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History of SVM 

SVM is related to statistical learning theory [3] 

SVM was first introduced in 1992 [1]  

SVM becomes popular because of its success in 
handwritten digit recognition  

 1.1% test error rate for SVM. This is the same as the 
error rates of a carefully constructed neural network 

SVM is now regarded as an important example of 
“kernel methods”, one of the key area in machine 
learning 

[1] B.E. Boser et al. A Training Algorithm for Optimal Margin Classifiers. Proceedings of the Fifth Annual 
Workshop on Computational Learning Theory 5 144-152, Pittsburgh, 1992.  

[2] L. Bottou et al.  Comparison of classifier methods: a case study in handwritten digit recognition. 
Proceedings of the 12th IAPR International Conference on Pattern Recognition, vol. 2, pp. 77-82. 

[3] V. Vapnik. The Nature of Statistical Learning Theory. 2nd edition, Springer, 1999. 
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What is a good Decision Boundary? 

Consider a two-class, linearly 
separable classification problem 

Many decision boundaries! 

 The Perceptron algorithm can be 
used to find such a boundary 

 Different algorithms have been 
proposed 

Are all decision boundaries 
equally good? 

Class 1 

Class 2 
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Examples of Bad Decision Boundaries 

Class 1 

Class 2 

Class 1 

Class 2 
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Large-margin Decision Boundary 

 The decision boundary should be as far away from the data of 
both classes as possible 

 We should maximize the margin, m 

 Distance between the origin and the line wtx=k is k/||w|| 

Class 1 

Class 2 
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Finding the Decision Boundary 

Let {x1, ..., xn} be our data set and let yi    {1,-1} be 
the class label of xi 

The decision boundary should classify all points correctly 
 

The decision boundary can be found by solving the 
following constrained optimization problem 

 

 

 

This is a constrained optimization problem. Solving it 
requires some new tools 

 Feel free to ignore the following several slides; what is 
important is the constrained optimization problem above 
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Recap of Constrained Optimization 

Suppose we want to: minimize f(x) subject to g(x) = 0 

A necessary condition for x0 to be a solution: 

 

 

 

  a: the Lagrange multiplier 

For multiple constraints gi(x) = 0, i=1, …, m, we need a 
Lagrange multiplier ai for each of the constraints 
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Recap of Constrained Optimization 

The case for inequality constraint gi(x)0 is similar, 
except that the Lagrange multiplier ai should be positive 

 If x0 is a solution to the constrained optimization 
problem 

 

 

There must exist ai0 for i=1, …, m such that x0 satisfy 

 

 

 

The function                        is also known as the 
Lagrangrian; we want to set its gradient to 0 
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Back to the Original Problem 

The Lagrangian is 

 

 

 Note that ||w||2 = wTw 

  Setting the gradient of     w.r.t. w and b to zero, we 
have 
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The Dual Problem 

 If we substitute                        to     , we have  

 

 

 

 

 

 

 

Note that  

 

This is a function of ai only 
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The Dual Problem 

The new objective function is in terms of ai only 

 It is known as the dual problem: if we know w, we 
know all ai; if we know all ai, we know w 

The original problem is known as the primal problem 

The objective function of the dual problem needs to be 
maximized! 

The dual problem is therefore: 

Properties of ai when we introduce 
the Lagrange multipliers 

The result when we differentiate the 
original Lagrangian w.r.t. b 
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The Dual Problem 

 

 

 

 
 

This is a quadratic programming (QP) problem 

 A global maximum of ai can always be found 
 

w can be recovered by 
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Characteristics of the Solution 

Many of the ai are zero 

 w is a linear combination of a small number of data points 

xi with non-zero ai are called support vectors (SV) 

 The decision boundary is determined only by the SV 

 Let tj (j=1, ..., s) be the indices of the s support vectors. 
We can write 

 

For testing with a new data z 

 Compute                                                        and classify 

z as class 1 if the sum is positive, and class 2 otherwise 

 Note: w need not be formed explicitly 
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The Quadratic Programming Problem 

Many approaches have been proposed 

 Loqo, cplex, etc. (see http://www.numerical.rl.ac.uk/qp/qp.html) 

Most are “interior-point” methods 

 Start with an initial solution that can violate the constraints 

 Improve this solution by optimizing the objective function 
and/or reducing the amount of constraint violation 

For SVM, sequential minimal optimization (SMO) seems 
to be the most popular 

 A QP with two variables is trivial to solve 

 Each iteration of SMO picks a pair of (ai,aj) and solve the 
QP with these two variables; repeat until convergence 

 In practice, we can just regard the QP solver as a 
“black-box” without bothering how it works 

Fall 2016 14 Machine Learning 

http://www.numerical.rl.ac.uk/qp/qp.html


a6=1.4 

A Geometrical Interpretation 

Class 1 

Class 2 

a1=0.8 

a2=0 

a3=0 

a4=0 

a5=0 

a7=0 

a8=0.6 

a9=0 

a10=0 
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Dataset with Noise   

 Hard Margin: So far we require 

all data points be classified 
correctly  

    - No training error 

 What if the training set is 
noisy? 

   - Solution 1: use very powerful 

kernels 

denotes +1 

denotes -1 

OVERFITTING! 
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Robustness of Soft vs Hard Margin SVMs 

i

Var1 

Var2 

0 bxw


i 

Var1 

Var2 0 bxw


Soft Margin SVN Hard Margin SVN 
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Non-linearly Separable Problems 

We allow “error” i in classification; it is based on the 
output of the discriminant function wTx+b 

  i approximates the number of misclassified samples 

Class 1 

Class 2 
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Soft Margin Hyperplane 

 If we minimize ii, i can be computed by 

 

 

 

 i are “slack variables” in optimization 

 Note that i=0 if there is no error for xi 

 i is an upper bound of the number of errors 

We want to minimize 
  

 C : tradeoff parameter between error and margin 

The optimization problem becomes 
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The Optimization Problem 

The dual of this new constrained optimization problem is 

 

 

 

 

w is recovered as 

 

This is very similar to the optimization problem in the 
linear separable case, except that there is an upper 
bound C on ai now 

Once again, a QP solver can be used to find ai  

See Bishop: 
7.22-7.32 
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Extension to Non-linear Decision Boundary 

So far, we have only considered large-margin classifier 
with a linear decision boundary 

How to generalize it to become nonlinear? 

Key idea: transform xi to a higher dimensional space to 
“make life easier” 

 Input space: the space the point xi are located 

 Feature space: the space of f(xi) after transformation 

Why transform? 

 Linear operation in the feature space is equivalent to non-
linear operation in input space 

 Classification can become easier with a proper 
transformation. In the XOR problem, for example, adding a 
new feature of x1x2 make the problem linearly separable 
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Transforming the Data 

Computation in the feature space can be costly because it is 
high dimensional 

 The feature space is typically infinite-dimensional! 

The kernel trick comes to rescue 

f(  ) 

f(  ) 

f(  ) 
f(  ) f(  ) 

f(  ) 

f(  ) 
f(  ) 

f(.) 
f(  ) 

f(  ) 

f(  ) 

f(  ) 
f(  ) 

f(  ) 

f(  ) 

f(  ) 
f(  ) 

f(  ) 

Feature space Input space 
Note: feature space is of higher dimension 

than the input space in practice 
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The Kernel Trick 

Recall the SVM optimization problem 

 

 

 

 

The data points only appear as inner product 

As long as we can calculate the inner product in the 
feature space, we do not need the mapping explicitly 

Many common geometric operations (angles, distances) 
can be expressed by inner products 

Define the kernel function K  by 
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An Example for f(.) and K(.,.) 

Suppose f(.) is given as follows 

 

 

An inner product in the feature space is 

 

 

So, if we define the kernel function as follows, there is 
no need to carry out f(.) explicitly 

 

 

This use of kernel function to avoid carrying out f(.) 
explicitly is known as the kernel trick 
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Kernel Functions 

 In practical use of SVM, the user specifies the kernel 
function; the transformation f(.) is not explicitly stated 

Given a kernel function K(xi, xj), the transformation f(.) 
is given by its eigenfunctions (a concept in functional 
analysis) 

 Eigenfunctions can be difficult to construct explicitly 

 This is why people only specify the kernel function without 
worrying about the exact transformation 

Another view: kernel function, being an inner product, is 
really a similarity measure between the objects  
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Examples of Kernel Functions 

Polynomial kernel with degree d 

 

 

Radial basis function kernel with width s 

 

 

 Closely related to radial basis function neural networks 

 The feature space is infinite-dimensional 

Sigmoid with parameter k and q  
 

 

 It does not satisfy the Mercer condition on all k and q 
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Modification Due to Kernel Function 

Change all inner products to kernel functions 

For training, 

Original 

With kernel 
function 
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Modification Due to Kernel Function 

For testing, the new data z is classified as class 1 if f 0, 
and as class 2 if f <0 

Original 

With kernel 
function 
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More on Kernel Functions 

Since the training of SVM only requires the value of K(xi, 
xj), there is no restriction of the form of xi and xj 

 xi can be a sequence or a tree, instead of a feature vector 

K(xi, xj) is just a similarity measure comparing xi and xj 

For a test object z, the discrimiant function essentially is 
a weighted sum of the similarity between z and a pre-
selected set of objects (the support vectors) 
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SVM Examples 
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Example 

Suppose we have 5 1D data points 

 x1=1, x2=2, x3=4, x4=5, x5=6, with 1, 2, 6 as class 1 and 4, 
5 as class 2  y1=1, y2=1, y3=-1, y4=-1, y5=1 

We use the polynomial kernel of degree 2 

 K(x,y) = (xy+1)2 

 C is set to 100 

We first find ai (i=1, …, 5) by 
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Example 

By using a QP solver, we get 

a1=0, a2=2.5, a3=0, a4=7.333, a5=4.833 

 Note that the constraints are indeed satisfied 

 The support vectors are {x2=2, x4=5, x5=6} 

The discriminant function is 

 

 

 

b is recovered by solving f(2)=1 or by f(5)=-1 or by f(6)=1, 
as x2 and x5 lie on the line                                  and x4 
lies on the line                               

All three give b=9 
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Example 

Value of discriminant function 

1 2 4 5 6 

class 2 class 1 class 1 
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Choosing the Kernel Function 

Probably the most tricky part of using SVM. 

The kernel function is important because it creates the 
kernel matrix, which summarizes all the data 

Many principles have been proposed (diffusion kernel, 
Fisher kernel, string kernel, …) 

There is even research to estimate the kernel matrix 
from available information 

 

 In practice, a low degree polynomial kernel or RBF 
kernel with a reasonable width is a good initial try 

Note that SVM with RBF kernel is closely related to RBF 
neural networks, with the centers of the radial basis 
functions automatically chosen for SVM 
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Strengths and Weaknesses of SVM 

Strengths 

 Training is relatively easy  

  No local optimal, unlike in neural networks 

 It scales relatively well to high dimensional data 

 Tradeoff between classifier complexity and error can be 
controlled explicitly 

 Non-traditional data like strings and trees can be used as 
input to SVM, instead of feature vectors 

Weaknesses 

 Need to choose a “good” kernel function. 
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