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Abstract—Array-based comparative genomic hybridization focus on both smoothing-based [6], [7], [8], [9], [5] and
(array CGH) is a highly efficient technique, allowing the simulta-  segmentation-based data processing [10], [11], [12],, [13].
neous measurement of genomic DNA copy number at hundreds The array CGH is very noisy. For example, in cDNA array

or thousands of loci and the reliable detection of local oneopy- CGH data. the si It : tio is oft imatel
level variations. Characterization of these DNA copy numbe ala, he signal 1o noise ratio IS often approximately

changes is important for both the basic understanding of cager 1 (0 dB) [15]. Research in this area has been active in
and its diagnosis. In order to develop effective methods talentify  the last few years. Beheshét al. proposed to use the ro-
aberration regions from array CGH data, many recent resear¢l  pyst locally weighted regression and smoothing scatteplo
works focus on both ;moothing-based and segmentation-bake (lowess) method in [6]. Eilers and Menezes [7] perform a
data processing. In this paper, we propose to use the dualde . . T
complex wavelet transform to smooth the array CGH data. We guantile smoothing method based on the m|n|m|za_t|on of the
demonstrate the effectiveness of our approach through theetic Sum of absolute errors to create sharper boundaries between
and experimental exploration of a set of array CGH data, incld- segments. Hswet al. [8] investigated the usage of maximal
ing both synthetic data and real data. The comparison result overlap discrete wavelet transform (MODWT) in the analysis
show that our method outperforms the previous approaches. of array CGH data. They have shown translation invariant
wavelets are promising methods for array CGH data smoothing
and also observed that the denoising techniques may miss
Gene amplifications or deletions frequently contribute tsingleton clones that have small changes but somehow are
tumorigenesis. When part or all of a chromosome is amplifieghnsistent across tumors. More recently Y. Wang and S.
or deleted, a change in DNA copy number results. Charagfang [5] extended the stationary wavelet (SWT) denoising
terization of these DNA copy number changes is importaahd regression for nonequispaced data, because the ghysica
for both the basic understanding of cancer and its diagnosisstance between adjacent probes along a chromosome are
Cancer researchers currently use array comparative genonot uniform, even vary drastically. However, if a signal is
hybridization (array CGH) to identify sets of copy numbedecomposed into N levels using SWT or MODWT, the re-
changes associated with the particular cancer or its catgendundant ratio is(NV + 1) : 1. It makes denoising algorithm
and developmental disorders. In array CGH, because tmere computationally intensive with worse denoising ressul
clones contain sequences information directly connedtiitig
the genome database, array CGH offers rapid genome-wide
analysis at high resolution and the information it provides
directly linked to the physical and genetic maps of the humanin this paper, we propose to use the dual-tree complex
genome. Bacterial Artificial Chromosomes (BAC) based CGttavelet transform (DTCWT) to denoise the array CGH data.
arrays were amongst the first genomic arrays to be introdudgecause in DTCWT all complex subbands are shift invariant,
[1] and are routinely used to detect single copy changeseéach complex subband provides a shiftable description of
the genome, owing to their high resolution in the order afignal in a specific scale. Its representation has a redtindan
1 Mb [1], [2]. More recently Oligonucleotide aCGH [3], [4]ratio of 2 : 1. We demonstrate the effectiveness of our
was developed to allow flexibility in probe design, greateapproach through theoretic and experimental exploratfcm o
coverage, and much higher resolution in the order of 35-186t of array CGH data, including both synthetic data and real
Kb [5]. array CGH data. The comparison results show that our method
In order to develop effective methods to identify abermatiooutperforms the previous approaches (SWT or MODWT)
regions from array CGH data, the previous research worabout19% — 34.4%.

I. INTRODUCTION



Il. WAVELET METHODS

In this section, we provide a brief review of wavelet
transforms which were used for array CGH data smoothing
and is used by this paper.

A. Discrete Wavelet Transform

The discrete wavelet transform (DWT), based on the octave
band tree structure, decomposes an input signal using a set
of lowpass and highpass fiters followed by a decimator. Since
the number of samples contained by each subband at Mével
is the number of input samples divided BY', the DWT is
not a redundant representation. The total number of wavelet
coefficients over all subbands is equal to the length of the
input signal. The DWT has been widely and successfully
used in several signal processing applications such as de-
noising, estimation, and compression. However, one of the
disadvantages of the DWT is that it is shift-variant. The DWT
is highly dependent on its relative position with respect to (b)
the downsampling lattice. In signal denoising, the DWT is
known to create artifacts around the discontinuities ofitipeit
signal [16]. These artifacts degrade the performance of the
threshold-based denoising algorithm.

Fig. 1. A 3 level dual-tree CWT. (a) Analysis FB, (b) SyntiseBEB .

decomposition. According to Fig. 1(a), the input signal is
B. Stationary Wavelet Transform passed through the first level of a multiresolution FB. The

The SWT [16] is similar to the DWT except that it doegOW frequency component, '_an_‘ter decimation Byis fed into
not employ a decimator after filtering, and the filters ar@et setconfdt:]evil detcomposmct)hn for tr;e sgc_ond resolutlwl[.T f
upsampled at each level of decomposition. This is also knoHPuts of the two frees are Ihe real and imaginary parts o

as the redundant or translation invariant DWT. The absehcec((implex-valued subbands. For more details of the construct

a decimator leads to a redundant signal representatior EQ ﬂ;]e dual-trge, the reader is refe;reg tOD['%?:]\.NT is th I
subband contains the same number of samples as the inguI € most Important property of the IS that &

So for a decomposition oV levels there is a redundant ratio; omple_x S_l_Jbband.S are S.hift invarif_;lnt in the sense that there
of (N +1) : 1. However, the translation invariant property o S no significant aliasing in the decimated complex subbands

the SWT makes it preferable for the usage in various sign rperefore, each complex subband provides a shiftable igescr

processing applications such as denosing and classificatig"” (g\/?/l-?-nal mha speufflc scale. Bﬁ.con]fltructﬁn Ofrfhqulléal
because it relies heavily on spatial information. It hasrbed € » each pair of corresponding filters has the Hilbert

shown that many of the artifacts could be suppressed by_rgnsform relation [19). Thereforg, the equivalent comple
redundant representation of the signal [16]. Each levetars filter for each subband has one-sided frequency support. The

are upsampled versions of the previous ones. real part of_ the comp_lex filter is symmetric while the imagina
part is anti-symmetric.

C. Dual-tree Complex Wavelet Transform To reconstruct the signal, the real part and imaginary part a

A dual-tree structure that produces a dyadic complex DW/fverted to obtain two real signals, respectively. Thesertal
is proposed by Kingsbury [17], [18]. Since array CGH datsignals are then avgraged to obt{:uned the final output. Hiy. 1
are one dimensional signals, in this paper we only talk abcttows the synthesis FB for the inverse DTCWT.
the 1-D case of dual-tree CWT. In the case of 1-D signals,
the structure consists of two binary trees of multiresoluti
decomposition of the same signal. It is therefore an over-
complete representation with a redundant ratio2of 1. In
the two trees, the filters are designed in such a way thatBasic wavelet-based signal denoising algorithms use
the aliasing in one branch in the first tree is approximatelyavelet transforms such as DWT and SWT, and hard or soft
canceled by the corresponding branch in the second tree. Thiesholding. The DWT with the redundant ratio bf 1 is
relation between the wavelet filters of the two trees yielddficient for the denoising applications. However, becahse
shift-invariant property [17]. DWT is shift-variant, it creates artifacts around the dig¢o
The analysis FB for the DTCWT, shown in Fig. 1(a), iswities of the input signal [16]. These artifacts degrade th
an iterative multiscale FB. Each resolution level consadts performance of the threshold-based denoising algorithdi [1
a pair of two-channel FBs. The purpose of the dual-trée@ overcome this problem, SWT with translation invariant
CWT is to provide a shiftable and scalable multiresolutiopropoerty was proposed for signal denoising. It has been

IIl. DNA CopPY NUMBER DATA DENOISING USING
DUAL-TREECWT ALGORITHM



shown that many of the artifacts could be suppressed by aor the SWT, only the scaling coefficients are denoised.
redundant representation of the signal [16]. However, if ldowever, for the DTCWT, all subband coefficients are de-
signal is decomposed intd/ levels, the redundant ratio isnoised. In DTCWT method, we get complex subbands, thus
(N +1) : 1. It makes denoising algorithm more computathe absolute values of the real SWT coefficients are replaced
tionally intensive. We propose the use of DTCWT for arraypy the magnitudes of complex coefficients (DTCWT). This
based DNA copy number data denoising. Several methagises out a better result than the method using the absolute
were proposed for selecting thresholding values such aESURalues of real and imaginary subbands separately.
Fixed, Mixture and Minimax [20], [21]. In our experiments, Meantime, we also propose the DTCWT with interpolating
the above thresholding methods are performed on array CE@PITCWTi) method to denoise array CGH data which will be
signals. The experimental results show that the univershscussed in section IV-D.
threshold works well as them for DTCWT in array CGH signal
denoising. ] o
We assume that we get the DNA copy number datahich Ir_1 our experiments, the artificial chromosomes are gengrate
includes the deterministic sign@ and the independent and@S in [22] and [5]. Since they are unequally spaced data, we
identically distributed (IID) Gaussian noise This Gaussian aPply the interpolating method with the Pseudo-markers [5]

IV. EXPERIMENTS AND DISCUSSIONS

noise has zero mean and variance for them. In order to guarantee the number of data points to
be a power of two, the zero-padding is implemented. During
Y=D+n. (1) our experiments, the denoising results of different mesrare
Our purpose is to find) from Y so that the root mean compared.
squared error (RMSE) is smallest, where A. Attificial Chromosome Generation

| N Willenbrock and Fridlyand [22] proposed a simulation
RMSE = ,| — Z(f)i — D;)?, (2) model to create the synthetic array CGH data. In their model,
N i a primary tumor dataset of 145 samples is segmented and

and N is the number of input samples. After decomposir;gi‘e probes are equally spaced along the chromospme. More
the dataY by the DTCWT, we get the complex coefficient ecently Y. Wang and S. Wang [5] extended this model
W,. All complex coefficients whose magnitudes are less th& Placing unequally spaced probes along chromosome. The
a particular threshold are set to zero as follows: primary tumor data set is segmented using DNAcopy number
. levels from the empirical distribution of segment mean ealu
W = 0 !f (Wil < éu, (3) smwvas
! W, if |W;] > ou.

(O copies) smo < —0.4,
After that, the subband coefficients denoised are used to (one copy) —0.4 < smv < -0.2,
reconstruct the dat®. Next, we discuss how to choose the (two copies) :—0.2 < smwv < 0.2,

threshold values.
The universal threshold is defined in [20], [21] by:

du = onv/2log(N), 4)

where N denotes the number of samples in dataand o,,

is the standard deviation of Gaussian noise which we want
remove. In real situations, the variance of noise to be radov
is unknown. So Donnoho [20] proposed a special method to
estimate this value by using the following equation:

(three copies) 0.2 < smv < 0.4,
(four copies) :0.4 < smwv < 0.6,
(five copies)  :smwv > 0.6.

B W~ O

ot

The synthetic DNA copy number data on a chromosome was

qgnerated as follows:

Step 1 Determine copy number probability and the dis-
tribution of segment length. As suggested in [22]
and [5], the chromosomal segments with DNA copy
numberc = 1,2,3,4 and 5 are generated with

median(|Wl(f)))|, W |W1([Ji[)171|) probability 0.01, 0.08, 0.81,0.07,0.02 and0.01. The
On = ' 0 6745 : , (5 lengths for segments are picked up randomly from
) ) the corresponding empirical length distribution given
where N; is the length of DWT subband at levél in [22].

We assume that noise in the DNA data is IID. The universal Step 2 Computdog2ratio. Each sample is a mixture of

threshold denoising method can be summarized as follows: tumor cells and normal cells. A proportion of tumor

Step 1: Insert zeros inty as in section IV-C and decom- cells is P;, whose value is from a uniform distri-
pose new data using the DTCWT. bution betweerD.3 and 0.7. As in paper [22], the

Step 2: Estimate the noise variancg by (5). log2ratio is calculated by

Step 3: Calculate the threshold by (4)

Step 4: Find the denoised coefficients from noisy coeffi- log2ratio = log, (w) . (6)
cients by (3). 2

Step 5: Reconstruct data from the denoised coefficients wherec is the assigned copy number. The expected

by taking inverse DTCWT. log2ratio value is then the latent true signal.



Step 3Add Gaussian noises. Gaussian noises with zer@®tep 4 Merge the original sign&l(z;) and the interpolated

mean and variance? are added to the latent true signalY (p;) by
::ggz: Till now, we get the equally spaced CGH Y = {Y(z:) i = 1,2,...,M}U{Y(p;-) :p; e P},
Step 4 Create unequally spaced probes. Because the dis- and make sure that; andp; are in ascending order.

tances between profieand probe;+1 are randomly, The new CGH dat&”(z;) instead of the original”(z;) will
the best way to get these distances is from the UC$fe denoised.

HumArray2 BAC array. Thus, we create a real CGH )

signal from the equally spaced CGH signal when the: Z€ro-padding

unequally spaced probes are placed on the chromoAfter interpolating, the length of the CGH signal i§.
some. Now, we have many artificial chromosomes df order to get best performance in the wavelet denoising
length200 Mbase which are created by many noisalgorithm with thresholding, the length of the input sigfsl

levelso, = 0.1,0.125,0.15,0.175 and 0.2. required to be a power of two [24]. IN is not a power of
two, we can apply the zero-padding method to make sure that
B. DNA Copy Number Data Interpolation N' is the value we need witlv/ = 27. For example, we get

DNA copy number data contains a lot of noises and the difl = 120 after intetpolating, we must insert more eight Z€r10s
tances between two samples vary greatly. Kovac [23] prapos%nd then we gefN’ = 128. The numbers of decomposition
a new method to change this kind of data to equally spac@é(els can be computed by
data and got good performance in denoising application. L =log,(N) — 4. (7
However, in his method, the numbers of new samples were o
created densely. In [5] DNA copy number data interpolatiofl the above example, we gét= 3. This is a perfect number
with pseudo-markers was proposed. Their method has soffidevels which yields the best denoising results.
advantages: the number of new samples is not dense @ndexperiments Design

the content of data does not change much. Suppose that thg - experiments, the signal$(z;) (after zero-padding)
observed DNA copy numbqr data at M probe locations on and the new interpolated sign#l (z;) are decomposed by the
the chromosome of length is DTCWT. We call them as DTCWT and DTCWTi, respectively.
Y(z:) = D(x;) + ni, The universal thresholding method is applied to denoise the
noisy wavelet coefficients. We compare our method’s results
where i = 1,2,...,M, x; are the probe locations withwith the other method’s such as the SWT and the SWTi [5].
0 <2 <x < ... <y < L, andD(x;) is the latent  DTCWT The array CGH signal is generated as in sec-

true signal at location;;. We know thatz; are not equally tion IV-A and applied the zero-padding method as in
spaced. Therefore, the equally spaced pseudo-markersdxetw section IV-C. Then, this signal is decomposed by the
sparse probes are inserted and this interpolating method ca DTCWT to L levels as equation (7). The universal
be summarized as the following steps: thresholding value is applied to denoise the noisy
Step 1 Create a sét of locations along the chromosome at DTCWT coefficients as steps in section Ill. DWT
the uniform spacing of by coefficients of the array CGH signal at levelis
used to estimate noise by equation (5). Finally, we
P ={pjlp; = k¢, k=0,1,2,....|L/q|}, reconstruct the signal by taking the inverse DTCWT

. . , from the denoised coefficients.
where g is the average distance between adjacentytewTi Using the same steps in DTCWT method.

probes. ) _ _ _ _ However, the array CGH signal is interpolated by
Step 2 Form a seP’ of locations which will be inserted to section IV-B before inserting zeros. In step 1, instead

DNA copy number datd’(z;). A pseudo-marker can of denoising array CGH signal, the signal with

be inserted at each Iocat@g_m. However, to avoid the interpolation is processed. The rest of steps are as

worst cases when the original marker and a pseudo- the same step 2 to step 5 as in section II.

marker overlap or their distance is arbitrarily small, SWT This method comes from paper [5]. Compared with

a subse’ of P is formed by the DTCWT, the SWT method has two different

P = (. € P.lp—z;| > q/2 for all i = 1,2, ... M} steps: 1) the array CGH _S|_gnal is decomposed by
{wilp; € Brlp; =il = a/ =12 M} the SWT; 2) the real coefficients of SWT subbands

P’ includes the points which are in the sBtand are denoised instead of the complex coefficients. We
satisfies a condition that the distances from that point also use the universal thresholding in this method.
to the original locations must be larger thaf2 but SWTi It extends the SWT method by interpolating array
less tharBq/2. CGH signal before decomposition. They apply un-
Step 3 Apply the nearest neighbor interpolation to obtain universal thresholding to denoise the SWT coeffi-

the interpolated values far (p,). cients [5].



Observed log2ratio

Denoised by SWT

Denoised by SWTi

(d)

Observed log2ratio

Denoised by SWT

0.8f

0.6

. .
05F ]
047 o S2° 1
2 '.Jt 2
T 03 . ] =
& ﬁJ.'“ 'L\ e
=) .o . ] 2
5 02§ . o <. 8
o
. .
g oare i W e i g
@ ©® oo D . %% . 2
3 Ao A Loy @
a or v e}
© R A s o)
. .
-0.1F . * . oo oo ®
. .
-0.2f ¢ 1
.
L L L hd L -1 L L L L
05 1 15 2 05 1 15 2
kbase x10° kbase x10°
Denoised by DTCWT . ‘ Denmsgd by DTCV\{T ‘
¢ e 08 4
05F 1 ¢ .
0.6 ]
04l o 2° 1
o ° 8 ]
g <
© 03 q ©
& 03: b % 4
8 o2 W e . 1 S
5> ° ° 2 -
® . . . 3
S 01f ® d . . % ° 4 > |
= . . o)
g s 8, 00, Ce o o ,1 8
g o 0q° M « ¥ o 4
[e] 00 o0 e g%l ac, .
.
-0.1f R o oo |
R .
-0.2F ° 1 |
.
L L L hd L -1 0‘5 ‘1 1‘5 2‘
0.5 1 15 2 . A
kbase s
Kbase x10° x10
(c)
Denoised by DTCWTi
1 T T T T
08t ]
] ..
0.6 ]
=] 4
% 7 ® e
(g (g’ . . 1
S - | o e
3 : 3 80
E 1 c :
2 % 2 R
0 o Y Q
Qo - 6] ]
o e
.
o ® | 4
.
L L L hd L -1 0‘5 i 1‘5 é
05 1 15 2 - :
s
kbase x10° kbase X 10

(d)

Fig. 3. Example of wavelet denoising results at the noisellef o = 0.2

Fig. 2. Example of wavelet denoising results at the noisellefo = 0.1 ) ! !
using (a) SWT, (b) SWTi, (c) DTCWT and (d) DTCWTi.

using (a) SWT, (b) SWTi, (c) DTCWT and (d) DTCWTi.



TABLE |

COMPARISON OF AVERAGERMSES OBTAINED FROM THE1,000 by the SWTi. This data set can be freely downloaded at
ARTIFICIAL CHROMOSOMES WITH EACH OF THES NOISE LEVELS USING  http://www.nature.com/ng/journal/v29/n3/suppinfo/bg
SWT, SWT, DTCWTaAND DTCWTI S1.html. Because the true copy number changes are known

= SWT SWTi DTCWT DTCWT; for these cell I|_nes, we choose these data as a proof of
01 0.0368 | 0.0338 0.0305 0.0208 principles. We pick up two chromosomes from this data and
0.125| 0.0460 | 0.0422 0.0354 0.0351 use the SWT, the SWTi, the DTCWT and the DTCWTi for
0.15 | 0.0548 | 0.0497 | 0.0399 0.0393 denoising. These are the chromosome 9 of MPE600 and the
0.175 | 0.0633 | 0.0567 | 0.0442 0.0435 h f GMO1750
0.2 | 00715 00631 | 00481 | 00469 chromosome 14 of GM01750.

In Fig. 4, number copy is from zero to two. With the copy
two, Fig. 4 (c) and (d) show that the DTCWT and DTCWTi
give the smoother denoised signal than the SWT and SWTi.
o ) With the zero copy and the one copy, the performance of the

The denoising results of the SWT, SWTi, DTCWT angytcwrTi denoising method is the best in Fig. 4 (d).

DTCWTl_ meth(_)ds are shown in the table | corresponding |, figure 5, number copy is from two to four. The figure 4
to the five noise levelsy, = 0.1,0.125,0.15,0.175 and (q) shows that denoising by DTCWTi still provides the better
0.2. As shown in the table |, the DTCWT yields muchegyits than the others. From two above figures, it is easy to

better performance tha_n_ the SWT and the SWTi. The averages that DTCWT and, specially, DTCWTi perform better than
RMSEs of the DTCWTi is less than that of the DTCWT. Th&\wT and SWTi in denoising of real CGH data.

DTCWTi provides the much better denoising results than the

SWTi. Moreover, the DTCWT is more efficient and has less V. CONCLUSIONS

computation than the SWT because the redundancy ratio ofn this paper, we explored the dual-tree complex wavelet

the DTCWT2 : 1 is much less than that of the SWT: 1 (if transform method in array CGH data denoising study. The

number of level decompositioh = 3). unequal spacing of probes on the chromosome is taken into ac-
We run the denoising algorithm for 1,000 artificial chromoeount. In the simulation situations, the denoising resiuim

somes with five different noise levels. The denoising resulPTCWT and DTCWTi are much better (improv8%—34.4%

of the SWT, SWTi, DTCWT and DTCWTi methods areand 11.8% — 22.7%) than previous methods in terms of the

shown in the table | corresponding to the five noise levelsot mean squared error measurement at different noistsleve

on =0.1,0.125,0.15,0.175 and0.2. As shown in the table I, Furthermore, we also demonstrate our method by using the

the DTCWT yields much better performance than the SWeal array CGH data. In our future work, we will develop

and the SWTi. The average RMSEs of the DTCWTi is less smoothing and segmentation combinatorial algorithm to

than that of the DTCWT. At the noise level of, = 0.2, improve the aberration regions identification from DNA copy

the average RMSEs of the SWTi method (i$631, while number data.

that of the DTCV\(Tj i50.0469. The DTCWTi provides the REFERENCES
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