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Linear Algebra Review

e Vector-Vector Products

— Inner product or dot product

Ty eR=[ a1 as

— Outer product
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Linear Algebra Review

* Identity matriv o
I — L=
=0 iz
* Diagonal matrix
D.. — d; i1=]
R U
* Transpose (AT)7 — 4

(AB)T = BT AT
(A+DB)r = AT + BT
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Linear Algebra Review

* Symmetric matrix A = A7
e Trace trA= YA
=1

For A € R™" trA = trA”.

For A, B € R™" tr(A+ B) = trA + trB.

For Ae R™" t e R, tr(tA) =1 trA.

For A, B such that AB is square, trAB = trBA. ?

For A, B, C such that ABC' is square, trABC = trBCA = trCAB, and so on for the

product of more matrices.
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Linear Algebra Review

* N l
orm - ZI

1. For all x € R", f(x) > 0 (non-negativity).

2. f(x) =0 1if and only if x = 0 (deliniteness).
3. Forall z e R", t € R, f(tx) = |t|f(x) (homogeneity).

4. For all z,y e R", f(r+vy) < f(x) + f(y) (triangle inequality)

i—1 i=1 j=1

HIH — | |Iz| n 1/p m .
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Linear Algebra Review

* Inverse: invertible or non-singular

ATMA=1=A4"
(A t=4
(AB)"' =B 'A~!
(AT = (AT)~1.
* Orthogonal matrix
Two vectors x,y € R™ are orthogonal if 'y = 0.
U'U =1 =UU"
Ux

|2 =[]l

Fall 2016 Heng Huang Machine Learning 6



Linear Algebra Review

* Quadratic form

v Ar = i ri(Ar);, = i T Z Aij r?) = Z Z Ajjria;
1
E

i=1 i=1 i=1 j=1

L.e., only the symmetric part of A contributes to the quadratic form. For this

T Ay = (.-_I.-TA;_I.-)T — T ATy = 4T (9 A+

reason, we often implicitly assume that the matrices appearing in a quadratic
form are symmetric.

* Positive definite, positive semidefinite, negative definite

One important property of positive definite and negative definite matrices is that
they are always full rank, and hence, invertible.
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Linear Algebra Review

e (Gram matrix

_ Positive semidefinite G = AT A

* FHigenvectors and eigenvalues Az = Az, = #0

The trace of a A is equal to the sum of its eigenvalues,

i=1

The determinant of A is equal to the product of its eigenvalues,

= f[ A ?
i=1

A

e The rank of A is equal to the number of non-zero eigenvalues of A.

e If A is non-singular then 1/); is an eigenvalue of A™! with associated cigenvector a;,

e, A7 ey = (1/\) ;.

e The eigenvalues of a diagonal matrix D = diag(dy,...d,) are just the diagonal entries
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Linear Algebra Review

e Derivatives of matrix

Ox'a
0x
Da’ Xb
0X
da’ X'b
0X
Da’l Xa
0X

e Hxercise

Fall 2016

dalx

0x

ab’

ba’

Dal X' a

0X

aa

Heng Huang

Derivatives of trace

0

0

0 T
d T
d T

— AT

_  ATRT
= BA
= A

= A

Machine Learning



Convex Function

]

tfix)+ (1 -=1t)fly)
) |
fltx+(1-t)y)

ﬂ'X) RS RGBT ;

X tx+(I-=t)y y

f(tx + (1-0) y) <= t1(x) + (1-t) f(y)
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Convex Set

CONVEX CoOncave

Region above a convex function 1s a convex set.
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Programming

* Objective function to be minimized/maximized.

e (Constraints to be satisfied.

Objective function

Example
maximize
subject to < 8
< 10
Constraints > _o
>0
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Convex Programming

* Convex optimization function
* Convex feasible region

* Why is it so important °°?

 Global optimum can be found 1n polynomial time.

« Many practical problems are convex

« Non-convex problems can be relaxed to convex ones.
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Quadratic Programming

* QP Problem:
Ax < b
Gx=h

J:%xTHx+fo%min

« Matlab Optimization Toolbox: QUADPROG

e Same feasibility issues as for LP
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