Machine Learning CSE 6363 (Fall 2016)

Lecture 17 Hidden Markov Model

Heng Huang, Ph.D.
Department of Computer Science and Engineering

Hidden Markov Models

Hidden states : the (TRUE) states of a system that may be described by a Markov process (e.g., the weather).
Observable states : the states of the process that are 'visible’ (e.g., seaweed dampness).

Markov Models

- Set of states: $\left\{s_{1}, S_{2}, \ldots, s_{N}\right\}$
- Process moves from one state to another generating a sequence of states : $S_{i 1}, S_{i 2}, \ldots, S_{i k}, \ldots$
- Markov chain property: probability of each subsequent state depends only on what was the previous state:

$$
P\left(s_{i k} \mid s_{i 1}, s_{i 2}, \ldots, s_{i k-1}\right)=P\left(s_{i k} \mid s_{i k-1}\right)
$$

- To define Markov model, the following probabilities have to be specified: transition probabilities $a_{i j}=P\left(s_{i} \mid s_{j}\right)$ and initial probabilities $\pi_{i}=P\left(s_{i}\right)$
- A Markov model is a probabilistic model of symbol sequences in which the probability of the current event is conditioned only by the previous event.

Example of Markov Model

- Two states : ‘Rain' and ‘Dry’.
- Transition probabilities: P ('Rain'|'Rain') $=0.3$,
$\mathrm{P}\left({ }^{`}\right.$ Dry ${ }^{\prime} \mid$ 'Rain' $)=0.7, \mathrm{P}\left({ }^{`}\right.$ Rain' \mid 'Dry $\left.{ }^{\prime}\right)=0.2, \mathrm{P}\left({ }^{`}\right.$ Dry $\left.\right|^{`}{ }^{`}$ Dry' $)=0.8$
- Initial probabilities: say $\mathrm{P}\left({ }^{\prime}\right.$ Rain' $)=0.4, \mathrm{P}\left({ }^{\prime}\right.$ Dry' $)=0.6$.

Calculation of sequence probability

- By Markov chain property, probability of state sequence can be found by the formula:

$$
\begin{aligned}
& P\left(s_{i 1}, s_{i 2}, \ldots, s_{i k}\right)=P\left(s_{i k} \mid s_{i 1}, s_{i 2}, \ldots, s_{i k-1}\right) P\left(s_{i 1}, s_{i 2}, \ldots, s_{i k-1}\right) \\
& =P\left(s_{i k} \mid s_{i k-1}\right) P\left(s_{i 1}, s_{i 2}, \ldots, s_{i k-1}\right)=\ldots \\
& =P\left(s_{i k} \mid s_{i k-1}\right) P\left(s_{i k-1} \mid s_{i k-2}\right) \ldots P\left(s_{i 2} \mid s_{i 1}\right) P\left(s_{i 1}\right)
\end{aligned}
$$

- Suppose we want to calculate a probability of a sequence of states in our example, \{'Dry','Dry','Rain',Rain'\}.

```
    P({`Dry','Dry','Rain',Rain'} )
=P('Rain'|'Rain') P('Rain'|'Dry') P('Dry'|'Dry') P('Dry')
    = 0.3*0.2*0.8*0.6
```


Hidden Markov models

- Set of states: $\left\{S_{1}, S_{2}, \ldots, S_{N}\right\}$
- Process moves from one state to another generating a sequence of states: $S_{i 1}, S_{i 2}, \ldots, S_{i k}, \ldots$
- Markov chain property: probability of each subsequent state depends only on what was the previous state:

$$
P\left(s_{i k} \mid s_{i 1}, s_{i 2}, \ldots, s_{i k-1}\right)=P\left(s_{i k} \mid s_{i k-1}\right)
$$

- States are not visible, but each state randomly generates one of M observations (or visible states)

$$
\left\{v_{1}, v_{2}, \ldots, v_{M}\right\}
$$

- To define hidden Markov model, the following probabilities have to be specified: matrix of transition probabilities $A=\left(a_{i j}\right), a_{i j}=P\left(s_{i} \mid s_{j}\right)$, matrix of observation probabilities $\mathrm{B}=\left(\mathrm{b}_{\mathrm{i}}\left(\mathrm{v}_{\mathrm{m}}\right)\right), \mathrm{b}_{\mathrm{i}}\left(\mathrm{v}_{\mathrm{m}}\right)=\mathrm{P}\left(\mathrm{v}_{\mathrm{m}} \mid \mathrm{s}_{\mathrm{i}}\right)$ and a vector of initial probabilities $\pi=\left(\pi_{\mathrm{i}}\right), \pi_{\mathrm{i}}=\mathrm{P}\left(\mathrm{s}_{\mathrm{i}}\right)$. Model is
represented by $\mathrm{M}=(\mathrm{A}, \mathrm{B}, \pi)$.

Example of Hidden Markov Model

Example of Hidden Markov Model

- Two states : ‘Low' and 'High' atmospheric pressure.
- Two observations : 'Rain' and 'Dry'.
- Transition probabilities: $\mathrm{P}\left({ }^{‘} L o w ’ \mid ' L o w ’\right)=0.3$,
$\mathrm{P}\left({ }^{\prime}\right.$ High'|'Low')=0.7, $\mathrm{P}\left({ }^{‘}\right.$ Low'|'High') $=0.2$,
P ('High'|'High')=0.8
- Observation probabilities : P('Rain'|'Low')=0.6,
$\mathrm{P}\left({ }^{‘}\right.$ Dry'|'Low') $=0.4, \mathrm{P}\left({ }^{‘}\right.$ Rain' $\left.\right|^{‘}$ High') $=0.4$,
P('Dry'|'High')=0.3 .
- Initial probabilities: say $\mathrm{P}\left({ }^{\prime}\right.$ Low') $=0.4, \mathrm{P}($ 'High')=0.6 .

Calculation of observation sequence probability

-Suppose we want to calculate a probability of a sequence of observations in our example, \{'Dry','Rain'\}. -Consider all possible hidden state sequences: P(\{‘Dry’,'Rain’\}) = P(\{‘Dry’,'Rain’\} , \{‘Low','Low’\}) + P(\{‘Dry','Rain'\} , \{'Low','High'\}) + P(\{‘Dry','Rain'\} , \{'High','Low’\}) + P(\{‘Dry','Rain’\} , \{'High','High'\})
where first term is :
P(\{‘Dry','Rain'\} , \{‘Low','Low’\})=
P(\{‘Dry','Rain’\} | \{‘Low','Low’\}) P(\{‘Low’,'Low’\}) = P(‘Dry'|'Low')P(‘Rain'|'Low') P(‘Low')P(‘Low'|'Low)
$=0.4 * 0.4 * 0.6 * 0.4 * 0.3$

Main issues using HMMs :

- Evaluation problem. Given the $\mathrm{HMM} \mathrm{M}=(\mathrm{A}, \mathrm{B}, \pi)$ and the observation sequence $\mathrm{O}=\mathrm{O}_{1} \mathrm{O}_{2} \ldots \mathrm{o}_{\mathrm{K}}$, calculate the probability that model M has generated sequence O .
- Decoding problem. Given the $\mathrm{HMM} \mathrm{M}=(\mathrm{A}, \mathrm{B}, \pi)$ and the observation sequence $\mathrm{O}=\mathrm{O}_{1} \mathrm{O}_{2} \ldots \mathrm{o}_{\mathrm{K}}$, calculate the most likely sequence of hidden states s_{i} that produced this observation sequence O .
- Learning problem. Given some training observation sequences $\mathrm{O}=\mathrm{O}_{1} \mathrm{O}_{2} \ldots \mathrm{o}_{\mathrm{K}}$ and general structure of HMM (numbers of hidden and visible states), determine HMM parameters $\mathrm{M}=(\mathrm{A}, \mathrm{B}, \pi)$ that best fit training data.
$O=o_{1} \ldots o_{K}$ denotes a sequence of observations $o_{k} \in\left\{v_{1}, \ldots, v_{M}\right\}$.

Evaluation Problem

- Evaluation problem. Given the HMM $\mathrm{M}=(\mathrm{A}, \mathrm{B}, \pi)$ and the observation sequence $\mathrm{O}=\mathrm{O}_{1} \mathrm{O}_{2} \ldots \mathrm{o}_{\mathrm{K}}$, calculate the probability that model M has generated sequence O .
- Trying to find probability of observations $\mathrm{O}=\mathrm{O}_{1} \mathrm{O}_{2} \ldots \mathrm{o}_{\mathrm{K}}$ by means of considering all hidden state sequences (as was done in example) is impractical:
N^{K} hidden state sequences - exponential complexity.
- Use Forward-Backward HMM algorithms for efficient calculations.
- Define the forward variable $\alpha_{k}(i)$ as the joint probability of the partial observation sequence $\mathrm{o}_{1} \mathrm{O}_{2} \ldots \mathrm{o}_{\mathrm{k}}$ and that the hidden state at time k is $\mathrm{s}_{\mathrm{i}}: \alpha_{\mathrm{k}}(\mathrm{i})=\mathrm{P}\left(\mathrm{o}_{1} \mathrm{O}_{2} \ldots \mathrm{o}_{\mathrm{k}}, \mathrm{q}_{\mathrm{k}}=\mathrm{s}_{\mathrm{i}}\right)$

Trellis representation of an HMM

Forward Recursion for HMM

- Initialization:

$$
\alpha_{1}(\mathrm{i})=\mathrm{P}\left(\mathrm{o}_{1}, \mathrm{q}_{1}=\mathrm{s}_{\mathrm{i}}\right)=\pi_{\mathrm{i}} \mathrm{~b}_{\mathrm{i}}\left(\mathrm{o}_{1}\right), 1<=\mathrm{i}<=\mathrm{N} .
$$

- Forward recursion:

$$
\begin{aligned}
& \alpha_{k+1}(\mathrm{j})=\mathrm{P}\left(\mathrm{o}_{1} \mathrm{o}_{2} \ldots \mathrm{o}_{\mathrm{k}+1}, \mathrm{q}_{\mathrm{k}+1}=\mathrm{s}_{\mathrm{j}}\right)= \\
& \quad \sum_{\mathrm{i}} \mathrm{P}\left(\mathrm{o}_{1} \mathrm{o}_{2} \ldots \mathrm{o}_{\mathrm{k}+1}, \mathrm{q}_{\mathrm{k}}=\mathrm{s}_{\mathrm{i}}, \mathrm{q}_{\mathrm{k}+1}=\mathrm{s}_{\mathrm{j}}\right)= \\
& \quad \sum_{\mathrm{i}} \mathrm{P}\left(\mathrm{o}_{1} \mathrm{o}_{2} \ldots \mathrm{o}_{\mathrm{k}}, \mathrm{q}_{\mathrm{k}}=\mathrm{s}_{\mathrm{i}}\right) \mathrm{a}_{\mathrm{ij}} \mathrm{~b}_{\mathrm{j}}\left(\mathrm{o}_{\mathrm{k}+1}\right)= \\
& \quad\left[\sum_{\mathrm{i}} \alpha_{\mathrm{k}}(\mathrm{i}) \mathrm{a}_{\mathrm{ij}}\right] \mathrm{b}_{\mathrm{j}}\left(\mathrm{o}_{\mathrm{k}+1}\right), \quad 1<=\mathrm{j}<=\mathrm{N}, 1<=\mathrm{k}<=\mathrm{K}-1 .
\end{aligned}
$$

- Termination:

$$
\mathrm{P}\left(\mathrm{o}_{1} \mathrm{o}_{2} \ldots \mathrm{o}_{\mathrm{K}}\right)=\sum_{\mathrm{i}} \mathrm{P}\left(\mathrm{o}_{1} \mathrm{o}_{2} \ldots \mathrm{o}_{\mathrm{K}}, \mathrm{q}_{\mathrm{K}}=\mathrm{s}_{\mathrm{i}}\right)=\sum_{\mathrm{i}} \alpha_{\mathrm{K}}(\mathrm{i})
$$

- Complexity :
$\mathrm{N}^{2} \mathrm{~K}$ operations.

Backward Recursion for HMM

- Define the forward variable $\beta_{k}(\mathrm{i})$ as the joint probability of the partial observation sequence $\mathrm{O}_{\mathrm{k}+1} \mathrm{O}_{\mathrm{k}+2} \ldots \mathrm{o}_{\mathrm{K}}$ given that the hidden state at time k is $\mathrm{s}_{\mathrm{i}}: \beta_{\mathrm{k}}(\mathrm{i})=\mathrm{P}\left(\mathrm{o}_{\mathrm{k}+1} \mathrm{o}_{\mathrm{k}+2} \ldots \mathrm{o}_{\mathrm{K}} \mid \mathrm{q}_{\mathrm{k}}=\mathrm{s}_{\mathrm{i}}\right)$
- Initialization:

$$
\beta_{\mathrm{K}}(\mathrm{i})=1,1<=\mathrm{i}<=\mathrm{N} .
$$

- Backward recursion:

$$
\begin{aligned}
& \beta_{\mathrm{k}}(\mathrm{j})=\mathrm{P}\left(\mathrm{o}_{\mathrm{k}+1} \mathrm{o}_{\mathrm{k}+2} \ldots \mathrm{o}_{\mathrm{K}} \mid \mathrm{q}_{\mathrm{k}}=\mathrm{s}_{\mathrm{j}}\right)= \\
& \quad \sum_{\mathrm{i}} \mathrm{P}\left(\mathrm{o}_{\mathrm{k}+1} \mathrm{o}_{\mathrm{k}+2} \ldots \mathrm{o}_{\mathrm{K}}, \mathrm{q}_{\mathrm{k}+1}=\mathrm{s}_{\mathrm{i}} \mid \mathrm{q}_{\mathrm{k}}=\mathrm{s}_{\mathrm{j}}\right)={ }_{\mathrm{o}_{\mathrm{i}}(\mathrm{i})} \\
& \sum_{\mathrm{i}} \mathrm{P}\left(\mathrm{o}_{\mathrm{k}+2} \mathrm{o}_{\mathrm{k}+3} \ldots \mathrm{o}_{\mathrm{K}} \mid \mathrm{q}_{\mathrm{k}+1}=\mathrm{s}_{\mathrm{i}}\right) \mathrm{a}_{\mathrm{ij}} \mathrm{~b}_{\mathrm{i}}\left(\mathrm{o}_{\mathrm{k}+1}\right)= \\
& \quad \sum_{\mathrm{i}} \beta_{\mathrm{k}+1}(\mathrm{i}) \mathrm{a}_{\mathrm{ji}} \mathrm{~b}_{\mathrm{i}}\left(\mathrm{o}_{\mathrm{k}+1}\right), \quad 1<==\mathrm{j}<=\mathrm{N}, 1<=\mathrm{k}<=\mathrm{K}-1 .
\end{aligned}
$$

Decoding problem

- Decoding problem. Given the $\mathrm{HMM} \mathrm{M}=(\mathrm{A}, \mathrm{B}, \pi)$ and the observation sequence $\mathrm{O}=\mathrm{O}_{1} \mathrm{O}_{2} \ldots \mathrm{o}_{\mathrm{K}}$, calculate the most likely sequence of hidden states s_{i} that produced this observation sequence.
- We want to find the state sequence $\mathrm{Q}=\mathrm{q}_{1} \ldots \mathrm{q}_{\mathrm{K}}$ which maximizes $\mathrm{P}\left(\mathrm{Q} \mid \mathrm{o}_{1} \mathrm{o}_{2} \ldots \mathrm{o}_{\mathrm{K}}\right)$, or equivalently $\mathrm{P}\left(\mathrm{Q}, \mathrm{o}_{1} \mathrm{o}_{2} \ldots \mathrm{o}_{\mathrm{K}}\right)$.
- Brute force consideration of all paths takes exponential time. Use efficient Viterbi algorithm instead.
- Define variable $\delta_{\mathrm{k}}(\mathrm{i})$ as the maximum probability of producing observation sequence $\mathrm{o}_{1} \mathrm{O}_{2} \ldots \mathrm{O}_{\mathrm{k}}$ when moving along any hidden state sequence $\mathrm{q}_{1} \ldots \mathrm{q}_{\mathrm{k}-1}$ and getting into $\mathrm{q}_{\mathrm{k}}=\mathrm{s}_{\mathrm{i}}$.

$$
\delta_{\mathrm{k}}(\mathrm{i})=\max \mathrm{P}\left(\mathrm{q}_{1} \ldots \mathrm{q}_{\mathrm{k}-1}, \mathrm{q}_{\mathrm{k}}=\mathrm{s}_{\mathrm{i}}, \mathrm{o}_{1} \mathrm{o}_{2} \ldots \mathrm{o}_{\mathrm{k}}\right)
$$

where max is taken over all possible paths $q_{1} \ldots q_{k-1}$.

Viterbi algorithm (1)

- General idea:
if best path ending in $\mathrm{q}_{\mathrm{k}}=\mathrm{s}_{\mathrm{j}}$ goes through $\mathrm{q}_{\mathrm{k}-1}=\mathrm{s}_{\mathrm{i}}$ then it should coincide with best path ending in $q_{k-1}=s_{i}$.
- $\delta_{k}(\mathrm{i})=\max \mathrm{P}\left(\mathrm{q}_{1} \ldots \mathrm{q}_{\mathrm{k}-1}, \mathrm{q}_{\mathrm{k}}=\mathrm{s}_{\mathrm{j}}\right.$, $\left.\mathrm{o}_{1} \mathrm{O}_{2} \ldots \mathrm{o}_{\mathrm{k}}\right)=$ $\max _{\mathrm{i}}\left[\mathrm{a}_{\mathrm{ij}} \mathrm{b}_{\mathrm{j}}\left(\mathrm{o}_{\mathrm{k}}\right) \max \mathrm{P}\left(\mathrm{q}_{1} \ldots \mathrm{q}_{\mathrm{k}-1}=\right.\right.$ $\left.\left.\mathrm{s}_{\mathrm{i}}, \mathrm{O}_{1} \mathrm{O}_{2} \ldots \mathrm{O}_{\mathrm{k}-1}\right)\right]$

- To backtrack best path keep info that predecessor of s_{j} was s_{i}.

Viterbi algorithm (2)

- Initialization:

$$
\delta_{1}(\mathrm{i})=\max \mathrm{P}\left(\mathrm{q}_{1}=\mathrm{s}_{\mathrm{i}}, \mathrm{o}_{1}\right)=\pi_{\mathrm{i}} \mathrm{~b}_{\mathrm{i}}\left(\mathrm{o}_{1}\right), 1<=\mathrm{i}<=\mathrm{N} .
$$

- Forward recursion:

$$
\begin{aligned}
& \delta_{k}(\mathrm{j})=\max \mathrm{P}\left(\mathrm{q}_{1} \ldots \mathrm{q}_{\mathrm{k}-1}, \mathrm{q}_{\mathrm{k}}=\mathrm{s}_{\mathrm{j}}, \mathrm{o}_{1} \mathrm{o}_{2} \ldots \mathrm{o}_{\mathrm{k}}\right)= \\
& \max _{\mathrm{i}}\left[\mathrm{a}_{\mathrm{ij}} \mathrm{~b}_{\mathrm{j}}\left(\mathrm{o}_{\mathrm{k}}\right) \max \mathrm{P}\left(\mathrm{q}_{1} \ldots \mathrm{q}_{\mathrm{k}-1}=\mathrm{s}_{\mathrm{i}}, o_{1} \mathrm{o}_{2} \ldots \mathrm{o}_{\mathrm{k}-1}\right)\right]= \\
& \max _{\mathrm{i}}\left[\mathrm{a}_{\mathrm{ij}} \mathrm{~b}_{\mathrm{j}}\left(\mathrm{o}_{\mathrm{k}}\right) \delta_{\mathrm{k}-1}(\mathrm{i})\right], \quad 1<=\mathrm{j}<=\mathrm{N}, 2<=\mathrm{k}<=\mathrm{K} .
\end{aligned}
$$

-Termination: choose best path ending at time K

$$
\max _{\mathrm{i}}\left[\delta_{\mathrm{K}}(\mathrm{i})\right]
$$

- Backtrack best path.

This algorithm is similar to the forward recursion of evaluation problem, with Σ replaced by max and additional backtracking.

Learning problem (1)

- Learning problem. Given some training observation sequences $\mathrm{O}=\mathrm{O}_{1} \mathrm{O}_{2} \ldots \mathrm{o}_{\mathrm{K}}$ and general structure of HMM (numbers of hidden and visible states), determine HMM parameters $\mathrm{M}=(\mathrm{A}, \mathrm{B}, \pi)$ that best fit training data, that is maximizes $\mathrm{P}(\mathrm{O} \mid \mathrm{M})$.
- There is no algorithm producing optimal parameter values.
- Use iterative expectation-maximization algorithm to find local maximum of $\mathrm{P}(\mathrm{O} \mid \mathrm{M})$ - Baum-Welch algorithm.

Learning problem (2)

- If training data has information about sequence of hidden states (as in word recognition example), then use maximum likelihood estimation of parameters:

$$
\mathrm{a}_{\mathrm{ij}}=\mathrm{P}\left(\mathrm{~s}_{\mathrm{i}} \mid \mathrm{s}_{\mathrm{i}}\right)=\frac{\text { Number of transitions from state } \mathrm{s}_{\mathrm{j}} \text { to state } \mathrm{s}_{\mathrm{i}}}{\text { Number of transitions out of state } \mathrm{s}_{\mathrm{j}}}
$$

$$
\mathrm{b}_{\mathrm{i}}\left(\mathrm{~V}_{\mathrm{m}}\right)=\mathrm{P}\left(\mathrm{~V}_{\mathrm{m}} \mid \mathrm{s}_{\mathrm{i}}\right)=\frac{\text { Number of times observation } \mathrm{V}_{\mathrm{m}} \text { occurs in state } \mathrm{S}_{\mathrm{i}}}{\text { Number of times in state } \mathrm{S}_{\mathrm{i}}}
$$

Baum-Welch algorithm

General idea:

$$
\mathrm{a}_{\mathrm{ij}}=\mathrm{P}\left(\mathrm{~s}_{\mathrm{i}} \mid \mathrm{s}_{\mathrm{j}}\right)=\frac{\text { Expected number of transitions from state } \mathrm{S}_{\mathrm{j}} \text { to state } \mathrm{S}_{\mathrm{i}}}{\text { Expected number of transitions out of state } \mathrm{S}_{\mathrm{j}}}
$$

$$
\mathrm{b}_{\mathrm{i}}\left(\mathrm{~V}_{\mathrm{m}}\right)=\mathrm{P}\left(\mathrm{~V}_{\mathrm{m}} \mid \mathrm{S}_{\mathrm{i}}\right)=\frac{\text { Expected number of times observation } \mathrm{V}_{\mathrm{m}} \text { occurs in state } \mathrm{S}_{\mathrm{i}}}{\text { Expected number of times in state } \mathrm{S}_{\mathrm{i}}}
$$

$\pi_{\mathrm{i}}=\mathrm{P}\left(\mathrm{s}_{\mathrm{i}}\right)=$ Expected frequency in state S_{i} at time $\mathrm{k}=1$

Baum-Welch algorithm: expectation step(1)

- Define variable $\xi_{k}(i, j)$ as the probability of being in state s_{i} at time k and in state s_{j} at time $\mathrm{k}+1$, given the observation sequence $\mathrm{O}_{1} \mathrm{O}_{2} \ldots \mathrm{O}_{\mathrm{K}}$.

$$
\xi_{k}(\mathrm{i}, \mathrm{j})=\mathrm{P}\left(\mathrm{q}_{\mathrm{k}}=\mathrm{s}_{\mathrm{i}}, \mathrm{q}_{\mathrm{k}+1}=\mathrm{s}_{\mathrm{j}} \mid \mathrm{o}_{1} \mathrm{o}_{2} \ldots \mathrm{o}_{\mathrm{K}}\right)
$$

$$
\xi_{\mathrm{k}}(\mathrm{i}, \mathrm{j})=\frac{\mathrm{P}\left(\mathrm{q}_{\mathrm{k}}=\mathrm{s}_{\mathrm{i}}, \mathrm{q}_{\mathrm{k}+1}=\mathrm{s}_{\mathrm{j}}, \mathrm{o}_{1} \mathrm{o}_{2} \ldots \mathrm{o}_{\mathrm{k}}\right)}{\mathrm{P}\left(\mathrm{o}_{1} \mathrm{o}_{2} \ldots \mathrm{o}_{\mathrm{k}}\right)}=
$$

$\frac{P\left(q_{k}=s_{i}, o_{1} o_{2} \ldots o_{k}\right) a_{i j} b_{j}\left(o_{k+1}\right) P\left(o_{k+2} \ldots o_{k} \mid q_{k+1}=s_{j}\right)}{P\left(o_{1} o_{2} \ldots o_{k}\right)}=$

$$
\frac{\alpha_{k}(\mathrm{i}) \mathrm{a}_{\mathrm{ij}} \mathrm{~b}_{\mathrm{j}}\left(\mathrm{o}_{\mathrm{k}+1}\right) \beta_{\mathrm{k}+1}(\mathrm{j})}{\sum_{\mathrm{i}} \Sigma_{\mathrm{j}} \alpha_{\mathrm{k}}(\mathrm{i}) \mathrm{a}_{\mathrm{ij}} \mathrm{~b}_{\mathrm{j}}\left(\mathrm{o}_{\mathrm{k}+1}\right) \beta_{\mathrm{k}+1}(\mathrm{j})}
$$

Baum-Welch algorithm: expectation step(2)

- Define variable $\gamma_{k}(i)$ as the probability of being in state s_{i} at time k , given the observation sequence $\mathrm{o}_{1} \mathrm{O}_{2} \ldots \mathrm{o}_{\mathrm{K}}$.

$$
\begin{aligned}
& \gamma_{\mathrm{k}}(\mathrm{i})=\mathrm{P}\left(\mathrm{q}_{\mathrm{k}}=\mathrm{s}_{\mathrm{i}} \mid \mathrm{o}_{1} \mathrm{o}_{2} \ldots \mathrm{o}_{\mathrm{K}}\right) \\
& \gamma_{\mathrm{k}}(\mathrm{i})= \frac{\mathrm{P}\left(\mathrm{q}_{\mathrm{k}}=\mathrm{s}_{\mathrm{i}}, \mathrm{o}_{1} \mathrm{o}_{2} \ldots \mathrm{o}_{\mathrm{k}}\right)}{\mathrm{P}\left(\mathrm{o}_{1} \mathrm{o}_{2} \ldots \mathrm{o}_{\mathrm{k}}\right)}=\frac{\alpha_{\mathrm{k}}(\mathrm{i}) \beta_{\mathrm{k}}(\mathrm{i})}{\Sigma_{\mathrm{i}} \alpha_{\mathrm{k}}(1) \beta_{\mathrm{k}}(\mathrm{i})}
\end{aligned}
$$

Baum-Welch algorithm: expectation step(3)

-We calculated $\xi_{\mathrm{k}}(\mathrm{i}, \mathrm{j})=\mathrm{P}\left(\mathrm{q}_{\mathrm{k}}=\mathrm{s}_{\mathrm{i}}, \mathrm{q}_{\mathrm{k}+1}=\mathrm{s}_{\mathrm{j}} \mid \mathrm{o}_{1} \mathrm{o}_{2} \ldots \mathrm{o}_{\mathrm{K}}\right)$

$$
\text { and } \quad \gamma_{\mathrm{k}}(\mathrm{i})=\mathrm{P}\left(\mathrm{q}_{\mathrm{k}}=\mathrm{s}_{\mathrm{i}} \mid \mathrm{o}_{1} \mathrm{O}_{2} \ldots \mathrm{o}_{\mathrm{K}}\right)
$$

- Expected number of transitions from state S_{i} to state $\mathrm{S}_{\mathrm{j}}=$

$$
=\Sigma_{\mathrm{k}} \xi_{\mathrm{k}}(\mathrm{i}, \mathrm{j})
$$

- Expected number of transitions out of state $\mathrm{S}_{\mathrm{i}}=\Sigma_{\mathrm{k}} \gamma_{\mathrm{k}}(\mathrm{i})$
- Expected number of times observation V_{m} occurs in state $\mathrm{S}_{\mathrm{i}}=$

$$
=\Sigma_{\mathrm{t}} \gamma_{\mathrm{t}}(\mathrm{i}), \mathrm{t} \text { is such that } \mathrm{o}_{\mathrm{t}}=\mathrm{v}_{\mathrm{m}}
$$

- Expected frequency in state s_{i} at time $\mathrm{k}=1: \gamma_{1}(\mathrm{i})$.

Baum-Welch algorithm: maximization step

$$
a_{\mathrm{ij}}=\frac{\text { Expected number of transitions from state } \mathrm{s}_{\mathrm{j}} \text { to state } \mathrm{s}_{\mathrm{i}}}{\text { Expected number of transitions out of state } \mathrm{s}_{\mathrm{j}}}=\frac{\sum_{\mathrm{k}} \xi_{\mathrm{k}}(\mathrm{i}, \mathrm{j})}{\sum_{\mathrm{k}} \gamma_{\mathrm{k}}(\mathrm{i})}
$$

$$
\pi_{\mathrm{i}}=\left(\text { Expected frequency in state } \mathrm{S}_{\mathrm{i}} \text { at time } \mathrm{k}=1\right)=\gamma_{1}(\mathrm{i})
$$

