Machine Learning CSE 6363 (Fall 2016)

Lecture 4 Bayesian Learning

Heng Huang, Ph.D.

Department of Computer Science and Engineering

Probability Distribution

- Let's start from a question
- A billionaire from the suburbs of Seattle asks you a question:
- He says: I have thumbtack, if I flip it, what's the probability it will fall with the nail up?
- You say: Please flip it a few times
- You say: The probability is:
- He says: Why???
- You say: Because...

Thumbtack - Binomial Distribution

- $\mathrm{P}($ Heads $)=\theta, \mathrm{P}($ Tails $)=1-\theta$
- Flips are:
- Independent events
- Identically distributed according to Binomial distribution
- Sequence D of α_{H} Heads and α_{T} Tails

$$
P(\mathcal{D} \mid \theta)=\theta^{\alpha_{H}}(1-\theta)^{\alpha_{T}}
$$

Maximum Likelihood Estimation

- Data: Observed set D of α_{H} Heads and α_{T} Tails
- Hypothesis: Binomial distribution
- Learning θ is an optimization problem
- What's the objective function?
- MLE: Choose θ that maximizes the probability of observed data:

$$
\begin{aligned}
\hat{\theta} & =\arg \max _{\theta} P(\mathcal{D} \mid \theta) \\
& =\arg \max _{\theta} \ln P(\mathcal{D} \mid \theta)
\end{aligned}
$$

Your First Learning Algorithm

$$
\begin{aligned}
\hat{\theta} & =\arg \max _{\theta} \ln P(\mathcal{D} \mid \theta) \\
& =\arg \max _{\theta} \ln \theta^{\alpha_{H}}(1-\theta)^{\alpha_{T}}
\end{aligned}
$$

- Set derivative to zero:

$$
\frac{d}{d \theta} \ln P(\mathcal{D} \mid \theta)=0
$$

What about Prior

$$
\hat{\theta}=\frac{\alpha_{H}}{\alpha_{H}+\alpha_{T}}
$$

- Billionaire says: I flipped 3 heads and 2 tails.
- You say: $\theta=3 / 5$, I can prove it!
- Billionaire says: Wait, I know that the thumbtack is "close" to 50-50. What can you?
- You say: I can learn it the Bayesian way...
- Rather than estimating a single θ, we obtain a distribution over possible values of θ

Bayesian Learning

- Use Bayes rule:

$$
P(\theta \mid \mathcal{D})=\frac{P(\mathcal{D} \mid \theta) P(\theta)}{P(\mathcal{D})}
$$

- Or equivalently:

$$
P(\theta \mid \mathcal{D}) \propto P(\mathcal{D} \mid \theta) P(\theta)
$$

Bayesian Learning for Thumbtack

$$
P(\theta \mid \mathcal{D}) \propto P(\mathcal{D} \mid \theta) P(\theta)
$$

- Likelihood function is simply Binomial:

$$
P(\mathcal{D} \mid \theta)=\theta^{\alpha_{H}}(1-\theta)^{\alpha_{T}}
$$

- What about prior?
- Represent expert knowledge
- Simple posterior form
- Conjugate priors:
- Closed-form representation of posterior
- For Binomial, conjugate prior is Beta distribution

Beta Prior Distribution - $\mathrm{P}(\theta)$

$$
P(\theta)=\frac{\theta^{\beta_{H}-1}(1-\theta)^{\beta_{T}-1}}{B\left(\beta_{H}, \beta_{T}\right)} \sim \operatorname{Beta}\left(\beta_{H}, \beta_{T}\right)
$$

- Likelihood function: $P(\mathcal{D} \mid \theta)=\theta^{\alpha_{H}}(1-\theta)^{\alpha_{T}}$
- Posterior:

$$
P(\theta \mid \mathcal{D}) \propto P(\mathcal{D} \mid \theta) P(\theta)
$$

Posterior Distribution

- Prior: $\operatorname{Beta}\left(\beta_{H}, \beta_{T}\right)$
- Data: α_{H} Heads and α_{T} Tails
- Posterior distribution:

$$
P(\theta \mid \mathcal{D}) \sim \operatorname{Beta}\left(\beta_{H}+\alpha_{H}, \beta_{T}+\alpha_{T}\right)
$$

Conjugate Priors

- A Bayesian estimate of μ requires a prior $p(\mu)$.
- A prior is called conjugate if, when multiplied by the likelihood $p(D \mid \mu)$, the resulting posterior is in the same parametric family as the prior. (Closed under Bayesian updating.)
- The Beta prior is conjugate to the Bernoulli likelihood

$$
\begin{aligned}
P(\mu \mid D) & \propto P(D \mid \mu) P(\mu) \\
& \propto\left[\mu^{n}(1-\mu)^{m}\right]\left[\mu^{a-1} \mu^{b-1}\right] \\
& =\mu^{n+a-1}(1-\mu)^{m+b-1}
\end{aligned}
$$

where n is the number of heads and m is the number of tails.

- a, b are hyperparameters (parameters of the prior) and correspond to the number of "virtual" heads/tails (pseudo counts). $N_{0}=a+b$ is called the effective sample size (strength) of the prior. $a=b=1$ is a uniform prior (Laplace smoothing).

The Beta Distribution

- To ensure the prior is normalized, we define

$$
P(\mu \mid a, b)=\operatorname{Beta}(\mu \mid a, b)=\frac{\Gamma(a+b)}{\Gamma(a) \Gamma(b)} \mu^{a-1}(1-\mu)^{b-1}
$$

where the gamma function is defined as

$$
\Gamma(x)=\int_{0}^{\infty} u^{x-1} e^{-u} d u
$$

Note that $\Gamma(x+1)=x \Gamma(x)$ and $\Gamma(1)=1$. Also, for integers, $\Gamma(x+1)=x!$.

- The normalization constant $1 / Z(a, b)=\frac{\Gamma(a+b)}{\Gamma(a) \Gamma(b)}$ ensures

$$
\int_{0}^{1} \operatorname{Beta}(\mu \mid a, b) d \mu=1
$$

The Beta Distribution

If $\mu \sim B e(a, b)$, then

$$
E \mu=\frac{a}{a+b}
$$

$$
\operatorname{var}(\mu)=E\left[(\mu-E[\mu])^{2}\right]=\int_{0}^{1}\left(\mu-\frac{a}{a+b}\right)^{2} \operatorname{Beta}(\mu \mid a, b) d \mu=\frac{a b}{(a+b)^{2}(a+b+1)}
$$

Heng Huang

Machine Learning

Bayesian Updating in Pictures

- Start with $\operatorname{Be}(\mu \mid a=2, b=2)$ and observe $x=1$, so the posterior is $\operatorname{Be}(\mu \mid a=3, b=2)$.
thetas $=0: 0.01: 1$;
alphaH = 2; alphaT = 2; Nh=1; Nt=0; N = Nh+Nt;
prior = betapdf(thetas, alphaH, alphaT);
lik $=$ choose(N,Nh) * thetas.^Nh .* (1-thetas). ${ }^{\wedge} \mathrm{Nt}$;
post $=$ betapdf(thetas, alphaH +Nh , alphaT+Nt);

Posterior Predictive Distribution

- The posterior predictive distribution is

$$
\begin{aligned}
p(X=1 \mid D) & =\int_{0}^{1} p(X=1 \mid \mu) p(\mu \mid D) d \mu \\
& =\int_{0}^{1} \mu p(\mu \mid D) d \mu=E[\mu \mid D]=\frac{n+a}{n+m+a+b}
\end{aligned}
$$

- With a uniform prior $a=b=1$, we get Laplace's rule of succession

$$
p\left(X=1 \mid N_{h}, N_{t}\right)=\frac{N_{h}+1}{N_{h}+N_{t}+2}
$$

- Start with $\operatorname{Be}(\mu \mid a=2, b=2)$ and observe $x=1$ to get $B e(\mu \mid a=$ $3, b=2$), so the mean shifts from $E[\mu]=2 / 4$ to $E[\mu \mid D]=3 / 5$.

Heng Huang

Effect of Prior Strength

- Let $N=N_{h}+N_{t}$ be number of samples (observations).
- Let N^{\prime} be the number of pseudo observations (strength of prior) and define the prior means

$$
\alpha_{h}=N^{\prime} \alpha_{h}^{\prime}, \quad \alpha_{t}=N^{\prime} \alpha_{t}^{\prime}, \quad \alpha_{h}^{\prime}+\alpha_{t}^{\prime}=1
$$

- Then posterior mean is a convex combination of the prior mean and the MLE (where $\lambda=N^{\prime} /\left(N+N^{\prime}\right)$):

$$
\begin{aligned}
P\left(X=h \mid \alpha_{h}, \alpha_{t}, N_{h}, N_{t}\right) & =\frac{\alpha_{h}+N_{h}}{\alpha_{h}+N_{h}+\alpha_{t}+N_{t}} \\
& =\frac{N^{\prime} \alpha_{h}^{\prime}+N_{h}}{N+N^{\prime}} \\
& =\frac{N^{\prime}}{N+N^{\prime}} \alpha_{h}^{\prime}+\frac{N}{N+N^{\prime}} \frac{N_{h}}{N} \\
& =\lambda \alpha_{h}^{\prime}+(1-\lambda) \frac{N_{h}}{N}
\end{aligned}
$$

Effect of Prior Strength

- Suppose we have a uniform prior $\alpha_{h}^{\prime}=\alpha_{t}^{\prime}=0.5$, and we observe $N_{h}=3, N_{t}=7$.
- Weak prior $N^{\prime}=2$. Posterior prediction:

$$
P\left(X=h \mid \alpha_{h}=1, \alpha_{t}=1, N_{h}=3, N_{t}=7\right)=\frac{3+1}{3+1+7+1}=\frac{1}{3} \approx 0.33
$$

- Strong prior $N^{\prime}=20$. Posterior prediction:

$$
\frac{3+10}{3+10+7+10}=\frac{13}{30} \approx 0.43
$$

- However, if we have enough data, it washes away the prior. e.g., $N_{h}=300, N_{t}=700$. Estimates are $\frac{300+1}{1000+2}$ and $\frac{300+10}{1000+20}$, both of which are close to 0.3
- As $N \rightarrow \infty, P(\theta \mid D) \rightarrow \delta\left(\theta, \hat{\theta}_{M L}\right)$, so $E[\theta \mid D] \rightarrow \hat{\theta}_{M L}$.

Parameter Posterior - Small Sample, Uniform Prior

Fall 2016

Machine Learning

Parameter Posterior - Small Sample, Strong Prior

Maximum A Posteriori (MAP) Estimation

- MAP estimation picks the mode of the posterior

$$
\hat{\theta}_{M A P}=\arg \max _{\theta} p(D \mid \theta) p(\theta)
$$

- If $\theta \sim B e(a, b)$, this is just

$$
\hat{\theta}_{M A P}=(a-1) /(a+b-2)
$$

- MAP is equivalent to maximizing the penalized maximum log-likelihood

$$
\hat{\theta}_{M A P}=\arg \max _{\theta} \log p(D \mid \theta)-\lambda c(\theta)
$$

where $c(\theta)=-\log p(\theta)$ is called a regularization term. λ is related to the strength of the prior.

Integrate Out or Optimize

- $\hat{\theta}_{M A P}$ is not Bayesian (even though it uses a prior) since it is a point estimate.
- Consider predicting the future. A Bayesian will integrate out all uncertainty:

$$
\begin{aligned}
p\left(x_{\text {new }} \mid X\right) & =\int p\left(x_{\text {new }}, \theta \mid X\right) d \theta \\
& =\int p\left(x_{\text {new }} \mid \theta, X\right) p(\theta \mid X) d \theta \\
& \propto \int p\left(x_{\text {new }} \mid \theta\right) p(X \mid \theta) p(\theta) d \theta
\end{aligned}
$$

- A frequentist will use a "plug-in" estimator eg ML/MAP:

$$
p\left(x_{\text {new }} \mid X\right)=p\left(x_{\text {new }} \mid \hat{\theta}\right), \quad \hat{\theta}=\arg \max _{\theta} p(X \mid \theta)
$$

From Coin to Dice

- Suppose we observe N iid die rolls (K-sided): $D=3,1, \mathrm{~K}, 2, \ldots$
- Let $[x] \in\{0,1\}^{K}$ be a one-of-K encoding of x eg. if $x=3$ and $K=6$, then $[x]=(0,0,1,0,0,0)^{T}$.
- Multinomial distribution: $p(X=k)=\theta_{k} \quad \sum_{k} \theta_{k}=1$
- Likelihood

$$
\begin{aligned}
\ell(\theta ; D) & =\log p(D \mid \theta)=\sum_{m} \log \prod_{k} \theta_{k}^{\left[x^{m}=k\right]} \\
& =\sum_{m} \sum_{k}\left[x^{m}=k\right] \log \theta_{k}=\sum_{k} N_{k} \log \theta_{k}
\end{aligned}
$$

- We need to maximize this subject to the constraint $\sum_{k} \theta_{k}=1$, so we use a Lagrange multiplier.

MLE for Multinomial

- Constrained cost function:

$$
\tilde{l}=\sum_{k} N_{k} \log \theta_{k}+\lambda\left(1-\sum_{k} \theta_{k}\right)
$$

- Take derivatives wrt θ_{k} :

$$
\begin{aligned}
\frac{\partial \tilde{l}}{\partial \theta_{k}} & =\frac{N_{k}}{\theta_{k}}-\lambda=0 \\
N_{k} & =\lambda \theta_{k} \\
\sum_{k} N_{k} & =N=\lambda \sum_{k} \theta_{k}=\lambda \\
\hat{\theta}_{k, M L} & =\frac{N_{k}}{N}
\end{aligned}
$$

- $\hat{\theta}_{k, M L}$ is the fraction of times k occurs.

Dirichlet Priors

- Let $X \in\{1, \ldots, K\}$ have a multinomial distribution

$$
P(X \mid \theta)=\theta_{1}^{I(X=1)} \theta_{2}^{I(X=2)} \cdots \theta_{K}^{I(X=k)}
$$

- For a set of data X^{1}, \ldots, X^{N}, the sufficient statistics are the counts $N_{i}=\sum_{n} I\left(X_{n}=i\right)$.
- Consider a Dirichlet prior with hyperparameters α

$$
p(\theta \mid \alpha)=\mathcal{D}(\theta \mid \alpha)=\frac{1}{Z(\alpha)} \cdot \theta_{1}^{\alpha_{1}-1} \cdot \theta_{2}^{\alpha_{2}-1} \cdots \theta_{K}^{\alpha_{K}-1}
$$

where $Z(\alpha)$ is the normalizing constant

$$
\begin{aligned}
Z(\alpha) & =\int \cdots \int \theta_{1}^{\alpha_{1}-1} \cdots \theta_{K}^{\alpha_{K}-1} d \theta_{1} \cdots d \theta_{K} \\
& =\frac{\prod_{i=1}^{K} \Gamma\left(\alpha_{i}\right)}{\Gamma\left(\sum_{i=1}^{K} \alpha_{i}\right)}
\end{aligned}
$$

Gaussian Density in 1-D

- If $X \sim N\left(\mu, \sigma^{2}\right)$, the probability density function (pdf) of X is defined as

$$
p_{X}(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{1}{2 \sigma^{2}}(x-\mu)^{2}}
$$

We will often use the precision $\lambda=1 / \sigma^{2}$ instead of the variance σ^{2}.

- Note that a density evaluated at a point can be bigger than 1 !
- Here is how we plot the pdf in matlab
xs=-3:0.01:3; plot(xs,normpdf(xs,mu,sigma))

Multivariate Gaussian

1-dimensional Gaussian

$$
p(x \mid \mu, \sigma)=\frac{1}{\left(2 \pi \sigma^{2}\right)^{1 / 2}} e^{-\frac{1}{2 \sigma^{2}}(x-\mu)^{2}}
$$

2-dimensional Gaussian

$$
p(\mathbf{x} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma})=\frac{1}{2 \pi|\boldsymbol{\Sigma}|^{1 / 2}} e^{-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})}
$$

d-dimensional Gaussian

$$
p(\mathbf{x} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma})=\frac{1}{(2 \pi)^{d / 2}|\boldsymbol{\Sigma}|^{1 / 2}} e^{-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{T} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})}
$$

Multivariate Gaussian

- If $X \in \mathbb{R}^{d}$ is a jointly gaussian random vector, then its pdf is

$$
p(x)=N(x ; \mu, \Sigma)=\frac{1}{(2 \pi)^{d / 2}} \frac{1}{|\Sigma|^{1 / 2} \mid} \exp \left\{-\frac{1}{2}(x-\mu)^{T} \Sigma^{-1}(x-\mu)\right\}
$$

- The quantity $\Delta^{2}=(x-\mu)^{T} \Sigma^{-1}(x-\mu)$ is called the Mahalanobis distance between x and μ.
- The first and second moments are

$$
E[X]=\mu, \quad \operatorname{Cov}[X]=\Sigma
$$

- Sometimes we will use the precision matrix Σ^{-1} instead of the covariance matrix Σ.

Conditional Gaussian

- Suppose $x=\left(x_{a}, x_{b}\right)$ is jointly Gaussian with parameters

$$
\mu=\binom{\mu_{a}}{\mu_{b}}, \quad \Sigma=\left(\begin{array}{cc}
\Sigma_{a a} & \Sigma_{a b} \\
\Sigma_{b a} & \Sigma_{b b}
\end{array}\right), \quad \Lambda=\Sigma^{-1}=\left(\begin{array}{cc}
\Lambda_{a a} & \Lambda_{a b} \\
\Lambda_{b a} & \Lambda_{b b}
\end{array}\right),
$$

- It can be shown that $P\left(X_{a} \mid x_{b}\right)=N\left(X_{a} ; \mu_{a \mid b}, \Sigma_{a \mid b}\right)$ where

$$
\begin{aligned}
\mu_{a \mid b} & =\mu_{a}+\Sigma_{a b} \Sigma_{b b}^{-1}\left(x_{b}-\mu_{b}\right) \\
\Sigma_{a \mid b} & =\Sigma_{a a}-\Sigma_{a b} \Sigma_{b b}^{-1} \Sigma_{b a}
\end{aligned}
$$

- Note that the new mean is a linear function of x_{b}, and the new covariance is independent of x_{a}.
- Similarly, the marginal $P\left(X_{a}\right)=N\left(X_{a} ; \mu_{a}, \Sigma_{a a}\right)$.
- You should memorize these equations!

