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Learning, Biases, Representation
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Representation

* There are many ways of presenting the same
information

011111100111001000000010000000100111111011101111100
1110111110001

* The choice of representation may determine whether
the learning task is very easy or very difficult
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Hypothesis Class

e Representation: examples are binary vectors of length d = 64

x = [111...0001]" = g

and labels y € {—1,1} ("no”,"yes")

e The mapping from examples to labels is a “linear classifier”
gy =sign (0 -x)=-sign(x1+...+042q)

where 6 is a vector of parameters we have to learn from
examples.
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Linear Classifier/ Experts

e We can understand the simple linear classifier
g =sign (6 -x)=sign(61x1+ ...+ 604xq)

as a way of combining expert opinion (in this case simple
binary features)

majority rule
y = blgIl (G121 + . + Oaxy)
votes

com bined “votes"

Expert 1
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H stimation

X Y
0111111001110010000000100000001001111110111011111001110111110001 +1
0001111100000011000001110000011001111110111111001111111100000011 +1
1111111000000110000011000111111000000111100000111110001101111111 -1

e How do we adjust the parameters # based on the labeled
examples?

y = sign (6 -x)

For example, we can simply refine/update the parameters
whenever we make a mistake:

0;—6; +yx;, 1 =1,...,d if prediction was wrong
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Evaluation

e Does the simple mistake driven algorithm work?
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(average classification error as a function of the number of
examples and labels seen so far)
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Similar Problem

y = +l1

¢ Representation as a vector:

= (0000000000 0000001100 0001111111 ... 0001100000]*
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Model Selection

e The simple linear classifier cannot solve all the problems

(e.g., XOR)
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e Can we rethink the approach to do even better?

We can, for example, add “polynomial experts”
y=-sign(01x1+ ...+ 04xq+ 0100100+ ...)
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Model Selection (cont.)
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Probability Theory

© apple
e Boxes of fruit @ orange
@ strawberry

apples oranges strawberries

red jar 2 6 4

apples oranges strawberries

blue jar 3 1 2
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Probabilities of Fruit from a Given Jar

© apple

@ orange
@ strawberry

Fall 2016
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apples oranges strawberries
red jar 2/12 6/12 4/12
= 0.167 = 0.5 =0.33 sum=1.0
apples oranges strawberries
blue jar  3/6 1/6 2/6
= 0.5 =0.167 =033 sum=1.0
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Choose Jar then Draw a Fruit

© apple

@ orange
@ strawberry

Prob
is 0.6

Prob
is 0.4
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Say the probability of choosing a jar is

P(Jar = red) = 0.6
P(Jar = blue) = 0.4

The probability of choosing the red jar
and drawing an apple out of it is
P(Jar=red, Fruit=apple) < conditional
= P(Jar=red) P(Fruit=applel|Jar=red) probabiliity
= 0.6 (0.167) =0.1

Doing all multiplications results in:

apples oranges strawberries

red jar (P=0.6) 0.6(0.167) 0.6(0.5) 0.6(0.33)
= 0.1 = 0.3 = 0.2 sum = 0.6

apples oranges strawberries

blue jar (P=0.4) 0.4(0.5) 0.4(0.167) 0.4(0.33) ,
= 0.2 = 0.067 =0.133 sum=0.4



Joint Probability Table

© apple Combine in a two-dimensional table to show joint
@ orange probabilities of two events.
r=red, b = blue
@ strawberry a = apple, o = orange, s = strawberry
Fruit
Prob a o) S
is 0.6 Tar r 0.1 0.3 0.2 >, =10.6
b 0.2 0.067 0.133 > =104

=03 X=0367 X=0333 X=1.0

Let ] be random variable for Jar, and F be random variable

for fruit.
Prob .
s 0.4 Fruit
a 0 s
Jar T P(J=r,F=a) | P(J=r,F=0) | P(J=r,F=s5)| P(J=r)
b|P(J=bF=a)|PJ=bF=o0)|PJ=bF=s)| P(J=>)
P(F =a) P(F = o) P(F = s) 1.0
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Joint Probabilities and Bayes Rule

Just saw example of the product rule:

P(Fruit=orange, Jar = blue)
= P(Fruit=orange | Jar = blue) P(Jar = blue)

Since P(Fruit=orange, Jar = blue) = P(Jar = blue, Fruit = orange),

P(Jar = blue, Fruit=orange)
= P(Jar = blue | Fruit = orange) P(Fruit = orange).

Setting these equal leads to Bayes Rule:

P(Jar = blue | Fruit = orange) P(Fruit = orange)
= P(Fruit=orange | Jar = blue) P(Jar = blue)

SO

P(Jar = blue | Fruit = orange)
= P(Fruit=orange | Jar = blue) P(Jar = blue) / P(Fruit = orange)
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Joint Probabilities and Bayes Rule

On the right hand side of Bayes Rule, all terms are given to us except P(Fruit
= orange):

P(Jar = blue | Fruit = orange)
= P(Fruit=orange | Jar = blue) P(Jar = blue)

P(Fruit = orange)

We can use the sum rule to get this.
P(Fruit = orange) = ZjP(Fruit=orange, Jar=j) = 0.367

So, Bayes Rule can be rewritten as

P(Jar = blue | Fruit = orange)

P(Fruit=orange | Jar = blue) P(Jar = blue) P(Fruit=orange | Jar = blue) P(Jar = blue)
LP(Fruit=orange, Jar=j) Z P(Fruit=orange| Jar=j) P(Jar = j)
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Probability Distributions

 Rather than three colors of fruit, imagine objects of 15
possible colors

Jar 1 contains H
objects with i D . L
proportions '
Jar 2 contains H
objects with D - 11 1

colors in these I 0.0 0.0 | 0N
proportions

* (Can calculate joint probability table as before.
 But what if we have 100 colors or 1000 colors?

* What if we have an infinite number of colors?
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Distributions Over Continuous Values

* Probability of a color is a function over the continuous spectrum.

Jar 1 contains / N
objects with

/’//
colors in these -
proportions
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* But what function is this? Would require 1,000s of parameters to specify
general function.

Jar 2 contains
objects with

colors in these
proportions

P

* Instead, let’s use rather simple functions controlled by a few parameters.

e Common example: Gaussian (Normal) distribution
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(Gaussian Distribution

* With few parameters, not as much flexibility.

T
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Jar 2 distribution

p(x) T

becomes
argument parameters
» 1 1 5
because p@c;u,()‘): —exp|———(x—p)
24172 2
(21T07) 20
 Easy to estimate parameters.
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(Gaussian Distribution

* Where do these expressions come from?

| 1 N
u:;Zilxi U:;Zf—l(xi_‘u)z

e Maximize the likelihood of the data.

- Likelihood of data is product of probabilities of each sample x.

S S
(2_’_‘_0_2)1/2

1
———(x,~u)
20

p(Xlu,o)=11"

i=1

exp

- Maximize this by maximizing its logarithm.

) (x.—u)z—ﬁln Uz—ﬂln(Z'n)

s 2 2

1
Inp(Xlu,o)=— 22
20

- Set its derivative with respect to uto zero and solve for p.

- Set its derivative with respect to ¢ to zero and solve for c.
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