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Fitting Data with Linear Model (Regression) 

Ref: Chuck Anderson 
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Fitting Data with Linear Model 

Ref: Chuck Anderson 
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Fitting Curves with Gaussian Conditional Distribution 

Ref: Chuck Anderson 
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Bayes Theorem 
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Why we maximize sums of log probs 

• We want to maximize the product of the probabilities of the 
outputs on the training cases 

– Assume the output errors on different training cases, c, are 
independent. 

 

 

  

• Because the log function is monotonic, it does not change where 
the maxima are. So we can maximize sums of log probabilities 
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An even cheaper trick 

• Suppose we completely ignore the prior over weight 

vectors 

– This is equivalent to giving all possible weight 

vectors the same prior probability density. 

• Then all we have to do is to maximize: 

 

 

• This is called maximum likelihood learning. It is very 

widely used for fitting models in statistics. 
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Decision Theory 
Probabilities and Bayes’ Theorem 

Ref: Chuck Anderson 
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Decision Theory 
Decision Regions and Measures of Accuracy 

Ref: Chuck Anderson 
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Decision Theory 
Decision Regions and Measures of Accuracy 

Ref: Chuck Anderson 
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Example 

Ref: Chuck Anderson 
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Decision Theory 
Decision Regions and Measures of Accuracy 

Ref: Chuck Anderson 
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Decision Theory 
Measures of Accuracy 

Ref: Chuck Anderson 
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Decision Theory 
Three ways of making classification decision 

Ref: Chuck Anderson 



Fall 2016   Heng Huang                                                  Machine Learning 15 

Information Theory 

• Useful to have measure h(x) of how much 

information is provided by an event, x. We would 

like it to reflect how “surprising” the event is, so it 

should be related monotonically to probability p(x). 

• If two events x and y are unrelated, total information 

gained should be sum of each 

Ref: Chuck Anderson 
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Information Content of A Random Variable  

• Random variable X  

– Outcome of a random experiment  

– Discrete R.V. takes on values from a finite set of possible outcomes 

PMF: P(X = y) = Px(y)  

 

• How much information is contained in the event X = y?  
– Will the sun rise today?  

• Revealing the outcome of this experiment provides no information  

– Will the Maverick win the NBA championship?  

• Since this is unlikely, revealing yes provides more information than 
revealing no  

• Events that are less likely contain more information than 
likely events  

Ref: Eytan Modiano 
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Entropy 

Ref: Patric Ostergard 
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Example: Variable with Uniform Distribution 

Ref: Patric Ostergard 
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Example: Variable with Nonuniform 

Ref: Patric Ostergard 
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Example: Variable with Nonuniform 

Ref: Patric Ostergard 
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Joint and Conditional Entropy 

Ref: Chris Brew  
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Mutual Information 

Ref: Chris Brew  


