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Generative Models

As in the binary case:

1. Learn p(y) and p(y|x)
_ — pzly=k)p(y=Fk)
p(y=klz) = ()

3. Classity as y(z) = argmaxy, p(y|z)

L
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2. Use Bayes rule:



Linear Regression of An Indicator Matrix

If G has K classes, there will be K class indicators Y,
k=1,.. K.

S|YL Y2 Y3 Y4
3]0 0 1 O
111 0 0 O
210 1 0 O
410 0 0 1
111 0 0 O

Fit a linear regression model for each Yy, k=1.2,.... K,
using X:
Ji = X(XT X)Xy, .

Define Y = (y1,¥2, ..., Yk):
Y = X(X™X)"IXTY .
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Classification Procedure

Define B = (XTX)"1XTY.

For a new observation with input x, compute the fitted output
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G(x) = arg max fi(x) .
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|dentify the largest component of lA‘(x) and classify
accordingly:

Xp)é]T
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Classification - Summary

m Wantto Learn:h: X—> Y

X — features
Y — target classes

m Generative classifier, e.g., Naive Bayes:
Assume some functional form for P(X|Y), P(Y)
Estimate parameters of P(X|Y), P(Y) directly from training data
Use Bayes rule to calculate P(Y|X= x)
This is a ‘generative’ model
= Indirect computation of P(Y|X) through Bayes rule
= But, can generate a sample of the data, P(X) = 3, P(y) P(X|y)
m Discriminative classifiers, e.g., Logistic Regression:
Assume some functional form for P(Y|X)
Estimate parameters of P(Y|X) directly from training data
This is the ‘discriminative’ model

= Directly learn P(Y|X)

= But cannot obtain a sample of the data, because P(X) is not available
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Linear Discriminant Analysis

Essentially minimum error Bayes’ classifier

Assumes that the conditional class densities are (multivariate)
Gaussian

Assumes equal covariance for every class

, . B - ()7,
Posterior probability Pr(G=k|X =x) = ZK: oor ~__ Application of
R Bayes rule

7T, 1s the prior probability for class £

f,(x) 1s class conditional density or likelihood density

1
f(x) =
RARNCEEESY
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Linear Discriminant Analysis

G(x) = argmkaxPr(G =k| X =ux)

= argmax fi.(z)m

— argmkaxlog(fk(x)ﬂk)
= arg m]?}( [— 1Og((277)p/2‘2‘1/2>
_%($ _ ILLk>TZ_1(ZE — ,Lbk) -+ log(ﬂ-/ﬁ)]

1
= argmax [—5(37 — )" SN ) + log(ﬂk)]

1 _
(o= )" (@ = )
1 1
= !5y — augﬂluk — §xT21$
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Linear Discriminant Analysis

* To sum up

. ‘ 1
G(x) = arg max 'Yy — 5;@2*% + log ()

e Define the linear discriminant function

N 1 _
op(x) = 'Sy — EMAT-Z "+ log(my)
Then

G(z) = arg max Or ()

* The decision boundary between class £ and /is:
{72 0r(x) = i)}
* Or equivalently the following holds

. 1 _ _
10%;]; — 5(1% + ) S (e — ) + 2 S (e — ) =0

Fall 2016 Heng Huang Machine Learning 9



Linear Discriminant Analysis

Consider the classification through decision boundary

log PrG =k[ X =) =Iogﬂ+logi
PrG =1 X =x) T f
_ 1 . _ 1 _
= (log 7, +x' 274, —EﬂkTZ ‘) —(log 7 + X" X7y, —EMTZ 1)
\_ NG )
' Y
Oy (X) 4 (X)

Classification rule: G(X)= argmax o, (X)
K

is equivalent to: G(x)=argmax Pr(G =k | X = x)
k

The good old Bayes classifier!
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Binary Classification Example

Binary classification (k = 1, [ = 2):
— Define ay = log % — L + ) 'S (pn — o).
— Define (ay, as, ..., a,)" = S g — o).

— Classify to class 1 if ap + Z?:l a;r; > 0; to class
2 otherwise.

— An example: :
*7'('1:7'{'2:0.5. 1t
* 1 = (07 O)Ts M2 = (27 _2)T ok
1.0 0.0
= (0.0 0.5625) | T
* Decision boundary: o

0.96 — 2.00x1 + 3.56x2 = 0.0 . 5}
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Estimate Gaussian Distributions

In practice, we need to estimate the Gaussian distribution.

Total N input-output pairs
N b f pairs in class £ - :
. humber of pairs in class (gi’xi)’ i—1-N
Total number of classes: K
Training data utilized to estimate

Prior probabilities: 7, =N, /N
Means: = Zg_:k X I'N,

Covariance matrix: L= > 06— 206 = )T [N =K)
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Diabetes Data Example

e Diabetes data

The diabetes data set is taken from the UCI machine learning
database repository at:
http:/ /www.ics.uci.edu/ mlearn/Machine-Learning.html .

The original source of the data is the National Institute of
Diabetes and Digestive and Kidney Diseases. There are 768
cases in the data set, of which 268 show signs of diabetes
according to World Health organization criteria. Each case
contains 8 quantitative variables, including diastolic blood
pressure, triceps skin fold thickness, a body mass index, etc.

— Two classes: with or without signs of diabetes.
— Denote the 8 original variables by X1, Xo, ..., X3
— Remove the mean of X; and normalize it to unit variance.
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Diabetes Data Set

Two input variables computed from the principal components

of the original 8 variables. X, = 0.1284X; + 0.3931X, -+ 0.3600.X; + 0.4398.X,

+0.4350 X5 + 0.4519X 4 0.2706 X7 + 0.1980 X

Xy = 0.5938X, + 0.1740 X, + 0.1839X5 — 0.3320X,
—0.2508 X5 — 0.1010X — 0.1221 X~ + 0.6206 X«

Prior probabilities: m; = 0.651, mo = 0.349.
11 = (—0.4035, —0.1935)", 1o = (0.7528,0.3611)".

¢ _ (L7925 —0.1461
— \ —0.1461  1.6634

Classification rule:

é’( ) B 1 0.7748 — 0.6771xy — 0.392925 > 0
V= Y2 otherwise

B 1 1.1443 — 1 — 0.580229 > 0
| 2 otherwise
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Result of Linear Regression Based Classification

G(z) =

. 1 Y >Y
. . 2 Y <Y,
* (Classification { 1 0.151 — 0.1256.X; — 0.0720X, > 0

2  otherwise

error rate: 28.52%b.

Fall 2016 15




LLDA Classification Result

* The scatter plot follows.
Without diabetes: stars
(class 1), with diabetes:

circles (class 2). Solid line:
classification boundary

obtained by LDA. Dash dot |

line: boundary obtained by
linear regression of
indicator matrix.

* Within training data
classification error rate:

28.26%.
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Simulated Examples

* LDA applied to three
simulated data sets in (a)-(c).
(a): The true within class
densities are Gaussian with

identical covariance matrices

across classes. (b) and (c):
The true within class

densities are mixtures of two

(Gaussians.

* (d): The data set is the same
as that 1n (c). Decision
boundaries are obtained by
modeling each class by a

mixture of two Gaussians.
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Quadratic Discriminant Analysis

* Relaxes the same covariance assumption — class conditional
probability densities (still multivariate Gaussians) are allowed
to have different covariant matrices

* The class decision boundaries are not linear rather quadratic

0 Pr(G =k| X :X):Iogﬂﬂogi:
Pr(G=1|X =x) TT, f,

(097, 2 (x=1)" Zx - 1)~ 10g | 5 )~ (log 7~ (x— )" Zi*(x - t4) - > log | %
\_ NG /
N e
Oy (X) o, (X)

Classification rule: é(X) =arg max o, (X)
k
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Diabetes Data Set

Prior probabilities: 7, = 0.651, o = 0.349.
iy = (—0.4035, —0.1935)", /1o = (0.7528,0.3611)"

o _ [ 1.6769 —0.0461
P —0.0461  1.5964 4
¢ _ (20087 ~0.3330 |
27\ —0.3330  1.7887

Within training data o
classification error rate: 29.04%o.

U
N
T
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LDA on Expanded Basis

Expand input space to include X1 Xp, XZ, and X5.
Input is five dimensional: X = (X1, Xo, X1 X2, X2, X3).

[ —0.4035 ( 0.7528
~0.1935 0.3611

71 = | 0.0321 fio=| —0.0599
1.8363 2.5680

\ 16306 \ 10124

(1.7925 —0.1461 —-0.6254 0.3548  0.5215 \
—0.1461 1.6634  0.6073 —0.7421 1.2193

—0.6254 0.6073  3.5751 —1.1118 —0.5044
0.3548 —0.7421 —1.1118 12.3355 —0.0957
\0.5215 1.2193  —0.5044 —0.0957 4.4650 }

M
I
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Classification boundary:
0.651 — 0.728x; — 0.552x> — 0.006x1x> — 0.071x7 + 0.170x5 = 0

If the linear function on the right hand side is non-negative,
classify as 1; otherwise 2.

Within training data il ' o
classification error rate: 26.82%. | = -7

-2}
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ILinear Classification

* All we require here is the class boundaries {x: 0,(x) = 0(x)}
be linear for every (£, 7) pair

One can achieve this if 0,(x) themselves are linear or any
monotone transform of 0,(x) is linear

— An example:

P(G :1| X =X)= e)(p(ﬂ0+ﬂTX)

1+exp (S, + ' X)
P(G=2|X=x)= 7
1+exp(fy+ 5 X)
P(G=1|X=x),
So that log| P(G=2|X = X)]\

Linear

Fall 2016 Heng Huang Machine Learning
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Logistic Regression

* Learn P(Y |X) directly!

— Assume a particular functional form

— Sigmoid applied to a linear function of the data:

Logistic 1
1 function e 2
or Sigmoid): erp ==
P(Y = 1|X) = . (or Sigmeid)
1+ exp(wo + Zizl szz)
-5 E
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Understanding The Sigmoid

g(wo + Z w;T;) =

WO='2, W1 ='1

WO=O’ W1 ='1

0ol 1 0.9
08| / 1 0.8 /
07} / E 0.7 y
06 ‘/’ 0.6 /
o5l / 05 /
/ /
04f / 0.4 /
03} / 03 /
02} 02 /
01} 0.1 /
___—— /
% 4 2 0 2 4 6 0 . 2 0 2 4
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Logistic Regression — A Linear Classifier

1
1+ exp(wg + X; w; X;)

P(Y =1|X =< X1,..Xn >) =

implies
exp(wo + >; w; X;)

P(Y =0|X =< X1,..Xn>) =
( | L Xn >) = o + 55w X0)

implies
P(Y =0|X)
= exp(wo + )_ w;X;)
P =11X) ZZ: o linear
classification
implies rulel
P(Y = 0|X)
Py =1x) 02w

Fall 2016 Heng Huang Machine Learning 25

Ref: Carlos Guestrin



Solving Binomial Logistic Regression

p:

((af, b)

ol

Ow;
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0 — 2\ Vi . -\ 1=y,
1+ e~ (b+Z-) L(’U),b) — ]illzp(x'b) (1 p(xz)

> yilogp(T) + (1 — yi)log 1 — p(T;)
=1

—

p(T;)

mn . T p(
;og p(x)+;y 0g

i=1 =1
Z —log 1 + el o 4 Z Yi(b+ Z; - )
i=1 i=1

n 1 mn
-7 e D Uit
i=1 ’ i=1
T

> (yi = p(T:b, @),
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