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Repeat until convergence! 

General Idea: Expectation Maximization 

• Start by devising a noisy channel 

– Any model that predicts the corpus observations via some 

hidden structure (tags, parses, …) 

• Initially guess the parameters of the model! 

– Educated guess is best, but random can work 

 

• Expectation step: Use current parameters (and observations) to 

reconstruct hidden structure 

• Maximization step: Use that hidden structure (and observations) 

to reestimate parameters 
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K-means Algorithm 

• Goal  

– represent a data set in terms of K clusters each of which 

is summarized by a point-learner 

• Initialize prototypes, then iterate between two 

phases: 

– E-step: assign each data point to nearest learner 

– M-step: update learners to be the cluster means 

• Simplest version is based on Euclidean distance 
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Responsibilities 

• Responsibilities assign data points to clusters 
 
 
such that  
 
 

 

• Example: 5 data points and 3 clusters 
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K-means Cost Function 

prototypes responsibilities 

data 



Fall 2016   Heng Huang                                                  Machine Learning 15 

Minimizing the Cost Function 

• E-step: minimize      w.r.t. 

– assigns each data point to nearest learner 

• M-step: minimize      w.r.t.         

– gives 
 

 

– each learner set to the mean of points in that 
cluster 

• Convergence guaranteed since there are a finite 
number of possible responsibility settings. 
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• How to evaluate K-means clustering results? 
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Limitations of K-means 

• Hard assignments of data points to 

clusters 

– small shift of a data point can 

flip it to a different cluster 

• Solution: replace ‘hard’ clustering of 

K-means with ‘soft’ probabilistic 

assignments 

• Represents the probability 

distribution of the data as a Gaussian 

Mixture Model (GMM) 
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Maximum Likelihood Principle 

• To describe the problem in a “probability” way 

• Remind: what is probability? 

 

• Mapping from distance to probability: 

 

 

 

 

 

 

• But not all positive monotonic functions are ok, why?  

– One function: Gaussian distribution 
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Gaussian Distribution 

• Multivariate Gaussian 

 

 

 

 

 

• In 1-dimension case:  
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Recall: Likelihood Function 
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Recall: Maximum Likelihood Solution 
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Example: Mixture of 3 Gaussians 
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Posterior Probabilities 



Fall 2016   Heng Huang                                                  Machine Learning 24 

Maximum Likelihood for the GMM 
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Maximum Likelihood for the GMM 
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EM Algorithm – Informal Derivation 
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Processing : EM Initialization 

– Initialization : 

• Assign random value to parameters 
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Processing : the E-Step (1/2) 

– Expectation :  

• Pretend to know the parameter 

• Assign responsibilities of Gaussians to each data point 
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Processing : the E-Step (2/2) 

• Competition of Hypotheses 

– Compute the expected values of Pij of hidden 

indicator variables. 

• Each gives membership weights to data point 

• Normalization 

• Weight = relative likelihood of class membership 
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Processing : the M-Step (1/2) 

– Maximization : 

• Fit the parameter to its set of points 
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Processing : the M-Step (2/2) 

• For each Gaussian learner 

– Find the new value of parameters to maximize the 

log likelihood 

– Based on 

• Weight of points in the class 

• Location of the points 

– Gaussians are pulled toward data 
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Challenges 

• Can you try to obtain why K-means and EM algorithm 

on GMM have that form? Given the target function J: 

– K-means: minimize  

 

– EM: maximize 
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