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Abstract—Array based Comparative Genomic Hybridization
(CGH) is a molecular cytogenetic method for the detection of
chromosomal imbalances and it has been extensively used for
studying copy number alterations in various cancer types. Our
method captures both the intrinsic spatial change of genomehy-
bridization intensities, and the physical distance between adjacent
probes along a chromosome which are not uniform. In this paper,
we introduce a dual-tree complex wavelet transform method with
the bivariate shrinkage estimator into array CGH data smoothing
study. We tested the proposed method on both simulated data and
real data, and the results demonstrated superior performance of
our method in comparison with extant methods.

I. I NTRODUCTION

Array-based comparative genomic hybridization (array
CGH) is a highly efficient technique, allowing the simulta-
neous measurement of DNA copy numbers across the whole
genome at hundreds or thousands of loci and the reliable
detection of local one-copy-level variations. Characterization
of these DNA copy number changes is important for both
the basic understanding of cancer and its diagnosis. In order
to develop effective methods to identify aberration regions
from array CGH data, many recent research works focus on
smoothing-based data processing. For example, Eilers and De
Menezes proposed a quantile regression method that employs
an L1 error for both of fitness measure and roughness penalty
[1]. Hsu et al. [2] used wavelet transform to fit the data. In
this paper, we introduce a dual-tree complex wavelet transform
method with the bivariate shrinkage estimator into array CGH
data smoothing study. The unequal spacing of probes on the
chromosome is taken into account. Using the synthetic data,
our experimental results demonstrate our method overperforms
the previous methods. In terms of the root mean squared error
measurement at different noise levels, our method improves
about17.8%−43% than other methods. Furthermore, we also
use the real array CGH data to validate the efficiency of our
method.

II. WAVELET METHODS

In this section, we provide a brief review of wavelet
transforms which were used for array CGH data smoothing
and is used by this paper.
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Fig. 1. A 3 level DWT. (a) Analysis FB, (b) Synthesis FB .

A. Discrete Wavelet Transform

The discrete wavelet transform (DWT), based on the octave
band tree structure, can be viewed as the multiresolution
decomposition of a signal. Fig. 1 shows 3 level DWT analysis
and synthesis filter banks (FBs). It takes a lengthN sequence,
and generates an output sequence of lengthN using a set of
lowpass and highpass fiters followed by a decimator. It has
N/2 values at the highest resolution,N/4 values at the next
resolution, andN/2L at the levelL. Because of decimation,
the DWT is a critically sampled decomposition. However,
the drawback of DWT is the shift variant property. In signal
denoising, the DWT creates artifacts around the discontinuities
of the input signal [3]. These artifacts degrade the performance
of the threshold-based denoising algorithm.

B. Stationary Wavelet Transform

The stationary wavelet transform (SWT) [3] is similar to the
DWT except that it does not employ a decimator after filtering,
and each level’s filters are upsampled versions of the previous
ones. The SWT is also known as the shift invariant DWT.
The absence of a decimator leads to a full rate decomposition.
Each subband contains the same number of samples as the
input. So for a decomposition ofL levels, there is a redundant
ratio of (L + 1) : 1. However, the shift invariant property of
the SWT makes it preferable for the usage in various signal
processing applications such as denoising and classification
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Fig. 2. A 3 level SWT. (a) Analysis FB, (b) Synthesis FB .

because it relies heavily on spatial information. It has been
shown that many of the artifacts could be suppressed by a
redundant representation of the signal [3]. Fig. 2 shows 3
level SWT analysis and synthesis FBs. Each level’s filters are
upsampled versions of the previous ones as shown in Fig. 3.
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Fig. 3. SWT filters.

C. Dual-Tree Complex Wavelet Transform

A dual-tree structure that produces a dyadic complex DWT
is proposed by Kingsbury [4], [5]. Since array CGH data are
one dimensional signals, in this paper we only talk about the
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Fig. 4. The 3 level DTCWT filter bank structure. (a) Analysis FB, (b)
Synthesis FB .

1-D case of dual-tree CWT. The DTCWT filter bank structure
is shown in Fig. 4. The analysis FB for the DTCWT is an
iterative multiscale FB. Each resolution level consists ofa
pair of two-channel FBs. The input signal is passed through
the first level of a multiresolution FB. The low frequency
component, after decimation by2, is fed into the second level
decomposition for the second resolution. The outputs of the
two trees are the real and imaginary parts of complex-valued
subbands. To reconstruct the signal, the real part and imaginary
part are inverted to obtain two real signals, respectively.These
two real signals are then averaged to obtained the final output.
For more details of the construction of the dual-tree, the reader
is referred to [6].

The most important property of the DTCWT is that all
complex subbands are shift invariant in the sense that there
is no significant aliasing in the decimated complex subbands.
Therefore, each complex subband provides a shiftable de-
scription of signal in a specific scale. By construction of
the dual-tree CWT, each pair of corresponding filters has the
Hilbert transform relation [6]. It is therefore an overcomplete
representation with a redundant ratio of2 : 1. In the two
trees, the filters are designed in such a way that the aliasing
in one branch in the first tree is approximately canceled by the
corresponding branch in the second tree. The relation between
the wavelet filters of the two trees yields shift invariant
property [4]. The equivalent complex filter for each subband
has one-sided frequency support. The real part of the complex
filter is symmetric while the imaginary part is anti-symmetric.

III. B IVARIATE SHRINKAGE FUNCTION FOR

DTCWT-BASED DENOISING.

We assume that we get the DNA copy number dataY which
includes the deterministic signalD and the independent and
identically distributed (IID) Gaussian noisen. This Gaussian
noise has zero mean and varianceσ2

n.

Y = D + n. (1)

After decomposing the dataY by the DTCWT, we get the
complex coefficientsyk. In the wavelet domain, the problem
can be formulated as

yk = wk + nk, (2)

where yk are noisy wavelet coefficients,wk are true coeffi-
cients, andnk are independent Gaussian noise coefficients.

A simple denoising algorithm via wavelet transform con-
sists of three steps: decompose the noisy signal by wavelet
transform, denoise the noisy wavelet coefficients according
to some rules and take the inverse wavelet transform from
the denoised coefficients. To estimate wavelet coefficients,
some of the most well-known rules are universal threshold-
ing, soft thresholding [7], [8], [9] and BayesShrink [10].
In these algorithms, the authors assume that wavelet coeffi-
cients are independent. However, recently, algorithms utilize
the dependency between coefficients can give better results
compared with the ones developed using an independency
assumption [11]. Sendur [11] has exploited this dependency



between coefficients and proposed a non-Gaussian bivariate
pdf for the child coefficientw1 and its parentw2 as follows

pw(w) =
3

2πσ2
exp(−

√
3

σ

√

|w1|2 + |w2|2). (3)

The marginal varianceσ2 is dependent on the coefficients
index k. Using this bivariate pdf and the Bayesian estimation
theory, the MAP estimator ofw1 [11] is derived to be

ŵ1 =
(
√

|y1|2 + |y2|2 −
√

3σn
2

σ
)+

√

|y1|2 + |y2|2
.y1, (4)

where(u)+ is defined by

(u)+ =

{

0 if u < 0,
u otherwise.

(5)

This estimator can be called as a bivariate shrinkage function.
In (4), σ can be estimated by

σ̂ =

√

(σ̂y
2 − σ̂n

2)+, (6)

where σ̂n is the noise deviation which is estimated from the
finest scale wavelet coefficients by using a robust median
estimator [8] as follows

σ̂n
2 =

median(|yi|)
0.6745

. (7)

σ̂y is the deviation of observation signal estimated by

σ̂y
2 =

1

M

∑

yi∈N(k)

|yi|2, (8)

whereM is the size of the neighborhoodN(k).
The DTCWT-based denoising algorithm using bivariate

shrinkage function is summarized as follows

Step 1 Decompose the noisy signalY by the DTCWT.
Step 2 Calculate the noise variancêσn

2 and the marginal
varianceσ̂2 by using (7), (8) and (6).

Step 3 Estimate the coefficientŝwk as in (4).
Step 4 Take the inverse DTCWT from the denoised coeffi-

cients.

IV. EXPERIMENTS AND DISCUSSIONS

In our experiments, the artificial chromosomes are generated
as in [12] and [13]. Since they are unequally spaced data, we
apply the interpolating method with the Pseudo-markers [13].
In order to guarantee the number of data points to be a power
of two, the zero-padding is implemented.The DTCWT and the
bivariate shrinkage function are proposed for denoising these
chromosomes. The denoising results of different methods are
compared.

A. Artificial Chromosome Generation

Willenbrock and Fridlyand [12] proposed a simulation
model to create the synthetic array CGH data with equally
spaced along the chromosome. More recently Y. Wang and
S. Wang [13] extended this model by placing unequally
spaced probes along chromosome. As suggested in [12]
and [13], the chromosomal segments with DNA copy num-
ber c = 1, 2, 3, 4 and 5 are generated with probability
0.01, 0.08, 0.81, 0.07, 0.02 and0.01. The lengths for segments
are picked up randomly from the corresponding empirical
length distribution given in [12]. Each sample is a mixture
of tumor cells and normal cells. A proportion of tumor cells
is Pt, whose value is from a uniform distribution between0.3
and0.7. As in paper [12], thelog2ratio is calculated by

log2ratio = log2

(

cPt + 2(1 − Pt)

2

)

, (9)

wherec is the assigned copy number. The expectedlog2ratio
value is then the latent true signal.

Gaussian noises with zero mean and varianceσ2
n are

added to the latent true signal. Till now, we get the equally
spaced CGH signal. Because the distances between two probes
are randomly, the best way to get these distances is from
the UCSF HumArray2 BAC array. Thus, we create a real
CGH signal from the equally spaced CGH signal when the
unequally spaced probes are placed on the chromosome.
Now, we have many artificial chromosomes of length200
Mbase which are created by many noise levelsσn =
0.125, 0.15, 0.2, 0.25, 0.275 and0.3.

B. DNA Copy Number Data Interpolation

The distances between two samples in DNA copy number
data vary greatly. Kovac [14] proposed a new method to
change this kind of data to equally spaced data and got good
performance in denoising application. However, in his method,
the numbers of new samples were created densely. In [13]
DNA copy number data interpolation with pseudo-markers
was proposed. Their method has some advantages: the number
of new samples is not dense and the content of data does not
change much. Suppose that the observed DNA copy number
dataY at M probe locations on the chromosome of lengthL
is

Y (xi) = D(xi) + n(xi),

where i = 1, 2, ..., M , xi are the probe locations with
0 ≤ x1 ≤ x2 ≤ .... ≤ xM ≤ L, and D(xi) is the latent
true signal at locationxi. We know thatxi are not equally
spaced. Therefore, the equally spaced pseudo-markers between
sparse probes are inserted and this interpolating method can
be summarized as the following steps.

First, a setP of locations along the chromosome at the
uniform spacing ofq is created by

P = {pj|pj = kq, k = 0, 1, 2, ..., ⌊L/q⌋},

whereq is the average distance between adjacent probes.



Next, we form a setP ′ of locations which will be inserted
to DNA copy number dataY (xi). A pseudo-marker can be
inserted at each locationpj . However, to avoid the worst cases
when the original marker and a pseudo-marker overlap or their
distance is arbitrarily small, a subsetP ′ of P is formed by

P ′ = {p′j|p′j ∈ P, |p′j − xi| ≥ q/2 for all i = 1, 2, ..., M}.
P ′ includes the points in the setP and satisfies a condition
that the distances from that point to the original locationsmust
be larger thanq/2 but less than3q/2. The nearest neighbor
interpolation is applied to obtain the interpolated valuesfor
Y (p′j).

Finally, the original signalY (xi) and the interpolated signal
Y (p′j) are merged by

Y ′ = {Y (xi) : i = 1, 2, ..., M} ∪ {Y (p′j) : p′j ∈ P ′},
andxi andp′j are made sure in ascending order. The new CGH
dataY ′(xi) instead of the originalY (xi) will be denoised.

C. Zero-padding

In order to get the best performance in the wavelet denoising
algorithm, the length of the input signal is required to be a
power of two [15]. After interpolating, the length of the CGH
signal isN . If N is not a power of two, we can apply the zero-
padding method to make sureN = 2j . For example, we get
N = 120 after interpolating, we must insert more eight zeros
and then we getN = 128. The numbers of decomposition
levels can be computed by

L = log2(N) − 4. (10)

In the above example, we getL = 3. This is a perfect number
of levels which yields the best denoising result.

D. Proposed Method and Experiment Design

The DWT with the redundant ratio of1 : 1 is efficient for
the denoising applications. However, the DWT creates artifacts
around the discontinuities of the input signal [3] because it is
shift-variant. To overcome this problem, SWT with translation
invariant property was proposed for signal denoising. It has
been shown that many of the artifacts could be suppressed
by a redundant representation of the signal [3]. However, if
a signal is decomposed intoL levels, the redundant ratio is
(L + 1) : 1. It makes denoising algorithm more computation-
ally intensive. Several methods were proposed for selecting
thresholding values such as hard universal [8], [7] and un-
universal thresholding [9]. However, the dependency between
wavelet coefficients are not exploited in these methods. Thus,
we propose the usage of shift invariant DTCWT with the
redundant ratio is2 : 1 and bivariate shrinkage estimator
which takes advantage of the dependency between wavelet
coefficient and its parent for array-based DNA copy number
data denoising.

As discussed in section IV-B, DNA copy number data
has the unequal distances between two samples. We use
interpolating method in section IV-B to reduce the difference
of those distances. Data are interpolated before decomposing
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Fig. 5. Example of wavelet denoising results at the noise level of σ = 0.15

using (a) SWT, (b) SWTi, (c) DTCWTi and (d) DTCWTi-bi.
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Fig. 6. Example of wavelet denoising results at the noise level of σ = 0.2

using (a) SWT, (b) SWTi, (c) DTCWTi and (d) DTCWTi-bi.
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Fig. 7. Example of wavelet denoising results at the noise level of σ = 0.25

using (a) SWT, (b) SWTi, (c) DTCWTi and (d) DTCWTi-bi.



by the DTCWT. Our purpose is to find̂D from Y so that the
root mean squared error (RMSE) (11) is the smallest.

RMSE =

√

√

√

√

1

N

N
∑

i

(D̂i − Di)2, (11)

andN is the number of input samples.
The proposed method as called the DTCWTi-bi can be

summarized as follows:

Step 1 :Interpolate the DNA copy number dataY and get
the interpolated DNA copy number dataY

′

.
Step 2 :Insert zeros intoY

′

and decompose new dataY
′′

by the DTCWT toL levels as (10).
Step 3 :Calculate the noise variancêσn

2 and the marginal
varianceσ̂2 for wavelet coefficientyk by using (7),
(8) and (6).

Step 4 :Estimate the coefficientŝwk as in (4).
Step 5 :Reconstruct datâD from the denoised coefficients

ŵk by taking inverse DTCWT.

To compare the performance of the DTCWTi and the
DTCWTi-bi algorithm with other methods such as the SWT
and the SWTi [13] in array-based DNA copy number data
denoising, we also implement the DTCWTi, the SWTi and
the SWT. The main points of these methods are as follows

DTCWTi: The DTCWTi method has the same step 1, step 2
and step 5 as the DTCWTi-bi. They are different in
step 3 and step 4. The universal thresholding value
is applied to modify the noisy DTCWT coefficients.
DWT coefficients of the array CGH signal at level1
are used to estimate noise by (7).

SWT : The SWT method comes from paper [13]. Com-
pared with the DTCWTi, the SWT method has
two different steps: 1) the array CGH signal is
decomposed by the SWT; 2) the real coefficients of
SWT subbands are denoised instead of the complex
coefficients. The universal thresholding is also used
in this method.

SWTi : It extends the SWT method by interpolating array
CGH signal before decomposition. The term by
term thresholding is applied to denoise the SWT
coefficients [13].

For the SWT and SWTi, only the scaling coefficients are
denoised. However, for the DTCWTi and DTCWTi-bi, all
subband coefficients are denoised.

E. Empirical Results

In this section, we will present the results when ap-
plying four methods in section IV-D. One thousand arti-
ficial chromosomes with six different noise levelsσn =
0.125, 0.15, 0.2, 0.25, 0.275 and0.3 are denoised.

The denoising results of all methods are shown in the
table I. We can see that the proposed DTCWTi-bi method
yields the better performance than the others. The DTCWTi-
bi outperforms the SWT by24.6%− 43%, the SWTi [13] by
17.8%−32.5% and the DTCWTi by0.9%−1.5% in terms of

TABLE I
COMPARISON OF AVERAGERMSES OBTAINED FROM THE1,000

ARTIFICIAL CHROMOSOMES WITH EACH OF THE6 NOISE LEVELS USING

THE SWT,THE SWTI , THE DTCWTI AND THE DTCWTI -BI .

σ SWT SWTi DTCWTi DTCWTi-bi
0.125 0.0460 0.0422 0.0350 0.0347
0.15 0.0548 0.0497 0.0393 0.0387
0.2 0.0715 0.0631 0.0469 0.0463
0.25 0.0874 0.0751 0.0530 0.0525
0.275 0.0952 0.0810 0.0558 0.0555
0.3 0.1027 0.0867 0.0587 0.0585

the RMSEs. Moreover, the DTCWTi-bi is more efficient and
has less computation than the SWTi because the redundancy
ratio of the DTCWT2 : 1 is much less than that of the SWT
4 : 1 (if the number of level decompositionL = 3). For all
noise levels, the DTCWTi-bi consistently achieves much better
results than the SWT and SWTi.

From the table I, we also found the evidence to prove that
the bivariate shrinkage function should be applied to the CGH
data denoising instead of the universal thresholding or theterm
by term thresholding. For example, at the noise levelσn =
0.15, the RMSE of the DTCWTi-bi method is0.0387, but that
of the DTCWTi method is0.0393. In this case, the DTCWTi-
bi outperforms DTCWTi by1.5%.

Some examples of wavelet denoising results by using SWT,
SWTi, DTCWTi and DTCWTi-bi methods are shown in Fig. 5
at the noise level ofσ = 0.15, in Fig. 6 at the noise level of
σ = 0.2 and in Fig. 7 at noise levelσ = 0.25. In those figures,
the black solid lines represent the latent true signals, theblue
points stand for the noisy DNA copy datalog2ratio at the
probe loci and the red lines correspond to the denoised data.
We should note that the line connecting the denoised data
points is only for visualization purpose.

At the copy one (from1 kbase to 4.001 kbase) as shown in
Fig. 5, thelog2ratio value of the latent true signal is−0.2975,
but these values of the SWT-based data in Fig. 5(a) are
from −0.1454 to −0.4156. These values can cause a mistake
when we segment the DNA copy number data. However, the
denoised data using the DTCWTi and the DTCWTi-bi will
be segmented correctly as the copy one (from−0.4 to −0.2)
because thelog2ratio values are from−0.2371 to −0.2957 in
Fig. 5 (d) and from−0.2403 to −0.3236 in Fig. 5(c). At the
copy zeroc = 0 (from 4.001 kbase to 0.54x105 kbase), the
denoised data in Fig. 5(b) has an amplitude of0.3181 which
will make an error in segmentation process, while the denoised
data in Fig. 5 (c) and (d) will give a correct segmentation.
Fig 5(a) has a negative peak of−0.7178 which corresponds
to an error rate of31% at 0.53x105 kbase. Fig 5(b) gives the
larger error rate of42%, while it is only 16% in Fig 5(d).
At the copy twoc = 2 (form 0.54x105 kbase to the end of
the chromosome), Fig 5(c) and (d) look smoother than (a)
and (b). When compared with Fig 5(c), the denoised data in
Fig 5(d) tracks the latent true signal more closely than in
Fig 5(c) because the bivariate shrinkage function is applied
to recover the latent true signal in Fig 5(d).

From 1 to 1.16x105 kbase, the denoised signals using



DTCWTi and DTCWTi-bi are approximately the latent true
signals, while the denoised data using the SWT and the SWTi
have many ripples as shown in Fig. 6. From1.72x105 kbase
to 1.77x105 kbase, log2ratio of the latent true signal is
−0.5001. When the DTCWTi-bi method is applied, this value
is −0.5185 with the error rate of3.7%. However, when the
SWT, the SWTi and the DTCWTi are used, this value is
−0.6002, −0.409 and −0.6011 with the error rate of20%,
18.2% and20.2%, respectively. It means that the denoised data
using DTCWTi-bi tracks the latent true signal very well. In
Fig. 6, the DTCWTi-bi achieves better accuracy than the SWTi
by 9.4% and the SWT by15.38% in terms of the RMSEs.

In Fig. 7, the RMSE values of the SWT, the SWTi,
the DTCWTi and the DTCWTi-bi are0.0794, 0.0774, 0.0723
and 0.0716, respectively. If compared to SWTi method, the
DTCWTi-bi outperforms by7.5%.

From above results, we can see that our proposed DTCWTi-
bi method with the bivariate shrinkage estimator is better than
the others in terms of the RMSEs and the efficiency in the
DNA copy number data denoising application.

F. Real Data Examples

In this paper, the BAC array data on 15 fibroblast cell
lines [16], [2] has been used to show that denoising by the
DTCWTi-bi is better than by the SWTi. This data set is
from Stanford University, which can be freely downloaded
at http://www.nature.com/ng/journal/v29/n3/suppinfo/ng754
S1.html. Because the true copy number changes are known
for these cell lines, we choose these data as a proof of
principles. We pick up the chromosome 9 of MPE600 from
these data and apply the SWT, the SWTi, the DTCWTi and
the DTCWTi-bi algorithm for denoising.

In Fig. 8, the number copy is from zero to two. With the
copy two, from4.43x104 kbase to the end of this chromo-
some, Fig. 8(c) and (d) show that the DTCWTi and DTCWTi-
bi give smoother denoised signal than the SWT and the SWTi.
With the copy zero and the copy one, the performance of the
DTCWTi-bi denoising method in Fig. 8(d) is the best when
compared with Fig. 8(a), (b) and (c). From the above figures,
it is easy to see that DTCWTi and, specially, DTCWTi-bi
perform better than SWT and SWTi in denoising of real CGH
data.

V. CONCLUSIONS

In this paper, we explored the dual-tree complex wavelet
transform method with the bivariate shrinkage estimator in
array CGH data denoising study. The unequal spacing of
probes on the chromosome is taken into account. In the
simulation situations, the denoising results from DTCWTi-bi
are much better (improve17.8% − 43%) than the previous
methods in terms of the root mean squared error measurement
at different noise levels. Furthermore, we also demonstrate our
method by using the real array CGH data. In our future work,
we will develop a smoothing and segmentation combinatorial
algorithm to improve the aberration regions identificationfrom
DNA copy number data.
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Fig. 8. The wavelet denoising results of array CGH data on chromosome 9
in the real signal MPE600 using (a) SWTi, (b) SWTi, (c) DTCWTiand (d)
DTCWTi-bi.
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