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What is clustering? 

• Given: 

– Data set of objects 

– Relationships between these objects 

 

• Goal: Find meaningful groups of objects s.t. 

– Objects in the same group are “similar” 

– Objects in different group are “dissimilar” 

 



K-MEANS CLUSTERING 
 

• Description 

Given a set of observations (x1, x2, …, xn), where each observation is a d-dimensional 

real vector, k-means clustering aims to partition the n observations into k sets 

(k ≤ n) S = {S1, S2, …, Sk} so as to minimize the within-cluster sum of squares (WCSS): 

 

 

 

where μi is the mean of points in Si. 

 

 

• Standard Algorithm 

1) k initial "means" 

(in this case k=3) 

are randomly 

selected from the 

data set. 

2) k clusters are created 

by associating every 

observation with the 

nearest mean. 

3) The centroid of 

each of the k 

clusters becomes 

the new means. 

4) Steps 2 and 3 

are repeated until 

convergence has 

been reached. 

arg min
𝑆
  𝑥𝑗 − 𝑢𝑖

2

𝑥𝑗∈𝑆𝑖

𝑘

𝑖=1

 



Data Manifold 

• Distance based method (like k-means) 
may not work well 

• Must uncover the manifold of data 

 



SPECTRAL CLUSTERING 
 

• Obtain data representation in the low-dimensional space that can 

be easily clustered 

 

• Cluster points using eigenvectors of matrices derived from the data 
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GRAPH NOTATION: Similarity Matrix 

G=(V,E) : 

• Vertex set       𝑉 = {𝑣1, … , 𝑣𝑛} 

• Weighted similarity matrix      𝑊 = 𝑤𝑖𝑗  𝑖, 𝑗 = 1,… , 𝑛    𝑤𝑖𝑗 ≥ 0 

 

 

 

 

• Important properties: symmetric matrix 

– Eigenvalues are real 

– Eigenvector could span orthogonal base 
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GRAPH NOTATION: Similarity Matrix 
 

• 𝜀-neighborhood graph 

      Connect all points whose pairwise distances are smaller than 𝜀 

• k-nearest neighbor graph 

      Connect vertex 𝑣𝑖 with vertex 𝑣𝑗 if 𝑣𝑗 is among the k-nearest neighbors of 𝑣𝑖. 

• fully connected graph  

      Connect all points with positive similarity with each other 

  

 All the above graphs are regularly used in spectral clustering! 



GRAPH NOTATION: Degree 

G=(V,E) : 

• Vertex set       𝑉 = {𝑣1, … , 𝑣𝑛} 

• Degree: total weight of edges incident to vertex i.  𝑑𝑖 =  𝑤𝑖𝑗
𝑛
𝑗=1  

 

 

 

 

• Important application: 

– Normalize similarity matrix 
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GRAPH NOTATION: Size 

G=(V,E) : 

• Indicator Vector    𝟙𝐴 = 𝑓1, … , 𝑓𝑛
′ ∈  ℝ𝑛      𝑓𝑖= 𝑎 

• “Size” of a subset  𝐴 ⊂ 𝑉 

 

 

• Connected    A subset A of a graph is connected if any two vertices in A can be joined 

by a path such that all intermediate points also lie in A. 

• Connected Component    it is connected and if there are no connections between 

vertices in A and 𝐴 . The nonempty sets 𝐴1, … , 𝐴𝑘 form a partition of the graph if 

𝐴𝑖 ∩ 𝐴𝑗 =  ∅ and 𝐴1 ∪⋯∪ 𝐴𝑘 = 𝑉. 

  

 

 

|A| := the number of vertices in A 

𝑣𝑜𝑙 𝐴 ≔ 𝑑𝑖
𝑖∈𝐴

 



GRAPH NOTATION: Graph Cut 

Disconnected  

graph components 
Groups of points(Weakly connections in between components 

Strongly connections within components) 
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GRAPH LAPLACIANS 
 

• Un-normalized Graph Laplacian 

L = D – W 

 

 

 

• Important properties: 

– Eigenvalues are non-negative real numbers 

– Eigenvectors are real and orthogonal 

– Eigenvalues and eigenvectors provide an insight into the connectivity of the 

graph 
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GRAPH LAPLACIANS 
 

• Un-normalized Graph Laplacian 

L = D - W 

  

 

Proposition 1 (Properties of L)  The matrix L satisfies the following properties: 

 

1. For every 𝑓 ∈  ℝ𝑛 we have 

𝑓′𝐿𝑓 =  
1

2
 𝑤𝑖𝑗

2 𝑓𝑖 − 𝑓𝑗
2

𝑛

𝑖,𝑗=1

 

𝑓′𝐿𝑓 = 𝑓′𝐷𝑓 − 𝑓′𝑊𝑓 = 𝑑𝑖𝑓𝑖
2

𝑛

𝑖=1

−  𝑓𝑖𝑓𝑗𝑤𝑖𝑗

𝑛

𝑖,𝑗=1

 

= 
1

2
 𝑑𝑖𝑓𝑖

2

𝑛

𝑖=1

− 2  𝑓𝑖𝑓𝑗𝑤𝑖𝑗

𝑛

𝑖,𝑗=1

+ 𝑑𝑗𝑓𝑗
2

𝑛

𝑗=1

=
1

2
 𝑤𝑖𝑗 𝑓𝑖 − 𝑓𝑗

2
𝑛

𝑖,𝑗=1

 

 

𝑑𝑖 = 𝑤𝑖𝑗

𝑛

𝑗=1

 



GRAPH LAPLACIANS 
 

• Un-normalized Graph Laplacian 

L = D - W 

  

 

Proposition 1 (Properties of L)  The matrix L satisfies the following properties: 

1. For every 𝑓 ∈  ℝ𝑛 we have 

 

 

2. L is symmetric and positive semi-definite. 

3. The smallest eigenvalue of L is 0, the corresponding eigenvector is the constant 

one vector 𝟙 

4.  L has n non-negative, real-valued eigenvalues 0 = 𝜆𝑖 ≤ 𝜆2 ≤ ⋯ ≤ 𝜆𝑛. 

𝑓′𝐿𝑓 =  
1

2
 𝑤𝑖𝑗

2 𝑓𝑖 − 𝑓𝑗
2

𝑛

𝑖,𝑗=1

 



GRAPH LAPLACIANS 
 

• Un-normalized Graph Laplacian 

L = D - W 

  

 

Proposition 2  (Number of connected components and the spectrum of L) Let G be 

an undirected graph with non-negative weights. The multiplicity (number) k of the 

eigenvalue 0 of L equals the number of connected components 𝐴1, … , 𝐴𝑘 in the graph. 

The eigenspace of eigenvalue 0 is spanned by the indicator vectors 𝟙𝐴1 , … , 𝟙𝐴𝑘 of those 

components. 



GRAPH LAPLACIANS 
 

• Normalized Graph Laplacian 

  

 

We denote the first matrix by 𝐿𝑠𝑦𝑚 as it is a symmetric matrix, and 

the second one by 𝐿𝑟𝑤 as it is closely related to a random walk. 

𝐿𝑠𝑦𝑚  ≔ 𝐷
−
1
2𝐿𝐷−

1
2 = 𝐼 − 𝐷−

1
2𝑊𝐷−

1
2 

𝐿𝑟𝑤  ≔ 𝐷
−1𝐿 = 𝐼 − 𝐷−1𝑊 
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Spectral Clustering 



ALGORIGHM 

Main trick is to change the representation of the abstract data points 

𝑥𝑖 to points 𝑦𝑖 ∈ ℜ
𝑘: unfold the manifold 

 

1. Unnormalized Spectral Clustering 

2. Normalized Spectral Clustering 1 

3. Normalized Spectral Clustering 2  

  

 



ALGORIGHM 
 

• Unnormalized Graph Laplacian 

  

 

L = D - W 

 



ALGORIGHM 

• Normalized Graph Laplacian 

  

 

𝐿𝑟𝑤  ≔ 𝐷
−1𝐿 = 𝐼 − 𝐷−1𝑊 



ALGORIGHM 

• Normalized Graph Laplacian 

  

 

𝐿𝑠𝑦𝑚  ≔ 𝐷
−
1
2𝐿𝐷−

1
2 = 𝐼 − 𝐷−

1
2𝑊𝐷−

1
2 



ALGORIGHM 
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Spectral Clustering 



GRAPH CUT 

Disconnected  
graph components 

Groups of points(Weakly connections in between components 

Strongly connections within components) 



GRAPH CUT 

G=(V,E) : 

• For two not necessarily disjoint set 𝐴, 𝐵 ⊂ 𝑉, we define  

 

• Minicut: choosing a partition 𝐴1, 𝐴2, … , 𝐴𝐾 which minimizes 

 

 

 

𝑊 𝐴, 𝐵 ≔  𝑤𝑖𝑗
𝑖∈𝐴,𝑗∈𝐵

 

𝑐𝑢𝑡 𝐴1, … , 𝐴𝑘 ≔
1

2
  𝑊(𝐴𝑖 , 𝐴𝑖)

𝑘

𝑖=1

 

Cut between 2 sets        𝑐𝑢𝑡 𝐴1, 𝐴2 =   𝑤𝑛𝑚𝑚∈𝐴2𝑛∈𝐴1
 



GRAPH CUT 

Problems!!! 

• Sensitive to outliers 

 

 

What we get What we want 



GRAPH CUT 

Solutions 

• RatioCut(Hagen and Kahng, 1992) 

 

 

• Ncut(Shi and Malik, 2000): normalized cut 

• Ncut for image segmentation: 20 best papers in 21 centuray in CV 

 

 

𝑅𝑎𝑡𝑖𝑜𝐶𝑢𝑡 𝐴1, … , 𝐴𝑘  ≔
1

2
  
𝑊 𝐴𝑖 , 𝐴𝑖
𝐴𝑖

𝑘

𝑖=1

= 
𝑐𝑢𝑡 𝐴𝑖 , 𝐴𝑖
|𝐴𝑖|

𝑘

𝑖=1

  

𝑁𝑐𝑢𝑡 𝐴1, … , 𝐴𝑘  ≔
1

2
  
𝑊 𝐴𝑖 , 𝐴𝑖
𝑣𝑜𝑙(𝐴𝑖)

𝑘

𝑖=1

= 
𝑐𝑢𝑡 𝐴𝑖 , 𝐴𝑖
𝑣𝑜𝑙(𝐴𝑖)

𝑘

𝑖=1

  

|A| := the number of vertices in A 

𝑣𝑜𝑙 𝐴 ≔ 𝑑𝑖
𝑖∈𝐴

 



GRAPH CUT 

Problem!!! 

• NP hard 

 

 

 

Solution!!! 

• Approximation 

 

 

 

 

Approx

imation 

Spectral 

Clustering 

Ncut 

RatioCut 

Normalized Spectral Clustering 

Unnormalized Spectral Clustering 

𝑅𝑎𝑡𝑖𝑜𝐶𝑢𝑡 𝐴1, … , 𝐴𝑘  ≔
1

2
  
𝑊 𝐴𝑖 , 𝐴𝑖
𝐴𝑖

𝑘

𝑖=1

= 
𝑐𝑢𝑡 𝐴𝑖 , 𝐴𝑖
|𝐴𝑖|

𝑘

𝑖=1

  

𝑁𝑐𝑢𝑡 𝐴1, … , 𝐴𝑘  ≔
1

2
  
𝑊 𝐴𝑖 , 𝐴𝑖
𝑣𝑜𝑙(𝐴𝑖)

𝑘

𝑖=1

= 
𝑐𝑢𝑡 𝐴𝑖 , 𝐴𝑖
𝑣𝑜𝑙(𝐴𝑖)

𝑘

𝑖=1

  

relaxing 

relaxing 



GRAPH CUT 

• Approximation RatioCut for k=2 

Our goal is to solve the optimization problem: 

Rewrite the problem in a more convenient form: 

Given a subset 𝐴 ⊂ 𝑉, we define the vector                                        with entries 

Magic happens!!! 

𝑓 = 𝑓1, … , 𝑓𝑛
′ ∈  ℝ𝑛 

𝑓𝑖 =
𝐴 /|𝐴|,  if 𝑣𝑖 ∈ 𝐴

 − 𝐴 /|𝐴|,  if 𝑣𝑖 ∈ 𝐴 
 

min
𝐴⊂𝑉
𝑅𝑎𝑡𝑖𝑜𝐶𝑢𝑡(𝐴, 𝐴 ) 



GRAPH CUT 

• Approximation RatioCut for k=2 
𝑓𝑖 =

𝐴 /|𝐴|,  if 𝑣𝑖 ∈ 𝐴

 − 𝐴 /|𝐴|,  if 𝑣𝑖 ∈ 𝐴 
 

𝑅𝑎𝑡𝑖𝑜𝐶𝑢𝑡 𝐴1, … , 𝐴𝑘  ≔
1

2
  
𝑊 𝐴𝑖 , 𝐴𝑖
𝐴𝑖

𝑘

𝑖=1

= 
𝑐𝑢𝑡 𝐴𝑖 , 𝐴𝑖
|𝐴𝑖|

𝑘

𝑖=1

  

𝑊 𝐴,𝐵 ≔  𝑤𝑖𝑗
𝑖∈𝐴,𝑗∈𝐵

 𝑐𝑢𝑡 𝐴1, … , 𝐴𝑘 ≔
1

2
  𝑊(𝐴𝑖 , 𝐴𝑖)

𝑘

𝑖=1

 



GRAPH CUT 

• Approximation RatioCut for k=2 

Additionally, we have 

i.e.: f^T 𝕝 =0. The vector f as defined before is orthogonal to the constant one vector 𝕝 . 

f satisfies 



GRAPH CUT 

• Approximation RatioCut for k=2 

Relaxation !!! 

f is the eigenvector corresponding to the 

second smallest eigenvalue of L (the smallest 

eigenvalue of L is 0 with eigenvector 𝕝) 

Rayleigh-Ritz Theorem 



GRAPH CUT 

• Approximation RatioCut for k=2 

f is the eigenvector corresponding to 

the second smallest eigenvalue of L 

Only works for k = 2 More General, works for any k 

Use the sign as 

indicator 

function 

𝑓𝑖  as points in R 

and do K-means 



GRAPH CUT 
• Approximation RatioCut for arbitrary k 

Given a partition of V into k sets 𝐴1, 𝐴2, … , 𝐴𝑘, we define k indicator vectors 

ℎ𝑗 = (ℎ1,𝑗 , … , ℎ𝑛,𝑗)′ by    

𝐻 ∈  ℝ𝑛×𝑘, containing those k  

Indicator vectors as columns. 

Columns in H are orthonormal  

to each other, that is 𝐻′𝐻 = 𝐼 

ℎ𝑖,𝑗 =

1

𝐴𝑗

,  if 𝑣𝑖 ∈ 𝐴𝑗

 0,        otherwise

 (i=1,…,n; j=1,…,k) 

ℎ𝑖
′𝐿ℎ𝑖 =

𝑐𝑢𝑡 𝐴𝑖 , 𝐴𝑖
|𝐴𝑖|

 

ℎ𝑖
′𝐿ℎ𝑖 = 𝐻

′𝐿𝐻 𝑖𝑖 

𝑅𝑎𝑡𝑖𝑜𝐶𝑢𝑡 𝐴1, … , 𝐴𝑘 = ℎ𝑖
′𝐿ℎ𝑖 = 𝐻

′𝐿𝐻 𝑖𝑖 = 𝑇𝑟(𝐻
′𝐿𝐻)

𝑘

𝑖=1

𝑘

𝑖=1

 



GRAPH CUT 

• Approximation RatioCut for arbitrary k 

Problem reformulation: 

Relaxation !!! 

Optimal H is the first k eigenvectors of  L as 

columns. 

Rayleigh-Ritz Theorem 

minimizing   RatioCut(𝐴1, … , 𝐴𝑘) 

min
𝐴1,…,𝐴𝑘

𝑇𝑟(𝐻′𝐿𝐻)  𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝐻′𝐻 = 𝐼 

min
𝐻∈  ℝ𝑛×𝑘

𝑇𝑟(𝐻′𝐿𝐻)  𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝐻′𝐻 = 𝐼 

ℎ𝑖,𝑗 =

1

𝐴𝑗

,  if 𝑣𝑖 ∈ 𝐴𝑗

 0,        otherwise

 



GRAPH CUT 

• Approximation Ncut for k=2 

Our goal is to solve the optimization problem: 

Rewrite the problem in a more convenient form: 

Given a subset 𝐴 ⊂ 𝑉, we define the vector                                          with entries 

min
𝐴⊂𝑉
𝑁𝑐𝑢𝑡(𝐴, 𝐴 ) 

𝑓 = 𝑓1, … , 𝑓𝑛
′ ∈  ℝ𝑛 

𝑁𝑐𝑢𝑡 𝐴1, … , 𝐴𝑘  ≔
1

2
  
𝑊 𝐴𝑖 , 𝐴𝑖
𝑣𝑜𝑙(𝐴𝑖)

𝑘

𝑖=1

= 
𝑐𝑢𝑡 𝐴𝑖 , 𝐴𝑖
𝑣𝑜𝑙(𝐴𝑖)

𝑘

𝑖=1

  

𝑓𝑖 = 

𝑣𝑜𝑙 𝐴 

𝑣𝑜𝑙 𝐴
             if 𝑣𝑖 ∈ 𝐴

−
𝑣𝑜𝑙 𝐴

𝑣𝑜𝑙 𝐴 
           if 𝑣𝑖 ∈  𝐴 

 

𝐷𝑓 ′𝟙 = 0, 𝑓′𝐷𝑓 = 𝑣𝑜𝑙 𝑉 , and 𝑓′𝐿𝑓 = 𝑣𝑜𝑙 𝑉 𝑁𝑐𝑢𝑡(𝐴, 𝐴 ) 

Similar to above one can check that: 



GRAPH CUT 

• Approximation Ncut for k=2 

Relaxation !!! 

min
𝐴⊂𝑉
𝑁𝑐𝑢𝑡(𝐴, 𝐴 ) 

(6) 

Rayleigh-Ritz Theorem!!! 

𝑓′𝐿𝑓 = 𝑣𝑜𝑙 𝑉 𝑁𝑐𝑢𝑡(𝐴, 𝐴 ) 

min
𝐴
𝑓′𝐿𝑓   𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑓 𝑎𝑠 𝑖𝑛 6 , 𝐷𝑓 ⊥  𝟙, 𝑓′𝐷𝑓 = 𝑣𝑜𝑙(𝑉) 

min
𝑓∈ ℝ𝑛
𝑓′𝐿𝑓   𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝐷𝑓 ⊥  𝟙,  𝑓′𝐷𝑓 = 𝑣𝑜𝑙(𝑉) 

min
𝑔 ∈ ℝ𝑛
𝑔′𝐷−1/2𝐿𝐷−1/2𝑔   𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑔 ⊥ 𝐷

1
2 𝟙, 𝑔 2 = 𝑣𝑜𝑙(𝑉) 

Substitute 𝑔 ≔ 𝐷1/2𝑓 



GRAPH CUT 

• Approximation Ncut for arbitrary k 

Problem reformulation: 

Relaxation !!! 

T contains the first k eigenvectors of 𝐿𝑠𝑦𝑚 as columns.  

Rayleigh-Ritz Theorem 

min
𝐴⊂𝑉
𝑁𝑐𝑢𝑡(𝐴1, 𝐴2, … , 𝐴𝑘) 

Re-substituting 𝐻 =  𝐷−1/2𝑇, solution H contains the first k eigenvectors of 𝐿𝑟𝑤.  

min
𝐴1,…,𝐴𝑘

𝑇𝑟 𝐻′𝐿𝐻  𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝐻′𝐷𝐻 = 𝐼 

min
𝑇∈ℝ𝑛×𝑘

𝑇𝑟 𝑇′𝐷−1/2𝐿𝐷−1/2𝑇  𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑇′𝑇 = 𝐼 

Re-substituting 𝐻 = 𝐷−1/2𝑇 
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Spectral Clustering 



PRACTICAL DETAILS 

• Which graph Laplacian should be used? 

There are several arguments which advocate for using normalized rather 

than unnormalized spectral clustering, and in the normalized case to use 

the eigenvectors of 𝐿𝑟𝑤 rather than those of 𝐿𝑠𝑦𝑚 



PRACTICAL DETAILS 

• Which graph Laplacian should be used? 

Why normalized is better than unnormalized spectral clustering? 

Objective1: 

Both RatioCut and Ncut directly implement 

Only Ncut implements 

Normalized spectral clustering implements both clustering objectives mentioned above, 

while unnormalized spectral clustering only implements the first obejctive. 

Objective2: 

1. We want to find a partition such that points in different clusters are dissimilar to 

each other, that is we want to minimize the between-cluster similarity. In the graph 

setting, this means to minimize 𝑐𝑢𝑡(𝐴, 𝐴 ). 

2. We want to find a partition such that points in the same cluster are similar to 

each other, that is we want to maximize the within-cluster similarities 𝑊(𝐴, 𝐴), 
and 𝑊(𝐴 , 𝐴 ). 



PRACTICAL DETAILS 

• Which graph Laplacian should be used? 

Why the eigenvectors of 𝐿𝑟𝑤 are better than those of 𝐿𝑠𝑦𝑚? 

1.   Eigenvectors of 𝐿𝑟𝑤 are cluster indicator vectors 𝕀𝐴𝑖, while 

the eigenvectors of 𝐿𝑠𝑦𝑚 are additionally multiplied with 𝐷1/2, 

which might lead to undesired artifacts. 
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SPECTRAL CLUSTERING 
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