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Fisher Linear Discriminant
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The figure on the right shows greater separation between subsets, one set of
the points with dashed line, another with solid line.
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Fisher Linear Discriminant

=  Suppose we have 2 classes and d-dimensional

samples x,,...,X,, where

= n, samples come from the first class
= n, samples come from the second class

= consider projection on a line
= Let the line direction be given by unit vector v

= Scalar vix; is the distance of
projection of x;from the origin

= Thusit vix;is the projection of
> X;into a one dimensional
subspace
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Fisher Linear Discriminant
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Thus the projection of sample x; onto a line in
direction vis given by vix;

How to measure separation between projections of
different classes?

Let &, and @, be the means of projections of
classes 1 and 2
Let 1, and u,be the means of classes 1 and 2

1, - I,| seems like a good measure

—va—v[ Zx]

1 X:eC1 1 X:eC1

similarly , H,=Vu,
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Fisher Linear Discriminant

= How goodis |, —/,| as a measure of separation?
= The larger |2 — /1 .|, the better is the expected separation

A

2y w— ..'il?a.ﬁ.
ﬁz ) -._1‘; .

——— oot B B

= the vertical axes is a better line than the horizontal
axes to project to for class separability

= however |a, — f,|> |1, — &,
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Fisher Linear Discriminant

= The problem with |g, - &,| is that it does not
consider the variance of the classes
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Fisher Linear Discriminant

=  We need to normalize |#, - &,| by a factor which is
proportional to variance

. 1
* Have samples z,,...,z,. Sample meanis #.=--3.z,
i=1

= Define their scatter as
s=>(z,-p,)
i=1

= Thus scatter is just sample variance multiplied by n

= scatter measures the same thing as variance, the spread
of data around the mean

= gcatter is just on different scale than variance
o ®

® o o
larger scatter: o® ~ o ® smaller scatter: f"@
e o © ¢
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Fisher Linear Discriminant

= Fisher Solution: normalize |&, — &1,| by scatter

= Lety;=Vvix;, i.e. y;'s are the projected samples

= Scatter for projected samples of class 1 is

§12 = Z(.Vi_ﬂ1)2

yeClass 1

= Scatter for projected samples of class 2 is
§22 = Z (.Vi - H, ) ?

yeClass 2
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Fisher Linear Discriminant

= We need to normalize by both scatter of class 1 and
scatter of class 2

= Thus Fisher linear discriminant is to project on line
In the direction v which maximizes

want projected means are far from each other
A

4 A\

2
J(v) = (ﬂ12 ﬂzz)
/§1 + S, -
want scatter in class 1 is as want scatter in class 2 is as

small as possible, i.e. samples small as possible, i.e. samples
of class 1 cluster around the of class 2 cluster around the

projected mean [i, projected mean [i,
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Fisher Linear Discriminant

2
J(v) = (ﬂ12— ﬂzz)
P+ &
= |f we find v which makes J(v) large, we are
guaranteed that the classes are well separated

projected means are far from each other

'd N\
2 H,
—  sulesw eoede—
o
small §. implies that small §, implies that
projected samples of projected samples of
class 1 are clustered class 2 are clustered

around projected mean around projected mean
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Fisher Linear Discriminant

J(v) = (2, - n,)

~J

§2+ 82

= All we need to do now is to express J explicitly as a
function of v and maximize it
= straightforward but need linear algebra and Calculus

= Define the separate class scatter matrices S; and
S, for classes 1 and 2. These measure the scatter
of original samples x; (before projection)
S, = Z (Xi — /u1)(xi - ﬂ1)t

x;eClass 1

Sz= Z(Xi_ﬂz)(xi_ﬂz)t

x;eClass 2
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Fisher Linear Discriminant

= Now define the within the class scatter matrix
S, =S5,+8S,

= Recallthat &2 = Z(y,-—%)z

yeClass 1

= Using y;= vix; and B, =Vv'y,
§12 = Z (Vtxi - Vtﬂ1)2

y;eClass 1

= v O - ) (v (x, - )
y;eClass 1 t

- Z((Xi_ﬂ1)tv) ((Xi_au1)tv)
yeClass 1

= Y vi(x - )X, - u,)v=v'Sy
yeClass 1
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Fisher Linear Discriminant

=  Similarly 82 =v'S,v
= Therefore 8> +82=v'Sv+v'S,v=v'S, v
= Define between the class scatter matrix

S = (Ju1 — My )(ﬂ1 — My )t
= S measures separation between the means of two
classes (before projection)

= Let’'s rewrite the separations of the projected means
2
(4111 - H, )2 = (Vtau1 - Vt/uz)
= v (g — 1, Nty — 11, )'v
=v'Syv
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Fisher Linear Discriminant

= Thus our objective function can be written:
J(v)= (171 1) _ v'Spv
§2 + 52 v'S, v

= Maximize J(v) by taking the derivative w.r.t. v and
setting itto O

(dv’S v) tSWV—[cz/VtSWV)VtSBV
(vis, v )
_(2Sgv)v's, v —(25,v)v'S,v

(vis, v

J()

=0

Fall 2016 Heng Huang Machine Learning
Ref: Olga Veksler

14



Fisher Linear Discriminant

= Needtosolve Vv'S,v(S,v)-v'S,v(S,v)=0

viS,v(S,v) viS,v(S,v)
_ —0
= v'S,v viS, v
wV)

:SV—(@(SE /10

— S,v=AS,V
(N J

generalized eigenvalue problem
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Fisher Linear Discriminant

S,v=AS,v

= |If §yhas full rank (the inverse exists), can convert
this to a standard eigenvalue problem

S,/S;v=Av
= But Sgx for any vector x, points in the same
direction as ;- i, a

Sex = (= 1ty — 1,) X = (g, —ﬂz)m (s = )

= Thus can solve the eigenvalue problem immediately

V= Sv_v1(»u1 _/uz)

W1S[ ﬂz)] Sy 1[05(ﬂ1 ﬂz)

— M, )]

= als,
T‘Y

"4
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Fisher Linear Discriminant Example

= Data
= Class 1 has 5 samples ¢,=[(1,2),(2,3),(3,3),(4,5),(5,5)]
= Class 2 has 6 samples ¢»=[(1,0),(2,1),(3,1),(3,2),(5,3),(6,9)]

= Arrange data in 2 separate matrices °
12 10

C,=|: : C, =

55 6 5

= Notice that PCA performs very
poorly on this data because the
direction of largest variance is not
helpful for classification

—_ O = N W A~ W,
®
® 00
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Fisher Linear Discriminant Example

= First compute the mean for each class
u, =mean (c,)=[3 3.6] u, =mean (c,)=[3.3 2]
= Compute scatter matrices S, and S, for each class

S, =4+covic,)= [g% ‘;g} S,=5xcov(c,)= [117&3 ;g}

Within the class scatter:
27.3 24
Sw=5,+5; { 24 23.2}
= it has full rank, don’t have to solve for eigenvalues

= The inverse of Sy, is S,/ = inv (S, )= [—06?21 _0‘.)21;1}

Finally, the optimal line direction v
v =5, (i, - )= [‘0{’359}
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Fisher Linear Discriminant |

Hxample

= Notice, as long as the line
has the right direction, its
exact position does not
matter

= Last step is to compute

=T T R - T <, B - >

the actual 71D vector V.
Let’s do it separately for
each class

K o~
o K
o K K
K B K
o . 5
+ B
+ + G
od O o
o o
o " o
K . R
5 o K
o o
. 4 ’ g
* . - .
B B K o 5
Gl K R +
o G *
o 5
" W
. o .
G
R o
Gl K
o N
1 I

Y, = vic! = [- 0.65 0.73][; - g] —[0.81-- 0.4]

Y, = vic! = [- 0.65 o.73][3jjj g] - [-0.65 .- —0.25]
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Within-class Covariance Matrix

* The projection is from a d-dimensional space to a
(c-1) dimensional space.

e The within-class scatter is

Si — Z(X _mi)(x _mi)t

XeDi

1
m. _n—ZX

i XEDi
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Total Covariance Matrix

e Total mean

e Total scatter matrix

Fall 2016

S = Y (X ~m)(X ~m)'

C

Sr=> D> (X-m+m—m)

i=1 XeD;

(X —m, +m. —m)'

Sy :i Z(X —m)(X —m;)" +

i=1 XeD,

> 3 (m; — m)(m, - m)'

i=1 XeD;
Heng Huang
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Total Covariance Matrix

* Note C
Z Z(X _mi)(mi _m)t —
>3 (X =-m)m, -m)* = [0
0 — matrix

S, =S, +3n,(m, ~m)(m, ~m)

Define

S, =31, (m, - m)(m, ~ m)

S; =Sy + S
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Multiple Discriminant Analysis

* 'The projection from a d-dimensional space to a (c-1)-
dimensional space is done by c-1 discriminant functions

y,=wX i=1...c
y; can be viewed as a component of a vector Y

e W, are viewed as columns of a d X (c-1) matrix Y =W'X

* The samples X,,..., X, (d-dimensional) are mapped to a set
of Yis--sy ¥y (c-1)-dimensional which can be described by
their own mean vectors and scatter matrices

Fall 2016 Heng Huang Machine Learning
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Multiple Discriminant Analysis

Mapping from d-
dimensional space
to c-dimensional

space d=3, c=3

Y=W'X and mi=12Y=£\N‘Zx
Mivey M xSy,

It can be shown
S,, =W'S, W
Sy =W'S W
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Multiple Discriminant Analysis

e We want to find a transform matrix W that maximizes the
ratio of the determinants of the between-class scatter to the
within-class scatter:

8] wesw
I8 T wsw

* The columns of an optimal W are the generalized
eigenvectors corresponding to the largest eigenvalues

SBWi — ﬂiSW\Nl

o If Sy is nonsingular, SW_lsBVVi = AW,
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FDA and MDA Drawbacks

= Reduces dimension only to k = ¢-1 (unlike PCA)

= For complex data, projection to even the best line may
result in unseparable projected samples

= Will fail:
1. J(v) is always 0: happens if y; = u,

30
CO> SO

PCA performs PCA also
reasonably well fails: det (V'S.V
2. If J(v) is always large: classes have large overlap when
projected to any line (PCA will also fail)
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