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Abstract—Array-based comparative genomic hybridization
(array CGH) is a highly efficient technique, allowing the simulta-
neous measurement of genomic DNA copy number at hundreds
or thousands of loci and the reliable detection of local one-copy-
level variations. Characterization of these DNA copy number
changes is important for both the basic understanding of cancer
and its diagnosis. In order to develop effective methods to identify
aberration regions from array CGH data, many recent research
works focus on both smoothing-based and segmentation-based
data processing. In this paper, we propose to use the dual-tree
complex wavelet transform to smooth the array CGH data. We
demonstrate the effectiveness of our approach through theoretic
and experimental exploration of a set of array CGH data, includ-
ing both synthetic data and real data. The comparison results
show that our method outperforms the previous approaches.

I. I NTRODUCTION

Gene amplifications or deletions frequently contribute to
tumorigenesis. When part or all of a chromosome is amplified
or deleted, a change in DNA copy number results. Charac-
terization of these DNA copy number changes is important
for both the basic understanding of cancer and its diagnosis.
Cancer researchers currently use array comparative genomic
hybridization (array CGH) to identify sets of copy number
changes associated with the particular cancer or its congenital
and developmental disorders. In array CGH, because the
clones contain sequences information directly connectingwith
the genome database, array CGH offers rapid genome-wide
analysis at high resolution and the information it providesis
directly linked to the physical and genetic maps of the human
genome. Bacterial Artificial Chromosomes (BAC) based CGH
arrays were amongst the first genomic arrays to be introduced
[1] and are routinely used to detect single copy changes in
the genome, owing to their high resolution in the order of
1 Mb [1], [2]. More recently Oligonucleotide aCGH [3], [4]
was developed to allow flexibility in probe design, greater
coverage, and much higher resolution in the order of 35-100
Kb [5].

In order to develop effective methods to identify aberration
regions from array CGH data, the previous research works

focus on both smoothing-based [6], [7], [8], [9], [5] and
segmentation-based data processing [10], [11], [12], [13], [14].
The array CGH is very noisy. For example, in cDNA array
CGH data, the signal to noise ratio is often approximately
1 (0 dB) [15]. Research in this area has been active in
the last few years. Beheshtiet al. proposed to use the ro-
bust locally weighted regression and smoothing scatterplots
(lowess) method in [6]. Eilers and Menezes [7] perform a
quantile smoothing method based on the minimization of the
sum of absolute errors to create sharper boundaries between
segments. Hsuet al. [8] investigated the usage of maximal
overlap discrete wavelet transform (MODWT) in the analysis
of array CGH data. They have shown translation invariant
wavelets are promising methods for array CGH data smoothing
and also observed that the denoising techniques may miss
singleton clones that have small changes but somehow are
consistent across tumors. More recently Y. Wang and S.
Wang [5] extended the stationary wavelet (SWT) denoising
and regression for nonequispaced data, because the physical
distance between adjacent probes along a chromosome are
not uniform, even vary drastically. However, if a signal is
decomposed into N levels using SWT or MODWT, the re-
dundant ratio is(N + 1) : 1. It makes denoising algorithm
more computationally intensive with worse denoising results.

In this paper, we propose to use the dual-tree complex
wavelet transform (DTCWT) to denoise the array CGH data.
Because in DTCWT all complex subbands are shift invariant,
each complex subband provides a shiftable description of
signal in a specific scale. Its representation has a redundant
ratio of 2 : 1. We demonstrate the effectiveness of our
approach through theoretic and experimental exploration of a
set of array CGH data, including both synthetic data and real
array CGH data. The comparison results show that our method
outperforms the previous approaches (SWT or MODWT)
about19% − 34.4%.



II. WAVELET METHODS

In this section, we provide a brief review of wavelet
transforms which were used for array CGH data smoothing
and is used by this paper.

A. Discrete Wavelet Transform

The discrete wavelet transform (DWT), based on the octave
band tree structure, decomposes an input signal using a set
of lowpass and highpass fiters followed by a decimator. Since
the number of samples contained by each subband at levelN
is the number of input samples divided by2N , the DWT is
not a redundant representation. The total number of wavelet
coefficients over all subbands is equal to the length of the
input signal. The DWT has been widely and successfully
used in several signal processing applications such as de-
noising, estimation, and compression. However, one of the
disadvantages of the DWT is that it is shift-variant. The DWT
is highly dependent on its relative position with respect to
the downsampling lattice. In signal denoising, the DWT is
known to create artifacts around the discontinuities of theinput
signal [16]. These artifacts degrade the performance of the
threshold-based denoising algorithm.

B. Stationary Wavelet Transform

The SWT [16] is similar to the DWT except that it does
not employ a decimator after filtering, and the filters are
upsampled at each level of decomposition. This is also known
as the redundant or translation invariant DWT. The absence of
a decimator leads to a redundant signal representation. Each
subband contains the same number of samples as the input.
So for a decomposition ofN levels there is a redundant ratio
of (N + 1) : 1. However, the translation invariant property of
the SWT makes it preferable for the usage in various signal
processing applications such as denosing and classification
because it relies heavily on spatial information. It has been
shown that many of the artifacts could be suppressed by a
redundant representation of the signal [16]. Each level’s filters
are upsampled versions of the previous ones.

C. Dual-tree Complex Wavelet Transform

A dual-tree structure that produces a dyadic complex DWT
is proposed by Kingsbury [17], [18]. Since array CGH data
are one dimensional signals, in this paper we only talk about
the 1-D case of dual-tree CWT. In the case of 1-D signals,
the structure consists of two binary trees of multiresolution
decomposition of the same signal. It is therefore an over-
complete representation with a redundant ratio of2 : 1. In
the two trees, the filters are designed in such a way that
the aliasing in one branch in the first tree is approximately
canceled by the corresponding branch in the second tree. The
relation between the wavelet filters of the two trees yields
shift-invariant property [17].

The analysis FB for the DTCWT, shown in Fig. 1(a), is
an iterative multiscale FB. Each resolution level consistsof
a pair of two-channel FBs. The purpose of the dual-tree
CWT is to provide a shiftable and scalable multiresolution
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Fig. 1. A 3 level dual-tree CWT. (a) Analysis FB, (b) Synthesis FB .

decomposition. According to Fig. 1(a), the input signal is
passed through the first level of a multiresolution FB. The
low frequency component, after decimation by2, is fed into
the second level decomposition for the second resolution.The
outputs of the two trees are the real and imaginary parts of
complex-valued subbands. For more details of the construction
of the dual-tree, the reader is referred to [19].

The most important property of the DTCWT is that all
complex subbands are shift invariant in the sense that there
is no significant aliasing in the decimated complex subbands.
Therefore, each complex subband provides a shiftable descrip-
tion of signal in a specific scale. By construction of the dual-
tree CWT, each pair of corresponding filters has the Hilbert
transform relation [19]. Therefore, the equivalent complex
filter for each subband has one-sided frequency support. The
real part of the complex filter is symmetric while the imaginary
part is anti-symmetric.

To reconstruct the signal, the real part and imaginary part are
inverted to obtain two real signals, respectively. These two real
signals are then averaged to obtained the final output. Fig. 1(b)
shows the synthesis FB for the inverse DTCWT.

III. DNA C OPY NUMBER DATA DENOISING USING

DUAL -TREE CWT ALGORITHM

Basic wavelet-based signal denoising algorithms use
wavelet transforms such as DWT and SWT, and hard or soft
thresholding. The DWT with the redundant ratio of1 : 1 is
efficient for the denoising applications. However, becausethe
DWT is shift-variant, it creates artifacts around the disconti-
nuities of the input signal [16]. These artifacts degrade the
performance of the threshold-based denoising algorithm [16].
To overcome this problem, SWT with translation invariant
propoerty was proposed for signal denoising. It has been



shown that many of the artifacts could be suppressed by a
redundant representation of the signal [16]. However, if a
signal is decomposed intoN levels, the redundant ratio is
(N + 1) : 1. It makes denoising algorithm more computa-
tionally intensive. We propose the use of DTCWT for array-
based DNA copy number data denoising. Several methods
were proposed for selecting thresholding values such as SURE,
Fixed, Mixture and Minimax [20], [21]. In our experiments,
the above thresholding methods are performed on array CGH
signals. The experimental results show that the universal
threshold works well as them for DTCWT in array CGH signal
denoising.

We assume that we get the DNA copy number dataY which
includes the deterministic signalD and the independent and
identically distributed (IID) Gaussian noisen. This Gaussian
noise has zero mean and varianceσ2

n.

Y = D + n. (1)

Our purpose is to findD̂ from Y so that the root mean
squared error (RMSE) is smallest, where

RMSE =

√

√

√

√

1

N

N
∑

i

(D̂i − Di)2, (2)

and N is the number of input samples. After decomposing
the dataY by the DTCWT, we get the complex coefficients
Wi. All complex coefficients whose magnitudes are less than
a particular threshold are set to zero as follows:

Wi =

{

0 if |Wi| ≤ δU ,
Wi if |Wi| > δU .

(3)

After that, the subband coefficients denoised are used to
reconstruct the datâD. Next, we discuss how to choose the
threshold values.

The universal threshold is defined in [20], [21] by:

δU ≡ σn

√

2 log(N), (4)

whereN denotes the number of samples in dataY and σn

is the standard deviation of Gaussian noise which we want to
remove. In real situations, the variance of noise to be removed
is unknown. So Donnoho [20] proposed a special method to
estimate this value by using the following equation:

σn ≡
median

(

|W
(D)
1,0 |, |W

(D)
1,1 |, ..., |W

(D)
1,N1−1|

)

0.6745
, (5)

whereN1 is the length of DWT subband at level1.
We assume that noise in the DNA data is IID. The universal

threshold denoising method can be summarized as follows:
Step 1 : Insert zeros intoY as in section IV-C and decom-

pose new data using the DTCWT.
Step 2 : Estimate the noise varianceσ2

n by (5).
Step 3 : Calculate the threshold by (4)
Step 4 : Find the denoised coefficients from noisy coeffi-

cients by (3).
Step 5 : Reconstruct datâD from the denoised coefficients

by taking inverse DTCWT.

For the SWT, only the scaling coefficients are denoised.
However, for the DTCWT, all subband coefficients are de-
noised. In DTCWT method, we get complex subbands, thus
the absolute values of the real SWT coefficients are replaced
by the magnitudes of complex coefficients (DTCWT). This
gives out a better result than the method using the absolute
values of real and imaginary subbands separately.

Meantime, we also propose the DTCWT with interpolating
(DTCWTi) method to denoise array CGH data which will be
discussed in section IV-D.

IV. EXPERIMENTS AND DISCUSSIONS

In our experiments, the artificial chromosomes are generated
as in [22] and [5]. Since they are unequally spaced data, we
apply the interpolating method with the Pseudo-markers [5]
for them. In order to guarantee the number of data points to
be a power of two, the zero-padding is implemented. During
our experiments, the denoising results of different methods are
compared.

A. Artificial Chromosome Generation

Willenbrock and Fridlyand [22] proposed a simulation
model to create the synthetic array CGH data. In their model,
a primary tumor dataset of 145 samples is segmented and
the probes are equally spaced along the chromosome. More
recently Y. Wang and S. Wang [5] extended this model
by placing unequally spaced probes along chromosome. The
primary tumor data set is segmented using DNAcopy number
levels from the empirical distribution of segment mean values
smv as

c =































0 (0 copies) :smv < −0.4,
1 (one copy) :−0.4 < smv < −0.2,
2 (two copies) :−0.2 < smv < 0.2,
3 (three copies) :0.2 < smv < 0.4,
4 (four copies) :0.4 < smv < 0.6,
5 (five copies) :smv > 0.6.

The synthetic DNA copy number data on a chromosome was
generated as follows:

Step 1 Determine copy number probability and the dis-
tribution of segment length. As suggested in [22]
and [5], the chromosomal segments with DNA copy
number c = 1, 2, 3, 4 and 5 are generated with
probability0.01, 0.08, 0.81, 0.07, 0.02 and0.01. The
lengths for segments are picked up randomly from
the corresponding empirical length distribution given
in [22].

Step 2 Computelog2ratio. Each sample is a mixture of
tumor cells and normal cells. A proportion of tumor
cells is Pt, whose value is from a uniform distri-
bution between0.3 and 0.7. As in paper [22], the
log2ratio is calculated by

log2ratio = log2

(

cPt + 2(1 − Pt)

2

)

, (6)

wherec is the assigned copy number. The expected
log2ratio value is then the latent true signal.



Step 3 Add Gaussian noises. Gaussian noises with zero
mean and varianceσ2

n are added to the latent true
signal. Till now, we get the equally spaced CGH
signal.

Step 4 Create unequally spaced probes. Because the dis-
tances between probek and probek+1 are randomly,
the best way to get these distances is from the UCSF
HumArray2 BAC array. Thus, we create a real CGH
signal from the equally spaced CGH signal when the
unequally spaced probes are placed on the chromo-
some. Now, we have many artificial chromosomes of
length200 Mbase which are created by many noise
levelsσn = 0.1, 0.125, 0.15, 0.175 and0.2.

B. DNA Copy Number Data Interpolation

DNA copy number data contains a lot of noises and the dis-
tances between two samples vary greatly. Kovac [23] proposed
a new method to change this kind of data to equally spaced
data and got good performance in denoising application.
However, in his method, the numbers of new samples were
created densely. In [5] DNA copy number data interpolation
with pseudo-markers was proposed. Their method has some
advantages: the number of new samples is not dense and
the content of data does not change much. Suppose that the
observed DNA copy number dataY at M probe locations on
the chromosome of lengthL is

Y (xi) = D(xi) + ni,

where i = 1, 2, ..., M , xi are the probe locations with
0 ≤ x1 ≤ x2 ≤ .... ≤ xM ≤ L, and D(xi) is the latent
true signal at locationxi. We know thatxi are not equally
spaced. Therefore, the equally spaced pseudo-markers between
sparse probes are inserted and this interpolating method can
be summarized as the following steps:

Step 1 Create a setP of locations along the chromosome at
the uniform spacing ofq by

P = {pj|pj = kq, k = 0, 1, 2, ..., ⌊L/q⌋},

where q is the average distance between adjacent
probes.

Step 2 Form a setP ′ of locations which will be inserted to
DNA copy number dataY (xi). A pseudo-marker can
be inserted at each locationpj . However, to avoid the
worst cases when the original marker and a pseudo-
marker overlap or their distance is arbitrarily small,
a subsetP ′ of P is formed by

P ′ = {p′j|p
′

j ∈ P, |p′j−xi| ≥ q/2 for all i = 1, 2, ..., M}.

P ′ includes the points which are in the setP and
satisfies a condition that the distances from that point
to the original locations must be larger thanq/2 but
less than3q/2.

Step 3 Apply the nearest neighbor interpolation to obtain
the interpolated values forY (p′j).

Step 4 Merge the original signalY (xi) and the interpolated
signalY (p′j) by

Y ′ = {Y (xi) : i = 1, 2, ..., M}∪{Y (p′j) : p′j ∈ P ′},

and make sure thatxi andp′j are in ascending order.
The new CGH dataY ′(xi) instead of the originalY (xi) will
be denoised.

C. Zero-padding

After interpolating, the length of the CGH signal isN .
In order to get best performance in the wavelet denoising
algorithm with thresholding, the length of the input signalis
required to be a power of two [24]. IfN is not a power of
two, we can apply the zero-padding method to make sure that
N ′ is the value we need withN ′ = 2j. For example, we get
N = 120 after interpolating, we must insert more eight zeros
and then we getN ′ = 128. The numbers of decomposition
levels can be computed by

L = log2(N) − 4. (7)

In the above example, we getL = 3. This is a perfect number
of levels which yields the best denoising results.

D. Experiments Design

In our experiments, the signalsY (xi) (after zero-padding)
and the new interpolated signalY ′(xi) are decomposed by the
DTCWT. We call them as DTCWT and DTCWTi, respectively.
The universal thresholding method is applied to denoise the
noisy wavelet coefficients. We compare our method’s results
with the other method’s such as the SWT and the SWTi [5].

DTCWT The array CGH signal is generated as in sec-
tion IV-A and applied the zero-padding method as in
section IV-C. Then, this signal is decomposed by the
DTCWT to L levels as equation (7). The universal
thresholding value is applied to denoise the noisy
DTCWT coefficients as steps in section III. DWT
coefficients of the array CGH signal at level1 is
used to estimate noise by equation (5). Finally, we
reconstruct the signal by taking the inverse DTCWT
from the denoised coefficients.

DTCWTi Using the same steps in DTCWT method.
However, the array CGH signal is interpolated by
section IV-B before inserting zeros. In step 1, instead
of denoising array CGH signal, the signal with
interpolation is processed. The rest of steps are as
the same step 2 to step 5 as in section III.

SWT This method comes from paper [5]. Compared with
the DTCWT, the SWT method has two different
steps: 1) the array CGH signal is decomposed by
the SWT; 2) the real coefficients of SWT subbands
are denoised instead of the complex coefficients. We
also use the universal thresholding in this method.

SWTi It extends the SWT method by interpolating array
CGH signal before decomposition. They apply un-
universal thresholding to denoise the SWT coeffi-
cients [5].



0.5 1 1.5 2

x 10
5

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

 Denoised by SWT

kbase

O
bs

er
ve

d 
lo

g2
ra

tio

(a)

0.5 1 1.5 2

x 10
5

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

 Denoised by SWTi

kbase

O
bs

er
ve

d 
lo

g2
ra

tio

(b)

0.5 1 1.5 2

x 10
5

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

 Denoised by DTCWT

kbase

O
bs

er
ve

d 
lo

g2
ra

tio

(c)

0.5 1 1.5 2

x 10
5

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

 Denoised by DTCWTi

kbase

O
bs

er
ve

d 
lo

g2
ra

tio

(d)

Fig. 2. Example of wavelet denoising results at the noise level of σ = 0.1

using (a) SWT, (b) SWTi, (c) DTCWT and (d) DTCWTi.
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Fig. 3. Example of wavelet denoising results at the noise level of σ = 0.2

using (a) SWT, (b) SWTi, (c) DTCWT and (d) DTCWTi.



TABLE I
COMPARISON OF AVERAGERMSES OBTAINED FROM THE1,000

ARTIFICIAL CHROMOSOMES WITH EACH OF THE5 NOISE LEVELS USING

SWT, SWTI , DTCWT AND DTCWTI

σ SWT SWTi DTCWT DTCWTi
0.1 0.0368 0.0338 0.0305 0.0298
0.125 0.0460 0.0422 0.0354 0.0351
0.15 0.0548 0.0497 0.0399 0.0393
0.175 0.0633 0.0567 0.0442 0.0435
0.2 0.0715 0.0631 0.0481 0.0469

E. Empirical Results

The denoising results of the SWT, SWTi, DTCWT and
DTCWTi methods are shown in the table I corresponding
to the five noise levelsσn = 0.1, 0.125, 0.15, 0.175 and
0.2. As shown in the table I, the DTCWT yields much
better performance than the SWT and the SWTi. The average
RMSEs of the DTCWTi is less than that of the DTCWT. The
DTCWTi provides the much better denoising results than the
SWTi. Moreover, the DTCWT is more efficient and has less
computation than the SWT because the redundancy ratio of
the DTCWT2 : 1 is much less than that of the SWT4 : 1 (if
number of level decompositionL = 3).

We run the denoising algorithm for 1,000 artificial chromo-
somes with five different noise levels. The denoising results
of the SWT, SWTi, DTCWT and DTCWTi methods are
shown in the table I corresponding to the five noise levels
σn = 0.1, 0.125, 0.15, 0.175 and0.2. As shown in the table I,
the DTCWT yields much better performance than the SWT
and the SWTi. The average RMSEs of the DTCWTi is less
than that of the DTCWT. At the noise level ofσn = 0.2,
the average RMSEs of the SWTi method is0.0631, while
that of the DTCWTi is0.0469. The DTCWTi provides the
much better denoising results than the SWTi. Moreover, the
DTCWT is more efficient and has less computation than the
SWT because the redundancy ratio of the DTCWT2 : 1 is
much less than that of the SWT4 : 1 (if the number of level
decompositionL = 3).

Some examples of wavelet denoising results by using four
denoising methods (SWT, SWTi, DTCWT and DTCWTi) are
shown in Fig. 2 at the noise level ofσ = 0.1 and in Fig. 3
at noise levelσ = 0.2. From these figures, we can see that
DTCWTi denoising method provides the better performance
than the others.

The RMSEs between the denoised signals and the latent
true signals are computed to evaluate these four methods and
the average RMSEs results (from 1000 artificial chromosomes)
are shown in table I. From table I, we can see that, on average,
the DTCWTi outperformed the SWT by19% − 34.4%, and
the SWTi by11.8% − 22.7% in terms of the RMSE. In all
of the noise levels, the DTCWTi achieved much better results
than the others.

F. Real Data Examples

We use the BAC array data on15 fibroblast cell lines [25],
[8] to show that denoising by the DTCWTi is better than

by the SWTi. This data set can be freely downloaded at
http://www.nature.com/ng/journal/v29/n3/suppinfo/ng754
S1.html. Because the true copy number changes are known
for these cell lines, we choose these data as a proof of
principles. We pick up two chromosomes from this data and
use the SWT, the SWTi, the DTCWT and the DTCWTi for
denoising. These are the chromosome 9 of MPE600 and the
chromosome 14 of GM01750.

In Fig. 4, number copy is from zero to two. With the copy
two, Fig. 4 (c) and (d) show that the DTCWT and DTCWTi
give the smoother denoised signal than the SWT and SWTi.
With the zero copy and the one copy, the performance of the
DTCWTi denoising method is the best in Fig. 4 (d).

In figure 5, number copy is from two to four. The figure 4
(d) shows that denoising by DTCWTi still provides the better
results than the others. From two above figures, it is easy to
see that DTCWT and, specially, DTCWTi perform better than
SWT and SWTi in denoising of real CGH data.

V. CONCLUSIONS

In this paper, we explored the dual-tree complex wavelet
transform method in array CGH data denoising study. The
unequal spacing of probes on the chromosome is taken into ac-
count. In the simulation situations, the denoising resultsfrom
DTCWT and DTCWTi are much better (improve19%−34.4%
and 11.8% − 22.7%) than previous methods in terms of the
root mean squared error measurement at different noise levels.
Furthermore, we also demonstrate our method by using the
real array CGH data. In our future work, we will develop
a smoothing and segmentation combinatorial algorithm to
improve the aberration regions identification from DNA copy
number data.
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Fig. 4. The wavelet denoising results of array CGH data on chromosome 9
in the real signal MPE600 using (a) SWTi, (b) SWTi, (c) DTCWT and (d)
DTCWTi.
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