Machine Learning CSE 6363 (Fall 2016)

Lecture 20 Conditional Random Field

Heng Huang, Ph.D.
Department of Computer Science and Engineering

Generative Models

- Hidden Markov models (HMMs) and stochastic grammars
- Assign a joint probability to paired observation and label sequences
- The parameters typically trained to maximize the joint likelihood of train examples

Standard tool is the hidden Markov Model (HMM).

Conditional Models

- Conditional probability P (label sequence $\mathbf{y} \mid$ observation sequence \mathbf{x}) rather than joint probability $P(\mathbf{y}, \mathbf{x})$
- Specify the probability of possible label sequences given an observation sequence
- Allow arbitrary, non-independent features on the observation sequence X
- The probability of a transition between labels may depend on past and future observations
- Relax strong independence assumptions in generative models

Implications of the model

- Does this do what we want?
- Q : does $\mathrm{Y}[\mathrm{i}-1]$ depend on $\mathrm{X}[i+1]$?
- "a nodes is conditionally independent of its nondescendents given its parents"

Discriminative Models
 Maximum Entropy Markov Models (MEMMs)

- Exponential model
- Given training set X with label sequence Y :
- Train a model θ that maximizes $\mathrm{P}(\mathrm{Y} \mid \mathrm{X}, \theta)$
- For a new data sequence \mathbf{x}, the predicted label \mathbf{y} maximizes $\mathrm{P}(\mathbf{y} \mid \mathbf{x}, \theta)$
- Notice the per-state normalization

$$
\mathrm{L}(\Theta \mathrm{y})=\Sigma \log \mathrm{p}_{\Theta_{\mathrm{y}}}(\mathrm{yi} \mid \mathrm{xi})
$$

$$
P\left(y^{\prime} \mid y, x\right)=\frac{1}{Z(y, x)} \exp (\sum_{k} \underbrace{\lambda_{k}}_{\text {weight }} \underbrace{f_{k}\left(x, y, y^{\prime}\right)}_{\text {feature }})
$$

MEMM-Supervise Learning

In supervised learning we try to learn a function $h: \mathcal{X} \rightarrow \mathcal{Y}$ where $x \in \mathcal{X}$ are inputs and $y \in \mathcal{Y}$ are outputs.

- Binary classification: $\mathcal{Y}=\{-1,+1\}$
- Multiclass classification: $\mathcal{Y}=\{1, \ldots, K\}$ (finite set of labels)
- Regression: $\mathcal{Y}=\mathbb{R}$

The prediction is based on the feature function $\Phi: \mathcal{X} \rightarrow \mathcal{F}$ where usually $\mathcal{F}=\mathbb{R}^{D}$ (D-dimensional vector space)

MEMM-Linear Regression

- Training data: observations paired with outcomes ($n \in \mathbb{R}$)
- Observations have features (predictors, typically also real numbers)
- The model is a regression line $y=a x+b$ which best fits the observations
- a is the slope
- b is the intercept
- This model has two parameters (or weigths)
- One feature $=x$
- Example:
$\star x=$ number of vague adjectives in property descriptions
* $y=$ amount house sold over asking price

MEMM-Linear Regression

- More generally $y=w_{0}+\sum_{i=0}^{N} w_{i} f_{i}$, where
- $y=$ outcome
- $w_{0}=$ intercept
- $f_{1} . . f_{N}=$ features vector and $w_{1} . . w_{N}$ weight vector
- We ignore w_{0} by adding a special f_{0} feature, then the equation is equivalent to dot product: $y=\mathbf{w} \cdot \mathbf{f}$

MEMM-Logistic Regression

- In logistic regression we use the linear model to do classification, i.e. assign probabilities to class labels
- For binary classification, predict $p(y=t r u e \mid x)$. But predictions of linear regression model are $\in \mathbb{R}$, whereas $p(y=$ true $\mid x) \in[0,1]$
- Instead predict logit function of the probability:

$$
\begin{gather*}
\ln \left(\frac{p(y=\operatorname{true} \mid x)}{1-p(y=\operatorname{true} \mid x)}\right)=\mathbf{w} \cdot \mathbf{f} \tag{1}\\
\frac{p(y=\operatorname{true} \mid x)}{1-p(y=\operatorname{true} \mid x)}=e^{\mathbf{w} \cdot \mathbf{f}} \tag{2}
\end{gather*}
$$

- Solving for $p(y=t r u e \mid x)$ we obtain:

$$
\begin{align*}
p(y=\text { true } \mid x) & =\frac{e^{\mathbf{w} \cdot \mathbf{f}}}{1+e^{\mathbf{w} \cdot \mathbf{f}}} \tag{3}\\
& =\frac{\exp \left(\sum_{i=0}^{N} w_{i} f_{i}\right)}{1+\exp \left(\sum_{i=0}^{N} w_{i} f_{i}\right)}
\end{align*}
$$

MEMM-Logistic Regression/Classification

- Example x belongs to class true if:

$$
\begin{align*}
\frac{p(y=\operatorname{true} \mid x)}{1-p(y=\operatorname{true} \mid x)} & >1 \tag{5}\\
e^{\mathbf{w} \cdot \mathbf{f}} & >1 \tag{6}\\
\mathbf{w} \cdot \mathbf{f} & >0 \tag{7}\\
\sum_{i=0}^{N} w_{i} f_{i} & >0 \tag{8}
\end{align*}
$$

- The equation $\sum_{i=0}^{N} w_{i} f_{i}=0$ defines the hyperplane in N-dimensional space, with points above this hyperplane belonging to class true

MEMM-Logistic Regression/Learning

- Conditional likelihood estimation: choose the weights which make the probability of the observed values y be the highest, given the observations x
- For the training set with M examples:

$$
\hat{\mathbf{w}}=\underset{w}{\operatorname{argmax}} \prod_{i=0}^{M} P\left(y^{(i)} \mid x^{(i)}\right)
$$

- A problem in convex optimization (not covered here)
- L-BFGS (Limited-memory Broyden-Fletcher-Goldfarb-Shanno method)
- gradient ascent
- conjugate gradient
- iterative scaling algorithms

MEMM-Maximum Entropy Model

- Logistic regression with more than two classes = multinomial logistic regression
- Also known as Maximum Entropy (MaxEnt)
- The MaxEnt equation generalizes (4) above:

$$
\begin{equation*}
p(c \mid x)=\frac{\exp \left(\sum_{i=0}^{N} w_{c i} f_{i}\right)}{\sum_{c^{\prime} \in C} \exp \left(\sum_{i=0}^{N} w_{c^{\prime} i} f_{i}\right)} \tag{9}
\end{equation*}
$$

- The denominator is the normalization factor usually called Z used to make the score into a proper probability distribution

$$
p(c \mid x)=\frac{1}{Z} \exp \sum_{i=0}^{N} w_{c i} f_{i}
$$

HMMs and MEMMs

- HMM POS tagging model:

$$
\begin{align*}
\hat{T} & =\underset{T}{\operatorname{argmax}} P(T \mid W) \tag{10}\\
& =\underset{T}{\operatorname{argmax}} P(W \mid T) P(T) \tag{11}\\
& =\underset{T}{\operatorname{argmax}} \prod_{i} P\left(\text { word }_{i} \mid \operatorname{tag}_{i}\right) \prod_{i} P\left(\text { tag }_{i} \mid t a g_{i-1}\right) \tag{12}
\end{align*}
$$

- MEMM POS tagging model:

$$
\begin{align*}
\hat{T} & =\underset{T}{\operatorname{argmax}} P(T \mid W) \tag{13}\\
& =\underset{T}{\operatorname{argmax}} \prod_{i} P\left(\text { tag }_{i} \mid \text { word }_{i}, \text { tag }_{i-1}\right) \tag{14}
\end{align*}
$$

Maximum Entropy Markov Models (MEMMs)

HMM vs MEMM

HMMs	MEMMs
$\alpha_{t}(s)$ the probability of producing	$\alpha_{t}(s)$ the probability of being in
o_{1}, \ldots, o_{t} and being in s at time t.	s at time t given o_{1}, \ldots, o_{t}.
$\alpha_{t+1}(s)=\sum_{s^{\prime} \in S} \alpha_{t}\left(s^{\prime}\right) P\left(s \mid s^{\prime}\right) P\left(o_{t+1} \mid s\right)$	$\alpha_{t+1}(s)=\sum_{s^{\prime} \in S} \alpha_{t}\left(s^{\prime}\right) P_{s^{\prime}}\left(s \mid o_{t+1}\right)$
$\delta_{t}(s)$ the probability of the best path for producing o_{1}, \ldots, o_{t} and being in s at time t.	$\delta_{t}(s)$ the probability of the best path that reaches s at time t given o_{1}, \ldots, o_{t}.
$\delta_{t+1}(s)=\max _{s^{\prime} \in S} \delta_{t}\left(s^{\prime}\right) P\left(s \mid s^{\prime}\right) P\left(o_{t+1} \mid s\right)$	$\delta_{t+1}(s)=\max _{s^{\prime} \in S} \delta_{t}\left(s^{\prime}\right) P_{s^{\prime}}\left(s \mid o_{t+1}\right)$

Maximum Entropy Markov Model (MEMM)

$$
P\left(\mathbf{y}_{1: n} \mid \mathbf{x}_{1: n}\right)=\prod_{i=1}^{n} P\left(y_{i} \mid y_{i-1}, \mathbf{x}_{1: n}\right)=\prod_{i=1}^{n} \frac{\exp \left(\mathbf{w}^{T} \mathbf{f}\left(y_{i}, y_{i-1}, \mathbf{x}_{1: n}\right)\right)}{Z\left(y_{i-1}, \mathbf{x}_{1: n}\right)}
$$

- Models dependence between each state and the full observation sequence explicitly
- More expressive than HMMs
- Discriminative model
- Completely ignores modeling $\mathrm{P}(\mathbf{X})$: saves modeling effort
- Learning objective function consistent with predictive function: $\mathrm{P}(\mathbf{Y} \mid \mathbf{X})$

Viterbi in MEMMs

Decoding works almost the same as in HMM
Except entries in the DP table are values of $P\left(t_{i} \mid t_{i-1}\right.$, word $\left._{i}\right)$
Recursive step: Viterbi value of time t for state j :

$$
v_{t}(j)=\max _{i=i}^{N} v_{t-1}(i) P\left(s_{j} \mid s_{i}, o_{t}\right) \quad 1 \leq j \leq N, 1<t \leq T
$$

MEMM: Label Bias Problem

What the local transition probabilities say:

- State 1 almost always prefers to go to state 2
- State 2 almost always prefer to stay in state 2

MEMM: Label Bias Problem

Observation 1 Observation 2 Observation 3 Observation 4

State 1

State 2

State 3

State 4

Probability of path 1-> 1-> 1-> 1:

- $0.4 \times 0.45 \times 0.5=0.09$

MEMM: Label Bias Problem

Observation 1 Observation 2 Observation 3 Observation 4

State 1

State 2

State 3

State 4

State 5

Probability of path 2->2->2->2 :

- $0.2 \times 0.3 \times 0.3=0.018$

Other paths:
1-> 1-> 1-> $1: 0.09$

MEMM: Label Bias Problem

Observation 1 Observation 2 Observation 3 Observation 4
State 1

State 2

State 3

State 4

Probability of path $1->2->1->2$:

- $0.6 \times 0.2 \times 0.5=0.06$

Other paths:
$1->1->1->1: 0.09$
2->2->2->2: 0.018

MEMM: Label Bias Problem

Probability of path $1->1->2->2$:
Other paths:

- $0.4 \times 0.55 \times 0.3=0.066$

MEMM: Label Bias Problem

- Although locally it seems state 1 wants to go to state 2 and state 2 wants to remain in state 2.

MEMM: Label Bias Problem

Most Likely Path: 1-> 1-> 1-> 1

- State 1 has only two transitions but state 2 has 5:
- Average transition probability from state 2 is lower

MEMM: Label Bias Problem

Label bias problem in MEMM:

- Preference of states with lower number of transitions over others

Solution: Do not normalize probabilities locally

Observation 1 Observation 2 Observation 3 Observation 4
State 1

State 2

State 3

State 4

State 5

Solution: Do not normalize probabilities locally

From local probabilities to local potentials

Fall 2016 States with lower transitions do not have an unfair advantage!

From MEMM

From MEMM to CRF

$P\left(\mathbf{y}_{1: n} \mid \mathbf{x}_{1: n}\right)=\frac{1}{Z\left(\mathbf{x}_{1: n}\right)} \prod_{i=1}^{n} \phi\left(y_{i}, y_{i-1}, \mathbf{x}_{1: n}\right)=\frac{1}{Z\left(\mathbf{x}_{1: n}\right)} \prod_{i=1}^{n} \exp \left(\mathbf{w}^{T} \mathbf{f}\left(y_{i}, y_{i-1}, \mathbf{x}_{1: n}\right)\right)$

- CRF is a partially directed model
- Discriminative model like MEMM
- Usage of global normalizer $Z(\mathbf{x})$ overcomes the label bias problem of MEMM
- Models the dependence between each state and the entire observation sequence (like MEMM)

Conditional Random Fields

- General parametric form:

$$
\begin{aligned}
& \begin{aligned}
P(\mathbf{y} \mid \mathbf{x}) & =\frac{1}{Z(\mathbf{x})} \exp \left(\sum_{i=1}^{n}\left(\sum_{k} \lambda_{k} f_{k}\left(y_{i}, y_{i-1}, \mathbf{x}\right)+\sum_{l} \mu_{l} g_{l}\left(y_{i}, \mathbf{x}\right)\right)\right) \\
& =\frac{1}{Z(\mathbf{x})} \exp \left(\sum_{i=1}^{n}\left(\lambda^{T} \mathbf{f}\left(y_{i}, y_{i-1}, \mathbf{x}\right)+\mu^{T} \mathbf{g}\left(y_{i}, \mathbf{x}\right)\right)\right)
\end{aligned} \\
& \text { where } Z(\mathbf{x})=\sum_{\mathbf{y}} \exp \left(\sum_{i=1}^{n}\left(\lambda^{T} \mathbf{f}\left(y_{i}, y_{i-1}, \mathbf{x}\right)+\mu^{T} \mathbf{g}\left(y_{i}, \mathbf{x}\right)\right)\right)
\end{aligned}
$$

CRFs: Inference

- Given CRF parameters $\boldsymbol{\lambda}$ and $\boldsymbol{\mu}$, find the \mathbf{y}^{*} that maximizes $\mathrm{P}(\mathbf{y} \mid \mathbf{x})$

$$
\mathbf{y}^{*}=\arg \max _{\mathbf{y}} \exp \left(\sum_{i=1}^{n}\left(\lambda^{T} \mathbf{f}\left(y_{i}, y_{i-1}, \mathbf{x}\right)+\mu^{T} \mathbf{g}\left(y_{i}, \mathbf{x}\right)\right)\right)
$$

- Can ignore $Z(\mathbf{x})$ because it is not a function of \mathbf{y}
- Run the max-product algorithm on the junction-tree of CRF:

Recall: Random Field

Let $\mathrm{G}=(\mathrm{Y}, \mathrm{E})$ be a graph where each vertex Y_{v} is a random variable Suppose $\mathrm{P}\left(\mathrm{Y}_{\mathrm{v}} \mid\right.$ all other Y$)=\mathrm{P}\left(\mathrm{Y}_{\mathrm{v}} \mid\right.$ neighbors $\left.\left(\mathrm{Y}_{\mathrm{v}}\right)\right)$ then Y is a random field

Example:

- $\mathrm{P}\left(\mathrm{Y}_{5} \mid\right.$ all other Y$)=\mathrm{P}\left(\mathrm{Y}_{5} \mid \mathrm{Y}_{4}, \mathrm{Y}_{6}\right)$

Conditional Random Fields (CRFs)

- CRFs have all the advantages of MEMMs without label bias problem
- MEMM uses per-state exponential model for the conditional probabilities of next states given the current state
- CRF has a single exponential model for the joint probability of the entire sequence of labels given the observation sequence
- Undirected acyclic graph
- Allow some transitions "vote" more strongly than others depending on the corresponding observations

Definition of CRFs

\mathbf{X} is a random variable over data sequences to be labeled
\mathbf{Y} is a random variable over corresponding label sequences

Definition. Let $G=(V, E)$ be a graph such that $\mathbf{Y}=\left(\mathbf{Y}_{v}\right)_{v \in V}$, so that \mathbf{Y} is indexed by the vertices of G. Then (\mathbf{X}, \mathbf{Y}) is a conditional random field in case, when conditioned on \mathbf{X}, the random variables \mathbf{Y}_{v} obey the Markov property with respect to the graph: $p\left(\mathbf{Y}_{v} \mid \mathbf{X}, \mathbf{Y}_{w}, w \neq v\right)=p\left(\mathbf{Y}_{v} \mid \mathbf{X}, \mathbf{Y}_{w}, w \sim v\right)$, where $w \sim v$ means that w and v are neighbors in G.

Example of CRFs

Suppose $\mathrm{P}\left(\mathrm{Y}_{\mathrm{v}} \mid \mathrm{X}\right.$, all other Y$)=\mathrm{P}\left(\mathrm{Y}_{\mathrm{v}} \mid \mathrm{X}\right.$, neighbors $\left.\left(\mathrm{Y}_{\mathrm{v}}\right)\right)$
then X with Y is a conditional random field

- $\mathrm{P}\left(\mathrm{Y}_{3} \mid \mathrm{X}\right.$, all other Y$)=\mathrm{P}\left(\mathrm{Y}_{3} \mid \mathrm{X}, \mathrm{Y}_{2}, \mathrm{Y}_{4}\right)$
- Think of X as observations and Y as labels

Graphical comparison among HMMs, MEMMs and CRFs

HMM

MEMM

CRF

Figure 2. Graphical structures of simple HMMs (left), MEMMs (center), and the chain-structured case of CRFs (right) for sequences. An open circle indicates that the variable is not generated by the model.

Functional Models

Conditional Distribution

If the graph $G=(V, E)$ of Y is a tree, the conditional distribution over the label sequence $\mathrm{Y}=\mathrm{y}$, given $\mathrm{X}=\mathrm{x}$, by fundamental theorem of random fields is:

$$
p_{\theta}(\mathrm{y} \mid \mathrm{x}) \propto \exp \left(\sum_{e \in E, k} \lambda_{k} f_{k}\left(e,\left.\mathrm{y}\right|_{e}, \mathrm{x}\right)+\sum_{v \in V, k} \mu_{k} g_{k}\left(v,\left.\mathrm{y}\right|_{v}, \mathrm{x}\right)\right)
$$

x is a data sequence
y is a label sequence
v is a vertex from vertex set $\mathrm{V}=$ set of label random variables
e is an edge from edge set E over V
f_{k} and g_{k} are given and fixed. g_{k} is a Boolean vertex feature; f_{k} is a
Boolean edge feature
k is the number of features
$\theta=\left(\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n} ; \mu_{1}, \mu_{2}, \cdots, \mu_{n}\right) ; \lambda_{k}$ and μ_{k} are parameters to be estimated
$\left.\mathrm{y}\right|_{e}$ is the set of components of y defined by edge e
$\mathrm{y} \|_{v}$ is the set of components of y defined by vertex v

Training of CRFs (From Prof. Dietterich)

- First, we take the log of the equation

$$
\log p_{\theta}(y \mid x)=\sum_{e \in E, k} \lambda_{k} f_{k}\left(e,\left.\mathrm{y}\right|_{e}, \mathrm{x}\right)+\sum_{v \in V, k} \mu_{k} g_{k}\left(v,\left.\mathrm{y}\right|_{v}, \mathrm{x}\right)-\log Z(\mathrm{x})
$$

- Then, take the derivative of the above equation
$\frac{\partial \log p_{\theta}(y \mid x)}{\partial \theta}=\frac{\partial}{\partial \theta}\left(\sum_{e \in E, k} \lambda_{k} f_{k}\left(e,\left.\mathrm{y}\right|_{e}, \mathrm{x}\right)+\sum_{v \in V, k} \mu_{k} g_{k}\left(v,\left.\mathrm{y}\right|_{v}, \mathrm{x}\right)-\log Z(\mathrm{x})\right)$
- For training, the first 2 items are easy to get.
- For example, for each λ_{k}, f_{k} is a sequence of Boolean numbers, such as 00101110100111.
$\lambda_{k} f_{k}\left(e,\left.\mathrm{y}\right|_{e}, \mathrm{x}\right)$ is just the total number of 1 's in the sequence.
- The hardest thing is how to calculate $Z(x)$

Another Definition

CRF is a Markov Random Fields.
By the Hammersley-Clifford theorem, the probability of a label can be expressed as a Gibbs distribution, so that

$$
\begin{aligned}
& p(y \mid x, \lambda, \mu)=\frac{1}{Z} \exp \left(\sum_{j} \lambda_{j} F_{j}(y, x)\right) \\
& F_{j}(y, x)=\sum_{i=1}^{n} f_{j}\left(y_{\mid c}, x, i\right)
\end{aligned}
$$

What is clique?
By only taking consideration of the one node and two nodes cliques, we have

$$
p(y \mid x, \lambda, \mu)=\frac{1}{Z} \exp \left(\sum_{j} \lambda_{j} t_{j}\left(y_{\mid e}, x, i\right)+\sum_{k} \mu_{k} s_{k}\left(y_{\mid s}, x, i\right)\right)
$$

Definition (cont.)

Moreover, let us consider the problem in a first-order chain model, we have

$$
p(y \mid x, \lambda, \mu)=\frac{1}{Z} \exp \left(\sum_{j} \lambda_{j} t_{j}\left(y_{i-1}, y_{i}, x, i\right)+\sum_{k} \mu_{k} s_{k}\left(y_{i}, x, i\right)\right)
$$

For simplifying description, let $f_{j}(y, x)$ denote $t_{j}\left(y_{i-1}, y_{i}, x, i\right)$ and $s_{k}\left(y_{i}, x, i\right)$

$$
\begin{aligned}
& p(y \mid x, \lambda, \mu)=\frac{1}{Z} \exp \left(\sum_{j} \lambda_{j} F_{j}(y, x)\right) \\
& F_{j}(y, x)=\sum_{i=1}^{n} f_{j}\left(y_{\mid c}, x, i\right)
\end{aligned}
$$

