frac{k_i}{N_i V} \cdot \frac{N_i}{N}}{\frac{k_i}{N V}} = \frac{k_i}{k}$$

• Yielding discriminant functions

$$g_i(x) = \frac{k_i}{k}$$

This is known as the k Nearest Neighbor classifier

Heng Huang

## K Nearest Neighbor Classifier

#### The kNN classifier is a very intuitive method

- Examples are classified based on their similarity with training data
  - For a given unlabeled example x<sub>u</sub>∈ ℜ<sup>D</sup>, find the k "closest" labeled examples in the training data set and assign x<sub>u</sub> to the class that appears most frequently within the k-subset

#### The kNN only requires

- An integer k
- A set of labeled examples
- A measure of "closeness"



13

## kNN in Action: Example 1

- We generate data for a 2-dimensional 3class problem, where the class-conditional densities are multi-modal, and non-linearly separable
- We used kNN with
  - k = five
  - Metric = Euclidean distance









Heng Huang

## kNN in Action: Example 2

- We generate data for a 2-dim 3-class problem, where the likelihoods are unimodal, and are distributed in rings around a common mean
  - These classes are also non-linearly separable
- We used kNN with
  - k = five
  - Metric = Euclidean distance









Heng Huang

### kNN versus 1NN

1-NN



20-NN



**g** 16

## What is Cluster Analysis?

• Finding groups of objects such that the objects in a group will be similar (or related) to one another and different from (or unrelated to) the objects in other groups\_\_\_\_\_\_



### What is a natural grouping among these objects?



#### Clustering is subjective



Fall 2016

Heng Huang

Machine Learning 18

## Notion of a Cluster can be Ambiguous



## What is Similarity?

• The quality or state of being similar likeness, resemblance - Webster's Dictionary



## Defining Distance Measures

**Definition** Let O1 and O2 be two objects from the universe of possible objects. The distance dissimilarity between O1 and O2 is a real number denoted by D(O1,O2)



### What properties should a distance measure have?

• D(A,B) = D(B,A) Symmetry

Otherwise you could claim: Alex looks like Bob, but Bob looks nothing like Alex.

- D(A,A) = 0 Constancy of Self-Similarity Otherwise you could claim: Alex looks more like Bob, than Bob does.
- D(A,B) = 0 If A = B Positivity Separation
   Otherwise there are objects in your world that are different, but you cannot tell apart.
- D(A,B) <= D(A,C) + D(B,C) Triangular Inequality</li>
   Otherwise you could claim: Alex is very like Bob, and Alex is very like
   Carl, but Bob is very unlike Carl

# Types of Clustering

- Hierarchical
  - Bottom Up:
    - Start with objects and group most similar ones.
  - Top down:
    - Start with all objects and divide into groups so as to maximize within-group similarity.
  - Single-link, complete-link, group-average
- Non-hierarchical
  - K-means
  - EM-algorithm
- Graph based model
  - Spectral clustering

Fall 2016

## Perfectly clustered using a hierarchy





### Cluster Number

We can look at the dendrogram to determine the correct number of clusters. In this case, the two highly separated subtrees are highly suggestive of two clusters.



## Use of a dendrogram to detect outliers



## Hierarchical Clustering

- Bottom-up:
  - 1. Start with a separate cluster for each object
  - 2. Determine the two most similar clusters and merge into a new cluster. Repeat on the new clusters that have been formed.
  - 3. Terminate when one large cluster containing all objects has been formed

Example of a similarity measure:

• Top-down

 $d_{ij} = \sum_{K=1}^{L} (x_{ik} - x_{jk})^2$ 

- 1. Start from a cluster of all objects
- 2. Iteratively determine the cluster that is least coherent and split it.
- 3. Repeat until all clusters have one object.

## Distance Matrix





Fall 2016

Heng Huang

Machine Learning 30

### Similarity Measures for Hierarchical Clustering

- Single-link
  - Similarity of two most similar members
- Complete-link
  - Similarity of two least similar members
- Group-average
  - Average similarity between members

#### Similarity function focuses on local coherence



Fall 2016

## Complete-Link

• Similarity function focuses on global cluster quality



## Group-Average

- Instead of greatest similarity between elements of clusters or the least similarity the merge criterion is average similarity.
- Compromise between single-link and complete-link clustering