Spectral Clustering

Outline

- Brief Clustering Review
- Graph Terminology
- Graph Laplacian
- Spectral Clustering Algorithm
- Graph Cut Point of View
- Practical Details

- Brief Clustering Review
- Graph Terminology
- Graph Laplacian
- Spectral Clustering Algorithm
- Graph Cut Point of View
- Practical Details

What is clustering?

- Given:
 - Data set of objects
 - Relationships between these objects

- Goal: Find meaningful groups of objects s.t.
 Objects in the same group are "similar"
 - Objects in different group are "dissimilar"

K-MEANS CLUSTERING

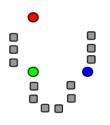
• Description

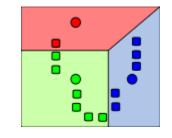
Given a set of observations $(\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_n)$, where each observation is a *d*-dimensional real vector, *k*-means clustering aims to partition the *n* observations into *k* sets $(k \le n) \mathbf{S} = \{S_1, S_2, ..., S_k\}$ so as to minimize the within-cluster sum of squares (WCSS):

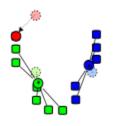
$$\arg_{S} \min \sum_{i=1}^{k} \sum_{x_j \in S_i} \|x_j - u_i\|^2$$

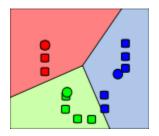
where μ_i is the mean of points in S_i .

• Standard Algorithm









1) k initial "means" (in this case k=3) are randomly selected from the data set.

2) k clusters are created by associating every observation with the nearest mean.

3) The centroid of each of the k clusters becomes the new means.

4) Steps 2 and 3 are repeated until convergence has been reached.

Data Manifold



- Distance based method (like k-means) may not work well
- Must uncover the manifold of data

SPECTRAL CLUSTERING

• Obtain data representation in the low-dimensional space that can be easily clustered

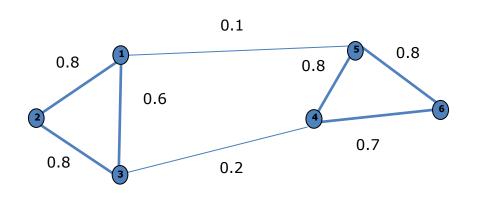
• Cluster points using eigenvectors of matrices derived from the data

- Brief Clustering Review
- Graph Terminology
- Graph Laplacian
- Spectral Clustering Algorithm
- Graph Cut Point of View
- Practical Details

GRAPH NOTATION: Similarity Matrix

G=(V,E):

- Vertex set $V = \{v_1, \dots, v_n\}$
- Weighted similarity matrix $W = (w_{ij}) i, j = 1, ..., n \quad w_{ij} \ge 0$



·)		-	<i>cj</i> —			
	X_{j}	Xz	X3	X_{4}	X_S	Xs
X_{f}	0	0.8	0,6	0	0.1	0
X_2	0.8	0	0,8	0	0	0
X_{j}	0.6	0.8	0	0.2	0	0
X_d	0	0	0.2	0	0.8	0.7
$X_{\mathcal{S}}$	0.1	0	0	0.8	0	0.8
$X_{\mathcal{S}}$	0	0	0	0.7	0.8	0

- Important properties: symmetric matrix
 - Eigenvalues are real
 - Eigenvector could span orthogonal base

GRAPH NOTATION: Similarity Matrix

• *ε*-neighborhood graph

Connect all points whose pairwise distances are smaller than ε

• *k*-nearest neighbor graph

Connect vertex v_i with vertex v_j if v_j is among the k-nearest neighbors of v_i .

• fully connected graph

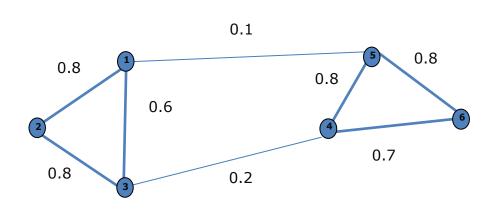
Connect all points with positive similarity with each other

All the above graphs are regularly used in spectral clustering!

GRAPH NOTATION: Degree

G=(V,E):

- Vertex set $V = \{v_1, \dots, v_n\}$
- Degree: total weight of edges incident to vertex i. $d_i = \sum_{j=1}^n w_{ij}$



	Xi	X 2	Xj	X4	X_5	X ₆
Xį	1.5	0	0	0	0	0
x 2	0	1.6	0	0	0	0
X3	0	0	1.6	0	0	0
X4	0	0	0	1,7	0	0
X_5	0	0	0	0	1.7	0
Xó	0	0	0	0	0	1.5

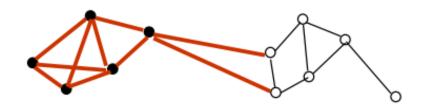
- Important application:
 - Normalize similarity matrix

GRAPH NOTATION: Size

G=(V,E):

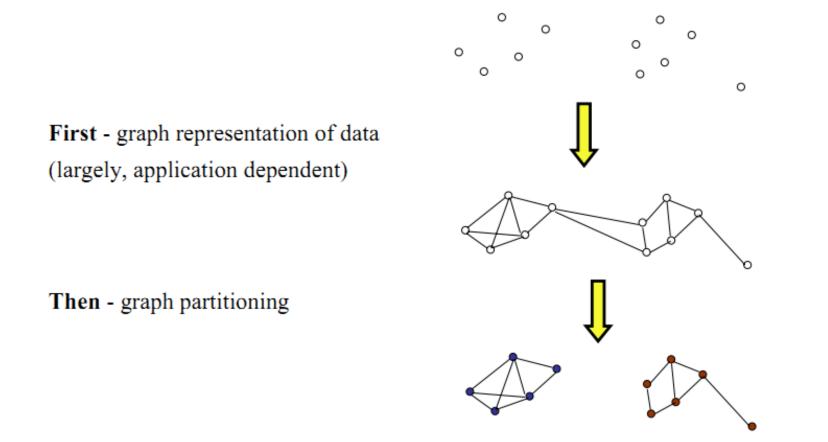
- Indicator Vector $\mathbb{1}_A = (f_1, \dots, f_n)' \in \mathbb{R}^n$ $f_i = a$
- "Size" of a subset $A \subset V$

|A| := the number of vertices in A $vol(A) \coloneqq \sum_{i \in A} d_i$



- Connected A subset *A* of a graph is connected if any two vertices in *A* can be joined by a path such that all intermediate points also lie in *A*.
- Connected Component it is connected and if there are no connections between vertices in *A* and \overline{A} . The nonempty sets A_1, \dots, A_k form a partition of the graph if $A_i \cap A_j = \emptyset$ and $A_1 \cup \dots \cup A_k = V$.

GRAPH NOTATION: Graph Cut



Disconnected graph components

Groups of points(Weakly connections in between components Strongly connections within components)

- Brief Clustering Review
- Graph Terminology
- Graph Laplacian
- Spectral Clustering Algorithm
- Graph Cut Point of View
- Practical Details

Un-normalized Graph Laplacian

0.1 0.8 0.8 0.8 0.6 0.7 0.8 0.2

 X_{f} X_{2} X_{2} X_{d} X_S X_{δ} 1.5 -0.8 -0.6 0 -0.1 X_{f} 0 -0.8 1.6 -0.8 0 0 0 X_{7} -0.8 1.6 -0.2 -0.6 0 0 X_{2} -0.2 1.7 -0.8 0 0 -0.7 X_d -0.1 0 -0.8 1.7 -0.8 0 $X_{\mathcal{T}}$ -0.7 -0.8 1.5 0 0 0 $X_{\mathcal{S}}$

- Important properties:
 - Eigenvalues are non-negative real numbers
 - Eigenvectors are real and orthogonal
 - Eigenvalues and eigenvectors provide an insight into the connectivity of the graph

L = D - W

• Un-normalized Graph Laplacian

$$d_i = \sum_{j=1}^n w_{ij}$$

$$L = D - W$$

Proposition 1 (Properties of L) The matrix L satisfies the following properties:

1. For every $f \in \mathbb{R}^n$ we have

$$f'Lf = \frac{1}{2} \sum_{i,j=1}^{n} w_{ij}^{2} (f_{i} - f_{j})^{2}$$

$$f'Lf = f'Df - f'Wf = \sum_{i=1}^{n} d_i f_i^2 - \sum_{i,j=1}^{n} f_i f_j w_{ij}$$
$$= \frac{1}{2} \left(\sum_{i=1}^{n} d_i f_i^2 - 2 \sum_{i,j=1}^{n} f_i f_j w_{ij} + \sum_{j=1}^{n} d_j f_j^2 \right) = \frac{1}{2} \sum_{i,j=1}^{n} w_{ij} (f_i - f_j)^2$$

• Un-normalized Graph Laplacian

$$L = D - W$$

Proposition 1 (Properties of L) The matrix L satisfies the following properties:

1. For every $f \in \mathbb{R}^n$ we have

$$f'Lf = \frac{1}{2} \sum_{i,j=1}^{n} w_{ij}^{2} (f_{i} - f_{j})^{2}$$

- 2. *L* is symmetric and positive semi-definite.
- 3. The smallest eigenvalue of L is 0, the corresponding eigenvector is the constant one vector $\mathbb{1}$
- 4. *L* has *n* non-negative, real-valued eigenvalues $0 = \lambda_i \le \lambda_2 \le \cdots \le \lambda_n$.

• Un-normalized Graph Laplacian

L = D - W

Proposition 2 (Number of connected components and the spectrum of *L*) Let G be an undirected graph with non-negative weights. The multiplicity (number) k of the eigenvalue 0 of *L* equals the number of connected components A_1, \ldots, A_k in the graph. The eigenspace of eigenvalue 0 is spanned by the indicator vectors $\mathbb{1}_{A_1}, \ldots, \mathbb{1}_{A_k}$ of those components.

• Normalized Graph Laplacian

$$L_{sym} \coloneqq D^{-\frac{1}{2}}LD^{-\frac{1}{2}} = I - D^{-\frac{1}{2}}WD^{-\frac{1}{2}}$$
$$L_{rw} \coloneqq D^{-1}L = I - D^{-1}W$$

We denote the first matrix by L_{sym} as it is a symmetric matrix, and the second one by L_{rw} as it is closely related to a random walk.

Spectral Clustering

- Brief Clustering Review
- Similarity Graph
- Graph Laplacian
- Spectral Clustering Algorithm
- Graph Cut Point of View
- Practical Details

Main trick is to change the representation of the abstract data points x_i to points $y_i \in \Re^k$: unfold the manifold

- 1. Unnormalized Spectral Clustering
- 2. Normalized Spectral Clustering 1
- 3. Normalized Spectral Clustering 2

<u>ALGORIGHM</u>

• Unnormalized Graph Laplacian

L = D - W

Unnormalized spectral clustering

Input: Similarity matrix $S \in \mathbb{R}^{n \times n}$, number k of clusters to construct.

- Construct a similarity graph by one of the ways described in Section 2. Let W be its weighted adjacency matrix.
- Compute the unnormalized Laplacian L.
- Compute the first k eigenvectors u_1, \ldots, u_k of L.
- Let $U \in \mathbb{R}^{n \times k}$ be the matrix containing the vectors u_1, \ldots, u_k as columns.
- For i = 1, ..., n, let $y_i \in \mathbb{R}^k$ be the vector corresponding to the *i*-th row of U.
- Cluster the points $(y_i)_{i=1,...,n}$ in \mathbb{R}^k with the k-means algorithm into clusters C_1,\ldots,C_k .

Output: Clusters A_1, \ldots, A_k with $A_i = \{j | y_j \in C_i\}$.

Normalized Graph Laplacian

 $L_{rw} \coloneqq D^{-1}L = I - D^{-1}W$

Normalized spectral clustering according to Shi and Malik (2000)
Input: Similarity matrix S ∈ ℝ^{n×n}, number k of clusters to construct.
Construct a similarity graph by one of the ways described in Section 2. Let W be its weighted adjacency matrix.
Compute the unnormalized Laplacian L.
Compute the first k generalized eigenvectors u₁,..., u_k of the generalized eigenproblem Lu = λDu.
Let U ∈ ℝ^{n×k} be the matrix containing the vectors u₁,..., u_k as columns.
For i = ..., n, let y_i ∈ ℝ^k be the vector corresponding to the *i*-th row of U.
Cluster the points (y_i)_{i=1,...,n} in ℝ^k with the k-means algorithm into clusters C₁,..., C_k.
Output: Clusters A₁,..., A_k with A_i = {j | y_j ∈ C_i}.

Proposition 3 (Properties of L_{sym} and L_{rw}) The normalized Laplacians satisfy the following properties:

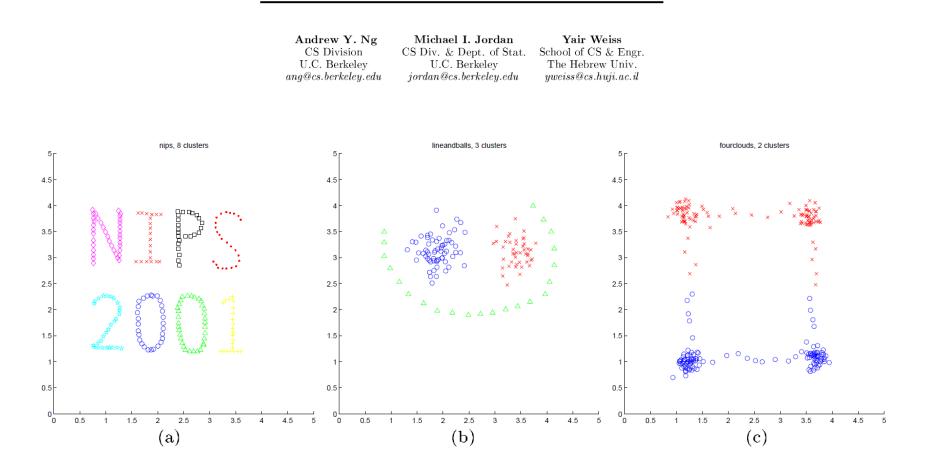
3. λ is an eigenvalue of L_{rw} with eigenvector u if and only if λ and u solve the generalized eigenproblem $Lu = \lambda Du$.

Normalized Graph Laplacian

$$L_{sym} := D^{-\frac{1}{2}}LD^{-\frac{1}{2}} = I - D^{-\frac{1}{2}}WD^{-\frac{1}{2}}$$

Normalized spectral clustering according to Ng, Jordan, and Weiss (2002)
Input: Similarity matrix S∈ R^{n×n}, number k of clusters to construct.
Construct a similarity graph by one of the ways described in Section 2. Let W be its weighted adjacency matrix.
Compute the normalized Laplacian L_{sym}.
Compute the first k eigenvectors u₁,..., u_k of L_{sym}.
Let U ∈ R^{n×k} be the matrix containing the vectors u₁,..., u_k as columns.
Form the matrix T ∈ R^{n×k} from U by normalizing the rows to norm 1, that is set t_{ij} = u_{ij}/(∑_k u_{ik}²)^{1/2}.
For i = 1,...,n, let y_i ∈ R^k be the vector corresponding to the *i*-th row of T.
Cluster the points (y_i)_{i=1,...,n} with the k-means algorithm into clusters C₁,...,C_k.
Dutput: Clusters A₁,...,A_k with A_i = {j | y_i ∈ C_i}.

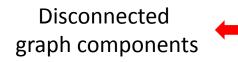
On Spectral Clustering: Analysis and an algorithm



Spectral Clustering

- Brief Clustering Review
- Similarity Graph
- Graph Laplacian
- Spectral Clustering Algorithm
- Graph Cut Point of View
- Practical Details





Groups of points(Weakly connections in between components Strongly connections within components)

G=(V,E):

• For two not necessarily disjoint set $A, B \subset V$, we define

$$W(A,B) \coloneqq \sum_{i \in A, j \in B} w_{ij}$$

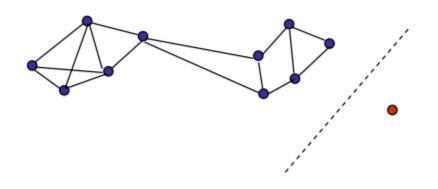
• Minicut: choosing a partition A_1, A_2, \dots, A_K which minimizes

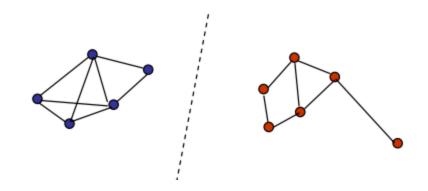
$$cut(A_1, ..., A_k) \coloneqq \frac{1}{2} \sum_{i=1}^k W(A_i, \overline{A_i})$$

Cut between 2 sets $cut(A_1, A_2) = \sum_{n \in A_1} \sum_{m \in A_2} w_{nm}$

Problems!!!

• Sensitive to outliers





What we get

What we want

Solutions

|A| := the number of vertices in A $vol(A) := \sum d_i$

• RatioCut(Hagen and Kahng, 1992)

$$RatioCut(A_1, \dots, A_k) \coloneqq \frac{1}{2} \sum_{i=1}^k \frac{W(A_i, \overline{A_i})}{|A_i|} = \sum_{i=1}^k \frac{cut(A_i, \overline{A_i})}{|A_i|}$$

- Ncut(Shi and Malik, 2000): normalized cut
- Ncut for image segmentation: 20 best papers in 21 centuray in CV

$$Ncut(A_1, \dots, A_k) \coloneqq \frac{1}{2} \sum_{i=1}^k \frac{W(A_i, \overline{A_i})}{vol(A_i)} = \sum_{i=1}^k \frac{cut(A_i, \overline{A_i})}{vol(A_i)}$$

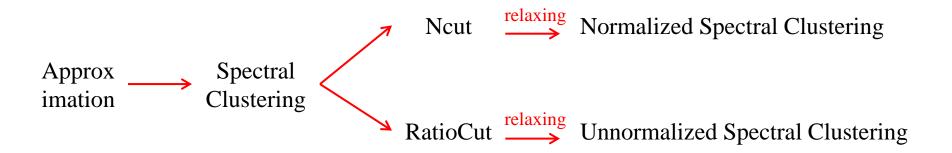
Problem!!!

• NP hard

$RatioCut(A_1, \dots, A_k) \coloneqq \frac{1}{2} \sum_{i=1}^k \frac{W(A_i, \overline{A_i})}{|A_i|} = \sum_{i=1}^k \frac{Cut(A_i, \overline{A_i})}{|A_i|}$ $Ncut(A_1, \dots, A_k) \coloneqq \frac{1}{2} \sum_{i=1}^k \frac{W(A_i, \overline{A_i})}{vol(A_i)} = \sum_{i=1}^k \frac{Cut(A_i, \overline{A_i})}{vol(A_i)}$

Solution!!!

• Approximation



• Approximation RatioCut for k=2

Our goal is to solve the optimization problem:

 $\min_{A \subset V} RatioCut(A, \bar{A})$

Rewrite the problem in a more convenient form:

Given a subset $A \subset V$, we define the vector $f = (f_1, ..., f_n)' \in \mathbb{R}^n$ with entries

$$f_i = \begin{cases} \sqrt{|\bar{A}|/|A|}, & \text{if } v_i \in A\\ -\sqrt{|\bar{A}|/|A|}, & \text{if } v_i \in \bar{A} \end{cases}$$

• Approximation RatioCut for k=2

$$f_{i} = \begin{cases} \sqrt{|\vec{A}|/|A|}, & \text{if } v_{i} \in A \\ -\sqrt{|\vec{A}|/|A|}, & \text{if } v_{i} \in \bar{A} \end{cases}$$

$$RatioCut(A_{1}, \dots, A_{k}) := \frac{1}{2} \sum_{i=1}^{k} \frac{W(A_{i}, \overline{A}_{i})}{|A_{i}|} = \sum_{i=1}^{k} \frac{cut(A_{i}, \overline{A}_{i})}{|A_{i}|}$$

$$cut(A_{1}, \dots, A_{k}) := \frac{1}{2} \sum_{i=1}^{k} W(A_{i}, \overline{A}_{i}) \qquad W(A, B) := \sum_{i \in A, j \in B} w_{ij}$$

$$f'Lf = \frac{1}{2} \sum_{i \in A, j \in \bar{A}} w_{ij} \left(\sqrt{\frac{|\overline{A}|}{|A|}} + \sqrt{\frac{|A|}{|\overline{A}|}} \right)^{2} + \frac{1}{2} \sum_{i \in \overline{A}, j \in A} w_{ij} \left(-\sqrt{\frac{|\overline{A}|}{|A|}} - \sqrt{\frac{|A|}{|\overline{A}|}} \right)^{2}$$

$$= cut(A, \overline{A}) \left(\frac{|\overline{A}|}{|A|} + \frac{|A|}{|\overline{A}|} + 2 \right)$$

$$= cut(A, \overline{A}) \left(\frac{|A| + |\overline{A}|}{|A|} + \frac{|A| + |\overline{A}|}{|\overline{A}|} \right)$$

$$= |V| \cdot \text{RatioCut}(A, \overline{A}).$$

• Approximation RatioCut for k=2

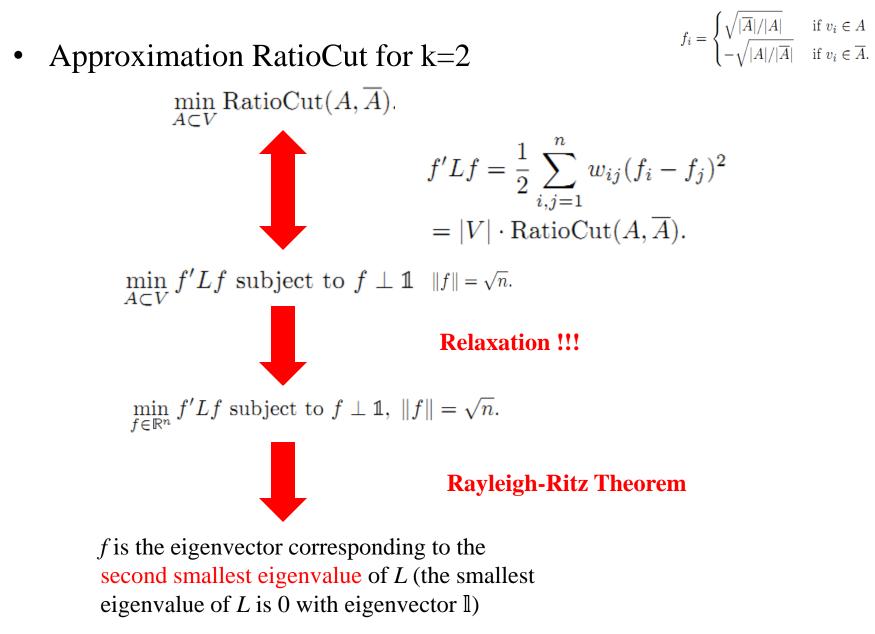
Additionally, we have

$$\sum_{i=1}^n f_i = \sum_{i \in A} \sqrt{\frac{|\overline{A}|}{|A|}} - \sum_{i \in \overline{A}} \sqrt{\frac{|A|}{|\overline{A}|}} = |A| \sqrt{\frac{|\overline{A}|}{|A|}} - |\overline{A}| \sqrt{\frac{|A|}{|\overline{A}|}} = 0.$$

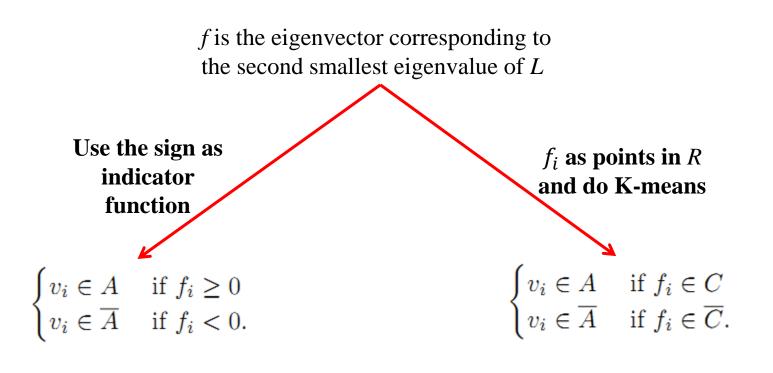
i.e.: f^T $\mathbb{I} = 0$. The vector *f* as defined before is orthogonal to the constant one vector \mathbb{I} .

f satisfies

$$||f||^{2} = \sum_{i=1}^{n} f_{i}^{2} = |A| \frac{|\overline{A}|}{|A|} + |\overline{A}| \frac{|A|}{|\overline{A}|} = |\overline{A}| + |A| = n.$$



• Approximation RatioCut for k=2



Only works for k = 2

More General, works for any k

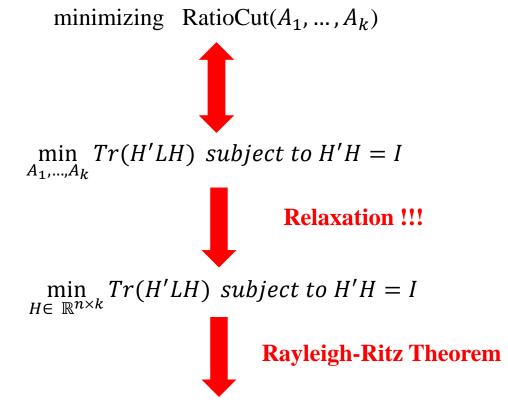
• Approximation RatioCut for arbitrary k

Given a partition of V into k sets A_1, A_2, \dots, A_k , we define k indicator vectors $h_j = (h_{1,j}, \dots, h_{n,j})'$ by $h_{i,j} = \begin{cases} \frac{1}{\sqrt{|A_j|}}, & \text{if } v_i \in A_j \\ \sqrt{|A_j|}, & (i=1,...,n; j=1,...,k) \\ 0, & \text{otherwise} \end{cases}$ $h'_i Lh_i = \frac{cut(A_i, \overline{A}_i)}{|A_i|}$ $H \in \mathbb{R}^{n \times k}$, containing those k Indicator vectors as columns. Columns in *H* are orthonormal to each other, that is H'H = I $h'_{i}Lh_{i} = (H'LH)_{ii}$ $RatioCut(A_1, ..., A_k) = \sum_{i=1}^k h'_i Lh_i = \sum_{i=1}^k (H'LH)_{ii} = Tr(H'LH)$

• Approximation RatioCut for arbitrary k

$$h_{i,j} = \begin{cases} \frac{1}{\sqrt{|A_j|}}, & \text{if } v_i \in A_j \\ \sqrt{|A_j|} & \\ 0, & \text{otherwise} \end{cases}$$

Problem reformulation:



Optimal H is the first k eigenvectors of L as columns.

• Approximation Ncut for k=2

$$Ncut(A_1, \dots, A_k) := \frac{1}{2} \sum_{i=1}^k \frac{W(A_i, \overline{A_i})}{vol(A_i)} = \sum_{i=1}^k \frac{cut(A_i, \overline{A_i})}{vol(A_i)}$$

Our goal is to solve the optimization problem:

$$\min_{A \subset V} Ncut(A, \overline{A})$$

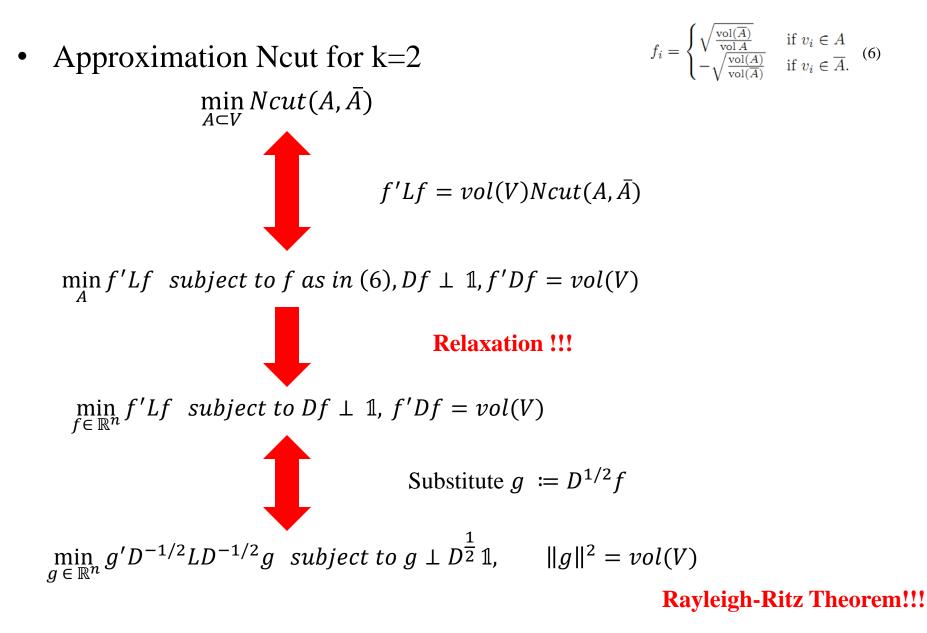
Rewrite the problem in a more convenient form:

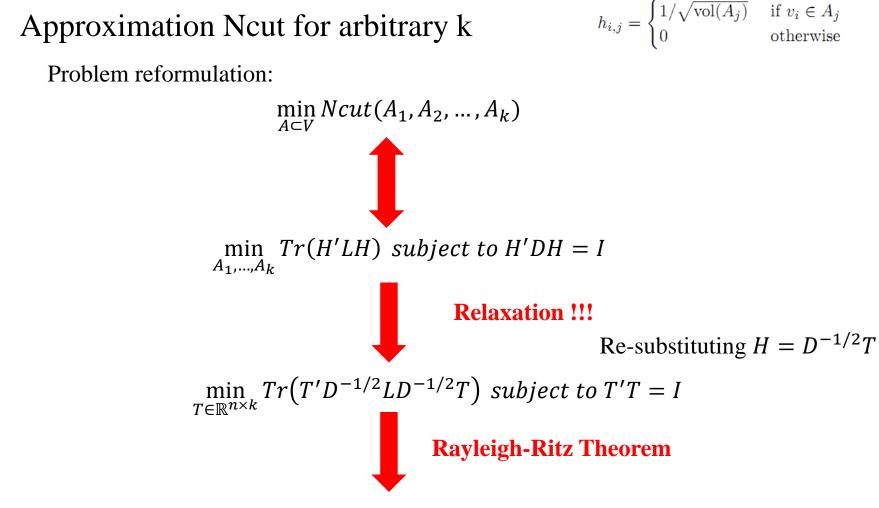
Given a subset $A \subset V$, we define the vector $f = (f_1, ..., f_n)' \in \mathbb{R}^n$ with entries

$$f_{i} = \begin{cases} \sqrt{\frac{vol(\bar{A})}{vol(A)}} & \text{if } v_{i} \in A \\ -\sqrt{\frac{vol(A)}{vol(\bar{A})}} & \text{if } v_{i} \in \bar{A} \end{cases}$$

Similar to above one can check that:

$$(Df)'$$
1 = 0, $f'Df = vol(V)$, and $f'Lf = vol(V)Ncut(A, \overline{A})$





T contains the first k eigenvectors of L_{sym} as columns.

Re-substituting $H = D^{-1/2}T$, solution H contains the first k eigenvectors of L_{rw} .

Spectral Clustering

- Brief Clustering Review
- Similarity Graph
- Graph Laplacian
- Spectral Clustering Algorithm
- Graph Cut Point of View
- Practical Details

• Which graph Laplacian should be used?

There are several arguments which advocate for using normalized rather than unnormalized spectral clustering, and in the normalized case to use the eigenvectors of L_{rw} rather than those of L_{sym}

PRACTICAL DETAILS

• Which graph Laplacian should be used?

Why normalized is better than unnormalized spectral clustering?

Objective1:

1. We want to find a partition such that points in different clusters are dissimilar to each other, that is we want to minimize the between-cluster similarity. In the graph setting, this means to minimize $cut(A, \overline{A})$.

Both RatioCut and Ncut directly implement

Objective2:

2. We want to find a partition such that points in the same cluster are similar to each other, that is we want to maximize the within-cluster similarities W(A, A), and $W(\overline{A}, \overline{A})$.

Only Ncut implements

Normalized spectral clustering implements both clustering objectives mentioned above, while unnormalized spectral clustering only implements the first obejctive.

PRACTICAL DETAILS

• Which graph Laplacian should be used?

Why the eigenvectors of L_{rw} are better than those of L_{sym} ?

1. Eigenvectors of L_{rw} are cluster indicator vectors \mathbb{I}_{A_i} , while the eigenvectors of L_{sym} are additionally multiplied with $D^{1/2}$, which might lead to undesired artifacts.

REFERENCE

- Ulrike Von Luxburg. A Tutorial on Spectral Clustering. Max Planck Institute for Biological Cybernetics Technical Report No. TR-149.
- Marina Meila and Jianbo Shi. A random walks view of spectral segmentation. In Tenth International Workshop on Artificial Intelligence and Statistics (AISTATS), 2001.
- A.Y. Ng, M.I. Jordan, and Y. Weiss. On spectral clustering: Analysis and an algorithm. Advances in Neural Information Processing Systems (NIPS),14, 2001.
- A. Azran and Z. Ghahramani. A new Approach to Data Driven Clustering. In International Conference on Machine Learning (ICML),11, 2006.
- A. Azran and Z. Ghahramani. Spectral Methods for Automatic Multiscale Data Clustering. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2006.
- Arik Azran. A Tutorial on Spectral Clustring. http://videolectures.net/mlcued08_azran_mcl/

SPECTRAL CLUSTERING

Thank you