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Hidden Markov Models 

Hidden states : the (TRUE) states of  a system that may 

be described by a Markov process (e.g., the weather).  

Observable states : the states of  the process that are 

‘visible’ (e.g., seaweed dampness).  
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• Set of  states:  

• Process moves from one state to another generating a          

 sequence of  states :     

• Markov chain property:  probability of  each subsequent state 

depends only on what was the previous state: 

  

 

• To define Markov model, the following probabilities have to be 

specified: transition probabilities                               and initial 

probabilities 

• A Markov model is a probabilistic model of  symbol sequences in 

which the probability of  the current event is conditioned only by 

the previous event. 
 

Markov Models 
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Rain Dry 

0.7 0.3 

0.2 0.8 

• Two states : ‘Rain’ and ‘Dry’. 

• Transition probabilities: P(‘Rain’|‘Rain’)=0.3 , 

P(‘Dry’|‘Rain’)=0.7 , P(‘Rain’|‘Dry’)=0.2, P(‘Dry’|‘Dry’)=0.8 

• Initial probabilities: say P(‘Rain’)=0.4 , P(‘Dry’)=0.6 . 

Example of Markov Model 



Fall 2016   Heng Huang                                                  Machine Learning 5 

• By Markov chain property, probability of  state sequence can be 

found by the formula: 

 

 

 

 

 

• Suppose we want to calculate a probability of  a sequence of  

states in our example,  {‘Dry’,’Dry’,’Rain’,Rain’}.  

        P({‘Dry’,’Dry’,’Rain’,Rain’} )  

=P(‘Rain’|’Rain’) P(‘Rain’|’Dry’) P(‘Dry’|’Dry’) P(‘Dry’) 

           = 0.3*0.2*0.8*0.6 

Calculation of sequence probability 
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Hidden Markov models 

  

• Set of  states:  

• Process moves from one state to another generating a sequence of  

states : 

• Markov chain property:  probability of  each subsequent state 

depends only on what was the previous state: 

 

  

• States are not visible, but each state randomly generates one of  M 

observations (or visible states) 

 

• To define hidden Markov model, the following probabilities  have to 

be specified: matrix of  transition probabilities A=(aij), aij= P(si | sj) , 

matrix of  observation probabilities B=(bi (vm )), bi(vm ) = P(vm | si) and 

a vector of  initial probabilities  =(i),  i = P(si) . Model is 

represented by M=(A, B, ). 
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Low High 

0.7 0.3 

0.2 0.8 

Dry Rain 

0.6 0.6 
0.4 0.4 

Example of Hidden Markov Model 
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• Two states : ‘Low’ and ‘High’ atmospheric pressure. 

• Two observations : ‘Rain’ and ‘Dry’. 

• Transition probabilities: P(‘Low’|‘Low’)=0.3 , 

P(‘High’|‘Low’)=0.7 , P(‘Low’|‘High’)=0.2, 

P(‘High’|‘High’)=0.8 

• Observation probabilities : P(‘Rain’|‘Low’)=0.6 ,    

P(‘Dry’|‘Low’)=0.4 , P(‘Rain’|‘High’)=0.4 , 

P(‘Dry’|‘High’)=0.3 . 

• Initial probabilities: say P(‘Low’)=0.4 , P(‘High’)=0.6 . 

Example of Hidden Markov Model 

Low High 

0.7 0.3 

0.2 0.8 

Dry Rain 

0.6 0.6 
0.4 0.4 
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•Suppose we want to calculate a probability of a sequence of 

observations in our example,  {‘Dry’,’Rain’}. 

•Consider all possible hidden state sequences:  

 P({‘Dry’,’Rain’} ) = P({‘Dry’,’Rain’} , {‘Low’,’Low’}) + 

P({‘Dry’,’Rain’} , {‘Low’,’High’}) + P({‘Dry’,’Rain’} , 

{‘High’,’Low’}) + P({‘Dry’,’Rain’} , {‘High’,’High’})  

 

where first term is :  

P({‘Dry’,’Rain’} , {‘Low’,’Low’})=  

P({‘Dry’,’Rain’} | {‘Low’,’Low’})  P({‘Low’,’Low’}) =  

P(‘Dry’|’Low’)P(‘Rain’|’Low’) P(‘Low’)P(‘Low’|’Low) 

= 0.4*0.4*0.6*0.4*0.3 

Calculation of observation sequence probability 
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• Evaluation problem. Given the HMM  M=(A, B, )   and  the 

observation sequence  O=o1 o2 ... oK , calculate the probability 

that model M has generated sequence  O . 

• Decoding problem. Given the HMM  M=(A, B, )   and  the 

observation sequence  O=o1 o2 ... oK , calculate the most likely 

sequence of  hidden states si that produced this observation 

sequence O. 

• Learning problem. Given some training observation 

sequences  O=o1 o2 ... oK  and general structure of  HMM 

(numbers of  hidden and visible states), determine HMM 

parameters M=(A, B, )   that best fit training data.   

O=o1...oK denotes a sequence of  observations ok{v1,…,vM}. 

Main issues using HMMs : 
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• Evaluation problem. Given the HMM  M=(A, B, )   and  the 

observation sequence  O=o1 o2 ... oK , calculate the probability that 

model M has generated sequence  O . 

• Trying to find probability of  observations O=o1 o2 ... oK  by 

means of  considering all hidden state sequences (as was done in 

example) is impractical:  

       NK hidden state sequences - exponential complexity. 

 

• Use Forward-Backward HMM algorithms for efficient 

calculations. 

• Define the forward variable k(i) as the joint probability of  the 

partial observation sequence o1 o2 ... ok  and that the hidden state at 

time k is si  : k(i)= P(o1 o2 ... ok , qk= si )  

Evaluation Problem 
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s1 

s2 

si 

sN 

s1 

s2 

si 

sN 

s1 

s2 

sj 

sN 

s1 

s2 

si 

sN 

a1j 

a2j 

aij 

aNj 

Time=     1                                         k                    k+1                                  K 

    o1                                          ok                    ok+1                                 oK  =   Observations 

Trellis representation of an HMM 
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• Initialization:  

      1(i)= P(o1  , q1= si ) = i bi (o1) , 1<=i<=N. 

• Forward recursion: 

      k+1(j)= P(o1 o2 ... ok+1 , qk+1= sj ) =  

 i P(o1 o2 ... ok+1 , qk= si , qk+1= sj ) =  

 i P(o1 o2 ... ok , qk= si) aij bj (ok+1 ) =  

 [i k(i) aij ] bj (ok+1 ) ,     1<=j<=N, 1<=k<=K-1. 

• Termination:  

 P(o1 o2 ... oK) = i P(o1 o2 ... oK , qK= si) = i K(i) 

• Complexity :  

 N2K operations. 

Forward Recursion for HMM 

t-1(i) t(j) 
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• Define the forward variable k(i) as the joint probability of  the 

partial observation sequence ok+1 ok+2 ... oK  given  that the hidden 

state at time k is si  : k(i)= P(ok+1 ok+2 ... oK |qk= si ) 

• Initialization:  

      K(i)= 1  , 1<=i<=N. 

• Backward recursion: 

      k(j)= P(ok+1 ok+2 ... oK | qk= sj ) =  

 i P(ok+1 ok+2 ... oK , qk+1= si  | qk= sj ) =  

 i P(ok+2 ok+3 ... oK | qk+1= si) aji bi (ok+1 ) =  

 i k+1(i) aji bi (ok+1 ) ,     1<=j<=N, 1<=k<=K-1. 

• Termination:  

      P(o1 o2 ... oK) = i P(o1 o2 ... oK , q1= si) =  

 i P(o1 o2 ... oK  |q1= si) P(q1= si) = i 1(i) bi (o1) i  

Backward Recursion for HMM 
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• Decoding problem. Given the HMM  M=(A, B, )   and  the 

observation sequence  O=o1 o2 ... oK , calculate the most likely 

sequence of  hidden states si that produced this observation 

sequence. 

• We want to find the state sequence Q= q1…qK which 

maximizes  P(Q | o1 o2 ... oK ) , or equivalently P(Q , o1 o2 ... oK ) . 

• Brute force consideration of  all paths takes exponential time. 

Use efficient Viterbi  algorithm instead. 

• Define variable  k(i)  as the maximum probability of  producing 

observation sequence o1 o2 ... ok  when moving along any hidden 

state sequence q1… qk-1 and getting into qk= si  . 

         k(i) = max P(q1… qk-1 , qk= si  ,  o1 o2 ... ok)   

       where max is taken over all possible paths q1… qk-1 . 

Decoding problem 
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• General idea: 

 if  best path ending in qk= sj  goes through qk-1= si  then it     

 should coincide with best path ending in qk-1= si . 

s1 

si 

sN 

sj aij 

aNj 

a1j 

 qk-1                  qk  

• k(i) = max P(q1… qk-1 , qk= sj  ,  
o1 o2 ... ok) =  

maxi [ aij bj (ok )  max P(q1… qk-1= 

si  ,  o1 o2 ... ok-1) ] 

• To backtrack best path keep info that predecessor of  sj was si. 

Viterbi algorithm (1) 
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• Initialization: 

  1(i) = max P(q1= si  ,  o1) = i bi (o1) , 1<=i<=N. 

•Forward recursion: 

    k(j) = max P(q1… qk-1 , qk= sj  ,  o1 o2 ... ok) =  

     maxi [ aij bj (ok ) max P(q1… qk-1= si  ,  o1 o2 ... ok-1) ] =  

     maxi [ aij bj (ok ) k-1(i) ] ,     1<=j<=N, 2<=k<=K. 

 

•Termination:  choose best path ending at time K 

             maxi [ K(i) ] 

• Backtrack best path. 

This algorithm is similar to the forward recursion of  evaluation problem, 

with  replaced by max and additional backtracking. 

Viterbi algorithm (2) 
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• Learning problem. Given some training observation 

sequences  O=o1 o2 ... oK  and general structure of  HMM 

(numbers of  hidden and visible states), determine HMM 

parameters M=(A, B, )   that best fit training data, that is 

maximizes P(O | M) .  

 

• There is no algorithm producing optimal parameter values. 

 

• Use iterative expectation-maximization algorithm to find local 

maximum of   P(O | M) - Baum-Welch  algorithm. 

 

Learning problem (1) 
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• If  training data has information about sequence of  hidden states 

(as in word recognition example), then use maximum likelihood 

estimation of  parameters: 

 

  aij= P(si | sj) = 
Number of  transitions from state sj to  state si 

         Number of  transitions out of  state sj 

bi(vm ) = P(vm | si)= 
Number of  times observation vm occurs in state si 

            Number of  times in state si 

Learning problem (2) 
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General idea: 

aij= P(si | sj) = 
Expected number of  transitions from state sj to  state si 

        Expected number of  transitions out of  state sj 

bi(vm ) = P(vm | si)= 
Expected number of  times observation vm occurs in state si 

     Expected number of  times in state si 

i = P(si) =  Expected frequency in state si at time k=1.  

Baum-Welch algorithm 
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• Define variable k(i,j) as  the probability of  being in state si at 

time k and in state sj at  time k+1, given the observation 

sequence o1 o2 ... oK .  

           k(i,j)= P(qk= si  , qk+1= sj  | o1 o2 ... oK)  

k(i,j)= 
P(qk= si  , qk+1= sj  , o1 o2 ... ok) 

         P(o1 o2 ... ok) 
= 

P(qk= si  , o1 o2 ... ok) aij bj (ok+1 ) P(ok+2  ... oK |  qk+1= sj )  

                                 P(o1 o2 ... ok) = 

   k(i) aij bj (ok+1 ) k+1(j)  

i j k(i) aij bj (ok+1 ) k+1(j) 

Baum-Welch algorithm: expectation step(1) 
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• Define variable k(i) as  the probability of  being in state si at 

time k, given the observation sequence o1 o2 ... oK .  

           k(i)= P(qk= si   | o1 o2 ... oK)  

k(i)= 
P(qk= si , o1 o2 ... ok) 

    P(o1 o2 ... ok) 
= 

  k(i) k(i)  

i k(i) k(i) 

Baum-Welch algorithm: expectation step(2) 
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•We calculated  k(i,j) = P(qk= si  , qk+1= sj  | o1 o2 ... oK)  

               and      k(i)= P(qk= si   | o1 o2 ... oK)  
 

• Expected number of transitions from state si to state sj = 

                   =  k  k(i,j) 

• Expected number of transitions out of state si  = k  k(i) 

 

• Expected number of times observation vm occurs in state si = 

                   = t  t(i) , t is such that ot= vm  

• Expected frequency in state si at time k=1 :  1(i) .  

Baum-Welch algorithm: expectation step(3) 
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aij  =  
Expected number of  transitions from state sj to  state si 

        Expected number of  transitions out of  state sj 

bi(vm )   =  
Expected number of  times observation vm occurs in state si 

     Expected number of  times in state si 

i = (Expected frequency in state si at time k=1)  =  1(i).  

= 
k  k(i,j) 

 k  k(i) 

= 
k,ok= vm k(i) 

k  k(i) 

Baum-Welch algorithm: maximization step 


