Generalized Additive Models

Author: Trevor Hastie and Robert Tibshirani

Presenter: Taoran Sheng

 The Linear Regression Model and its Smooth Extension
 The Generalized Linear Models
 Smooth Extensions of Generalized Linear Models and the Training Method for the Generalized Additive Models

Linear Regression

1. The Linear Regression Model and its Smooth Extension

Response Variable: Y
 A set of predictor random variables X1, X2, ..., Xp
 A set of n independent realizations

 (y1, x11, ..., x1p), ..., (yn, xn1, ..., xnp)

Regression Procedure:

$$E(Y | X_1, X_2, \dots, X_p)$$

= $\beta_0 + \beta_1 X_1 + \dots + \beta_p X_p$

Given a sample, estimate coefficients

Smooth Extension(Additive Model)

The additive Model:

$$E(Y | X_1, X_2, \dots, X_p) = s_0 + \sum_{j=1}^p s_j(X_j)_j$$

Sj(.) are smooth functions

Estimate coefficients

• Our Model:

$$E(Y \mid X) = s(X)$$

- Any reasonable estimate of E(Y | X = x)
- Local average estimates (Ni: neighborhood of xi)

 $\hat{s}(x_i) = \operatorname{Ave}_{j \in N_i} \{y_j\}$

$$N_{i} = \left\{ \max\left(i - \frac{[wn] - 1}{2}, 1\right), \dots, i - 1, i, \\ i + 1, \dots, \min\left(i + \frac{[wn] - 1}{2}, n\right) \right\}$$

Scatterplot Smoothers

Any reasonable estimate of E(Y | X = x)

 $\hat{s}(x_i) = \operatorname{Ave}_{j \in N_i} \{y_j\}$

- Local average estimates (Ni: neighborhood of xi)
 - 1) Running mean ---> arithmetic mean
 - 2) Running lines smoother

$$\hat{\beta}_{0i}=\bar{y}_i-\hat{\beta}_{1i}\bar{x}_i$$

$$\hat{s}(x_{i}) = \hat{\beta}_{0i} + \hat{\beta}_{1i}x_{i}$$

$$\hat{\beta}_{1i} = \frac{\sum_{j \in N_{i}} (x_{j} - \bar{x}_{i})y_{j}}{\sum_{j \in N_{i}} (x_{j} - \bar{x}_{i})^{2}}$$

where:
$$\bar{x}_i = (1/n) \sum_{j \in N_i} x_j$$
 $\bar{y}_i = (1/n) \sum_{j \in N_i} y_j$

Span Selection(Window size)

Consider the Extreme Choices

- W = 1/n Estimate of S(xi) is yi high Variance, not smooth
- W = 2 Estimate of S(xi) is global least squares regression too smooth, might be biased
 - Window Size(Span) is chosen between 1/n and 2
 - ----> Bias-Variance Tradeoff
 - Minimize Cross-Validation Sum of Squares

$$\text{CVSS}(w) = (1/n) \sum_{1}^{n} (y_i - \hat{s}_w^{-i}(x_i))^2.$$

 The Linear Regression Model and its Smooth Extension
 The Generalized Linear Models
 Smooth Extensions of Generalized Linear Models and the Training Method for the Generalized Additive Models

- General linear model
 Y = b0 + b1*X1 + ... + bm*Xm
- Generalized linear model
 Y = g(b0 + b1*X1 + ... + bm*Xm)
- Formally, the inverse function of g(...), gi(...) is called the link function gi(muY) = b0 + b1*X1 + ... + bm*Xm muY: expected value of Y

```
gi(muY) = b0 + b1*X1 + ... + bm*Xm
muY: expected value of Y
```

Algorithm for estimate of b=(b0, b1, ..., bm):

- Adjusted dependent variable regression Given:
 Etah = b0 + b1*X1 + ... + bm*Xm (current estimate of linear predictor) muY: corresponding fitted value
- Adjusted dependent variable:

$$z = \hat{\eta} + (y - \hat{\mu}) \left(\frac{d\eta}{d\mu} \right)$$

Adjusted dependent variable:

$$z = \hat{\eta} + (y - \hat{\mu}) \left(\frac{d\eta}{d\mu} \right)$$

• Define weights W:

$$(W)^{-1} = \left(\frac{d\eta}{d\mu}\right)^2 V,$$

V: the variance of Y at mu = muh

Adjusted dependent variable regression algorithm:

$$z = \hat{\eta} + (y - \hat{\mu}) \left(\frac{d\eta}{d\mu} \right)$$

- 1) Algorithm regressiong z on x1, ..., xp with weights W,
- 2) Obtain an estimate coefficient b,
- 3) Using estimate b to computer the estimate of mu and eta,
- 4) A new z is computed
- 5) Repeat 1) to 4) until the change in deviance is small enough:

$$\operatorname{dev}(y,\,\hat{\mu}) = 2[l(y) - l(\hat{\mu})]$$

 The Linear Regression Model and its Smooth Extension
 The Generalized Linear Models
 Smooth Extensions of Generalized Linear Models and the Training Method for the Generalized Additive Models

Smooth Extension of GLM

• S1(.), ..., Sp(.) are smooth functions:

$$\eta = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p$$

$$\eta = s_0 + \sum_{1}^{p} s_j(X_j)$$
Generalized Additive Model:
$$g(\mu) = \eta$$

Estimation – Backfitting Algorithm

Suppose
$$Y = s_0 + \sum_{j=1}^p s_j(X_j) + \varepsilon$$
 is correct

Define the partial residual:

$$R_j = Y - s_0 - \sum_{k \neq j} s_k(X_k)$$

Then:

$$E(R_j \mid X_j) = s_j(X_j)$$

Minimize:

$$E\left(Y-s_0-\sum_{j=1}^p s_j^m(X_j)\right)^2$$

Estimation – Backfitting Algorithm

Backfitting Algorithm Initialization: $s_0 = E(Y), \quad s_1^1(\cdot) \equiv s_2^1(\cdot) \equiv \cdots$ $\equiv s_p^1(\cdot) \equiv 0, \quad m = 0.$ Iterate: m = m + 1for j = 1 to p do: $R_j = Y - s_0 - \sum_{k=1}^{j-1} s_k^m(X_k)$ $-\sum_{k=1}^{p}s_{k}^{n-1}(X_{k})$ $s_i^m(X_j) = E(R_j \mid X_j).$ Until: RSS = $E\left(Y - s_0 - \sum_{j=1}^p s_j^m(X_j)\right)^2$ fails to decrease.

General Local Scoring Algorithm

General Local Scoring Algorithm Initialization: $s_0 = g(E(y)), \quad s_1^0(\cdot) \equiv s_2^0(\cdot) \equiv \cdots$ $\equiv s_p^0(\cdot) \equiv 0, \quad m = 0.$

Iterate: m = m + 1

1. Form the adjusted dependent variable

$$Z = \eta^{m-1} + (Y - \mu^{m-1})(\partial \eta / \partial \mu^{m-1}),$$

where

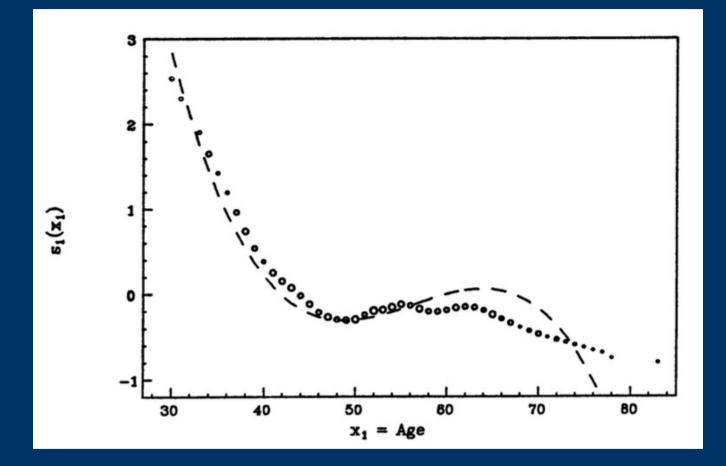
$$\eta^{m-1} = s_0 + \sum_{j=1}^p s_j^{m-1}(X_j)$$
 and

$$\eta^{m-1}=g(\mu^{m-1}).$$

- 2. Form the weights $W = (\partial \mu / \partial \eta^{m-1})^2 V^{-1}$.
- 3. Fit an additive model to Z using the backfitting algorithm with weights W, we get estimated functions $s_j^m(\cdot)$ and model η^m .

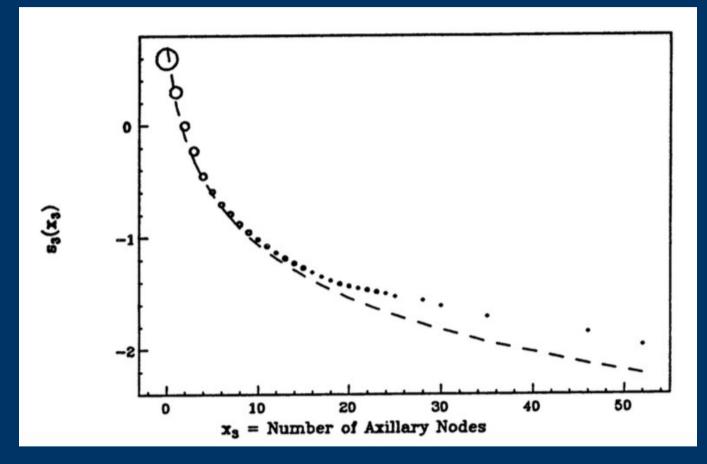
Until: $E \operatorname{dev}(Y, \mu^m)$ fails to decrease.

Experiment



Breast Cancer Dataset

Experiment



Breast Cancer Dataset

Thanks!