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General Idea: Expectation Maximization

Start by devising a noisy channel

— Any model that predicts the corpus observations via some
hidden structure (tags, parses, ...)

Initially guess the parameters of the model!
— Educated guess 1s best, but random can work

(" )

Expectation step: Use current parameters (and observations) to
reconstruct hidden structure

Maximization step: Use that hidden structure (and observations)

{0 reestimate parameters )

Repeat until convergence!
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K-means Algorithm

e (Goal

— represent a data set in terms of K clusters each of which
is summarized by a point-learner g

* Initialize prototypes, then iterate between two
phases:
— E-step: assign each data point to nearest learner

— M-step: update learners to be the cluster means

* Simplest version is based on Fuclidean distance

m

Dist(X,Y) =\/Z(xi -Y,)?

i=1
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Responsibilities

*  Responsibilities assign data points to clusters

Tnk € {Oa 1}

Z'rnk =1
k

* Example: 5 data points and 3 clusters

such that

(1 0 0)
0 0 1
(rp) = 0 1 0
0 0 1
\1 0 0
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K-means Cost Function

data
. [

N
Y >~ raklxn — pl?

1k=1
'//f x\\‘proToTypes

responsibilities

Fall 2016 Heng Huang Machine Learning 14



Minimizing the Cost Function

* E-step: minimize J w.r.t. Tk
— assigns each data point to nearest learner
* M-step: minimize J w.r.t. g

— gives
. Zn TknXn

Hi —
Zn T'kn

— each learner set to the mean of points in that
cluster

* Convergence guaranteed since there are a finite
number of possible responsibility settings.

Fall 2016 Heng Huang Machine Learning

15



I

— 1000

500r

0 54

* How to evaluate K-means clustering results?
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Limitations of K-means

¢ Hard assignments of data points to
clusters

— small shift of a data point can a

flip it to a different cluster

* Solution: replace ‘hard’ clustering of
K-means with ‘soft’ probabilistic
assignments

* Represents the probability
distribution of the data as a Gaussian

Mixcture Model (GMM)

0.4

b.5

Class 1

D,dG4,WD.E~- n,a-
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Maximum Likelithood Principle

* To describe the problem in a “probability” way

* Remind: what is probability?
p) >0 17 ple)ds =1

* Mapping from distance to probability:

p=0 <<= ||lxy —m|l=+x

p=1 <<= |jx,—m| = |
[01+DC') — [011] K

a =

e

* But not all positive monotonic functions are ok, why?

— One function: Gaussian distribution
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(Gaussian Distribution

e Multivariate Gaussian

1 1
N X)) = - _Z(x—u)" T Y (x -
XImE)= o G )

where X is the covariance matrix, and p Is the mean vector.
d is thedimension.

e In 1-dimension case:

(X— ﬂ)}

G(x| u,0%) = Fa exp{-

where o is the variance, and g is the mean value,
dimension d =1.
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Recall: Likelihood Function
Data set

D={xp} n=1,...,N @

Consider first a single Gaussian
Assume observed data points generated independently

N

n=1

Viewed as a function of the parameters, this is known as
the likelihood function

Fall 2016 Heng Huang Machine Learning 20



Recall: Maximum Likelthood Solution

Set the parameters by maximizing the likelihood function
Equivalently maximize the log likelihood

N Nd

1 N
5 Z (xn — N)Tz_l(xn — 1)
n=1

« Maximizing w.r.t. the mean gives the sample mean

1 N
MMLzﬁzxn

n=1

« Maximizing w.r.t covariance gives the sample covariance

1 N
XML = i S (xn = L) (Xn — L) T
n=1
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Example: Mixture of 3 Gaussians

05
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Posterior Probabilities

« We can think of the mixing coefficients as prior
probabilities for the components

« For a given value of x we can evaluate the
corresponding posterior probabilities, called

responsibilities
« These are given from Bayes’ theorem by
p(k)p(x|k)
() = plklx) = '
p(x)
. ﬂk'}\/‘(x'p’ka Ek)
K
> miN (x|, Bj)
j=1
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Maximum lLikelihood for the GMM

» The log likelihood function takes the form

n=1 k=1

N K
Inp(D’ﬂ-al"’aE) — 2 In { Z 7T]€N(Xn|ﬂk,2k)}

* Note: sum over components appears inside the log
 There is no closed form solution for maximum likelihood

N
TN (X |2y, Ek)
Eﬂ-’-(xn - Hk)
; Z? \ X?l‘lu’?

( nk)

ey
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Maximum lLikelihood for the GMM

« Similarly for the covariances

N
Z Vi (Xn) (Xn — ) (Xn — Hj)T
I N

Z ’Yj(Xn)

n=1

* For mixing coefficients use a Lagrange multiplier to give

1 N
T =N Zl’)’j(xn)
n=—
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EM Algorithm — Informal Derivation

* The solutions are not closed form since they are coupled
e Suggests an iterative scheme for solving them:
— make initial guesses for the parameters
— alternate between the following two stages:
1. E-step: evaluate responsibilities
2. M-step: update parameters using ML results
 Each EM cycle guaranteed not to decrease the likelihood
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e [nitialize py, 2 and m, and evaluate log-likelihood with these
TN (Xn| ok, Zk)

o E Step: y(zk) =

new

e M Step: p, " =

N
= Wk with Ny, = Z’Y(an)

n=1

e Evaluate log-likehood

N
Inp(X|p, X, ) =D I
n=1 [
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Processing : EM Initialization

— Initialization :

Fall 2016

* Assign random value to parameters
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Processing : the |

=-Step (1/2)

— Expectation :

Fall 2016

* Pretend to know the parameter

 Assign responsibilities of Gaussians to each data point

o P(A) =02
P(B)=0.8
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Processing : the E-Step (2/2)

* Competition of Hypotheses

— Compute the expected values of P1j of hidden
indicator variables.

* Each gives membership welghts to data point
e Normalization

* Weight = relative likelihood of class membership
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Processing : the M-Step (1/2)

— Maximization :

* Fit the parameter to its set of points

e o o P(A) =02
P(B)=0.8
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Processing : the M-Step (2/2)

e For each Gaussian learner

— Find the new value of parameters to maximize the

log likelihood

— Based on
* Weight of points in the class

* Location of the points

— Gaussians are pulled toward data
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Challenges

¢ (Can you try to obtain why K-means and EM algorithm
on GMM have that form? Given the target function J:
— K-means: minimize

N K
J=2 2 nlx—ml

— EM: maximize =1 1=
N K

J :H[ZalG(Xt [y, )]
t=1 I=1

mi exp {—lxn — p;]|2/2¢}
> 5 exp { —llxn — p;l12/2€}

Yi(Xn) = » rpi €10, 1}

Fall 2016 Heng Huang Machine Learning

39



