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Abstract—Array based Comparative Genomic Hybridization
(CGH) is a molecular cytogenetic method for the detection of
chromosomal imbalances and it has been extensively used for
studying copy number alterations in various cancer types. Qr
method captures both the intrinsic spatial change of genomay-
bridization intensities, and the physical distance betwegadjacent
probes along a chromosome which are not uniform. In this pape
we introduce a dual-tree complex wavelet transform method wth
the bivariate shrinkage estimator into array CGH data smooting
study. We tested the proposed method on both simulated datand
real data, and the results demonstrated superior performane of
our method in comparison with extant methods.

I. INTRODUCTION (b)

Array-based comparative genomic hybridization (array ~ Fig- 1. A 3level DWT. (a) Analysis FB, (b) Synthesis FB .
CGH) is a highly efficient technique, allowing the simulta-
neous measurement of DNA copy numbers across the whqle
genome at hundreds or thousands of loci and the reliable
detection of local one-copy-level variations. Charaztion The discrete wavelet transform (DWT), based on the octave
of these DNA copy number changes is important for botpand tree structure, can be viewed as the multiresolution
the basic understanding of cancer and its diagnosis. Inrorg€composition of a signal. Fig. 1 shows 3 level DWT analysis
to develop effective methods to identify aberration regioraind synthesis filter banks (FBs). It takes a len§tisequence,
from array CGH data, many recent research works focus 8nd generates an output sequence of ledgthsing a set of
smoothing-based data processing. For example, Eilers andlowpass and highpass fiters followed by a decimator. It has
Menezes proposed a quantile regression method that empldy® values at the highest resolutiol,/4 values at the next
an L1 error for both of fitness measure and roughness pendggolution, andV/2" at the levelL. Because of decimation,
[1]. Hsu et al. [2] used wavelet transform to fit the data. Ithe DWT is a critically sampled decomposition. However,
this paper, we introduce a dual-tree complex wavelet tcansf the drawback of DWT is the shift variant property. In signal
method with the bivariate shrinkage estimator into arrayHCGdenoising, the DWT creates artifacts around the discottirsu
data smoothing study. The unequal spacing of probes on #fghe input signal [3]. These artifacts degrade the peréorce
chromosome is taken into account. Using the synthetic da@d,the threshold-based denoising algorithm.
our experimental results demonstrate our method ovenpesfo
the previous methods. In terms of the root mean squared er]?’or
measurement at different noise levels, our method improvesrlhe stationary wavelet transform (SWT) [3] is similar to the
about17.8% — 43% than other methods. Furthermore, we alsBWT except that it does not employ a decimator after filtering
use the real array CGH data to validate the efficiency of oand each level's filters are upsampled versions of the pusvio
method. ones. The SWT is also known as the shift invariant DWT.

The absence of a decimator leads to a full rate decomposition
Il. WAVELET METHODS Each subband contains the same number of samples as the
input. So for a decomposition df levels, there is a redundant

In this section, we provide a brief review of waveletatio of (L 4+ 1) : 1. However, the shift invariant property of
transforms which were used for array CGH data smoothiige SWT makes it preferable for the usage in various signal
and is used by this paper. processing applications such as denoising and clasdificati
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1-D case of dual-tree CWT. The DTCWT filter bank structure
is shown in Fig. 4. The analysis FB for the DTCWT is an
iterative multiscale FB. Each resolution level consistsaof
pair of two-channel FBs. The input signal is passed through
the first level of a multiresolution FB. The low frequency
component, after decimation ky is fed into the second level
decomposition for the second resolution. The outputs of the
two trees are the real and imaginary parts of complex-valued
subbands. To reconstruct the signal, the real part and maagi
part are inverted to obtain two real signals, respectivihgese
two real signals are then averaged to obtained the final autpu
For more details of the construction of the dual-tree, tiaelee
(b) is referred to [6].

The most important property of the DTCWT is that all
complex subbands are shift invariant in the sense that there
is no significant aliasing in the decimated complex subbands

because it relies heavily on spatial information. It hasnbed herefore, each complex subband provides a shiftable de-
shown that many of the artifacts could be suppressed bys@iPtion of signal in a specific scale. By construction of
redundant representation of the signal [3]. Fig. 2 Sho\,\,stlg_e dual-tree CWT, ee}ch pair of corresponding filters has the
level SWT analysis and synthesis FBs. Each level's filtees dfilbert transform relation [6]. It is therefore an overcdete

upsampled versions of the previous ones as shown in Fig. @Presentation with a redundant ratio f: 1. In the two
trees, the filters are designed in such a way that the aliasing

Fig. 2. A 3 level SWT. (a) Analysis FB, (b) Synthesis FB .

h hivt in one branch in the first tree is approximately canceled by th
corresponding branch in the second tree. The relation legtwe
g Gt the wavelet filters of the two trees yields shift invariant
property [4]. The equivalent complex filter for each subband
has one-sided frequency support. The real part of the comple
Fig. 3. SWT filters. filter is symmetric while the imaginary part is anti-symmetr

[1l. BIVARIATE SHRINKAGE FUNCTION FOR
C. Dual-Tree Complex Wavelet Transform DTCWT-BASED DENOISING.
A dual-tree structure that produces a dyadic complex DWT \ye assume that we get the DNA copy number datahich
is proposed by Kingsbury [4], [5]. Since array CGH data afc|ydes the deterministic sign@ and the independent and

one dimensional signals, in this paper we only talk about thgantically distributed (1ID) Gaussian noise This Gaussian
noise has zero mean and variance

Y =D +n. (1)

After decomposing the dat&@ by the DTCWT, we get the
complex coefficienty,. In the wavelet domain, the problem
can be formulated as

Yi = Wi + Ng, 2

wherey, are noisy wavelet coefficientsy;, are true coeffi-
cients, andh, are independent Gaussian noise coefficients.

A simple denoising algorithm via wavelet transform con-
sists of three steps: decompose the noisy signal by wavelet
transform, denoise the noisy wavelet coefficients accgrdin
to some rules and take the inverse wavelet transform from
the denoised coefficients. To estimate wavelet coefficients
some of the most well-known rules are universal threshold-
ing, soft thresholding [7], [8], [9] and BayesShrink [10].

In these algorithms, the authors assume that wavelet coeffi-
cients are independent. However, recently, algorithmeiti

(b) the dependency between coefficients can give better results
Fig. 4. The 3 level DTCWT filter bank structure. (a) Analysi8,Rb) compared with the ones developed using an independency
Synthesis FB . assumption [11]. Sendur [11] has exploited this dependency




between coefficients and proposed a non-Gaussian bivariateArtificial Chromosome Generation

pdf for the child coefficientv; and its parentvs as follows Willenbrock and Fridlyand [12] proposed a simulation

model to create the synthetic array CGH data with equally

pw(W) = 3 . exp(_ﬁ lwi 2 + |wa]?). (3) spaced along the chromosome. More recently Y. Wang and
2no g S. Wang [13] extended this model by placing unequally

spaced probes along chromosome. As suggested in [12]

The marginal variances®> is dependent on the coefficients .
index k. Using this bivariate pdf and the Bayesian estimatio%nd [13], the chromosomal segments with DNA copy num-

: ; : ber c = 1,2,3,4 and 5 are generated with probability
th , the MAP estimator of;; [11] is d dtob 1
eory, the estimator ob, [11] s derived to be 0.01,0.08,0.81,0.07,0.02 and0.01. The lengths for segments

\/ﬁ N are picked up randomly from the corresponding empirical
5 = (Vg1 + g2l — T)’L.yl, (4) length distribution given in [12]. Each sample is a mixture
Vigl? + [y2f? of tumor cells and normal cells. A proportion of tumor cells
. . is P;, whose value is from a uniform distribution betwe@f
where(u) is defined by and0.7. As in paper [12], thdog2ratio is calculated by
(u)+ = { 2 gtﬁefw(i)ée ) log2ratio = log (W) ’ ©

wherec is the assigned copy number. The expecte@ratio
value is then the latent true signal.
Gaussian noises with zero mean and variange are
R S 5 added to the latent true signal. Till now, we get the equally
6 =1/(dy" —n’)+, (6) spaced CGH signal. Because the distances between two probes
are randomly, the best way to get these distances is from
whered, is the noise deviation which is estimated from thg,e UCSFE HumArray2 BAC array. Thus, we create a real
finest scale wavelet coefficients by using a robust medigigy signal from the equally spaced CGH signal when the
estimator [8] as follows unequally spaced probes are placed on the chromosome.
. Now, we have many artificial chromosomes of len@®0
72 = M, (7) Mbase which are created by many noise levels, =
0.6745 0.125,0.15,0.2, 0.25,0.275 and 0.3.

gy is the deviation of observation signal estimated by

This estimator can be called as a bivariate shrinkage fomcti
In (4), o can be estimated by

B. DNA Copy Number Data Interpolation

.2 — 1 Z | _|2 ®) The distances between two samples in DNA copy number
v il data vary greatly. Kovac [14] proposed a new method to
uiEN (k) change this kind of data to equally spaced data and got good
where M is the size of the neighborhodtl (k). performance in denoising application. However, in his radth
The DTCWT-based denoising algorithm using bivariattBhe numbers of new sam_ples were crea_lted densely. In [13]
NA copy number data interpolation with pseudo-markers

shrinkage function is summarized as follows was proposed. Their method has some advantages: the number

Step 1 Decompose the noisy sigriialby the DTCWT. of new samples is not dense and the content of data does not
Step 2 Calculate the noise varianeg® and the marginal change much. Suppose that the observed DNA copy number
variances? by using (7), (8) and (6). dataY at M probe locations on the chromosome of length
Step 3 Estimate the coefficient§; as in (4). is
Step 4 Take the inverse DTCWT from the denoised coeffi- Y () = D(xs) + n(x;),
cients.
where i = 1,2,....M, x; are the probe locations with

0 <z <as < ... <zapy <L, and D(x;) is the latent
true signal at location:;. We know thatx; are not equally
In our experiments, the artificial chromosomes are gerldaratgeoaced' Therefore, the equally spaced pseudo-markersdetw

as in [12] and [13]. Since they are unequally spaced data, ;@arse probes are inserted and this interpolating method ca

apply the interpolating method with the Pseudo-marker [1 € §ummar|zed as the fgllowmg steps.

In order to guarantee the number of data points to be a powef'rSt’ a seFP of chat|ons along the chromosome at the
of two, the zero-padding is implemented.The DTCWT and tH@'form spacing of is created by

bivariate shrinkage function are proposed for denoisirggeh P={pjlp; =kq,k=0,1,2,.... | L/q|},
chromosomes. The denoising results of different methoes ar

compared. wheregq is the average distance between adjacent probes.

IV. EXPERIMENTS AND DISCUSSIONS



Next, we form a sef”’ of locations which will be inserted
to DNA copy number datd (z;). A pseudo-marker can be
inserted at each locatiqry. However, to avoid the worst cases
when the original marker and a pseudo-marker overlap or thei
distance is arbitrarily small, a subskt of P is formed by

P' = {pilp} € P,|pj — x| > q/2 forall i =1,2,..., M}.

P’ includes the points in the sét and satisfies a condition
that the distances from that point to the original locationsst
be larger thany/2 but less tharBq/2. The nearest neighbor
interpolation is applied to obtain the interpolated valfes
Y (pj).

Finally, the original signal’(«;) and the interpolated signal
Y (p);) are merged by

V' ={Y(z;):i=1,2,.., M}U{Y(p}) : pj € P'},

andz; andp’; are made sure in ascending order. The new CGH
dataY’(z;) instead of the original(z;) will be denoised.

C. Zero-padding

In order to get the best performance in the wavelet denoising
algorithm, the length of the input signal is required to be a
power of two [15]. After interpolating, the length of the CGH
signal isN. If N is not a power of two, we can apply the zero-
padding method to make suré = 27. For example, we get
N = 120 after interpolating, we must insert more eight zeros
and then we getN = 128. The numbers of decomposition
levels can be computed by

L =logy(N) — 4. (10)

In the above example, we gét= 3. This is a perfect number
of levels which yields the best denoising result.

D. Proposed Method and Experiment Design

The DWT with the redundant ratio df : 1 is efficient for
the denoising applications. However, the DWT createsaantsf
around the discontinuities of the input signal [3] becauss i
shift-variant. To overcome this problem, SWT with tranisiat
invariant property was proposed for signal denoising. & ha
been shown that many of the artifacts could be suppressed
by a redundant representation of the signal [3]. However, if
a signal is decomposed intb levels, the redundant ratio is
(L +1): 1. It makes denoising algorithm more computation-
ally intensive. Several methods were proposed for selgctin
thresholding values such as hard universal [8], [7] and un-
universal thresholding [9]. However, the dependency betwe
wavelet coefficients are not exploited in these methodssThu
we propose the usage of shift invariant DTCWT with the
redundant ratio i2 : 1 and bivariate shrinkage estimator
which takes advantage of the dependency between wavelet
coefficient and its parent for array-based DNA copy number
data denoising.

As discussed in section IV-B, DNA copy number dat@ig. 5. Example of wavelet denoising results at the noiselleffc = 0.15
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has the unequal distances between two samples. We usey (a) SWT, (b) SWTi, (c) DTCWTi and (d) DTCWTi-bi.

interpolating method in section 1V-B to reduce the diffazen
of those distances. Data are interpolated before decomgosi



Fig. 6.
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Example of wavelet denoising results at the noisellef o = 0.2
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0.8

Denoised by SWT

n L
02 04 06 08 1 12 14 16 18 2
kbase x10°

(b)

Denoised by DTCWTi

08 T - - .
0.6
04 *® . .o
.
028, es* * o M
o, 20 ep o2
R 032 o e L0
-0.2fe .
.
-0af * . ..
-0.6
-0.8 4
-1 . . . . . . . L e, .
0.2 0.4 0.6 0.8 1 12 14 16 18 2
kbase x10°
(c)
Denoised by DTCWTi with bivariate shrinkage
0.8 - - - - - - - - - -

Observed log2ratio Observed log2ratio Observed log2ratio

Observed log2ratio

Fig. 7. Example of wavelet denoising results at the noiselle¥oc = 0.25
using (a) SWT, (b) SWTi, (c) DTCWTi and (d) DTCWTi-bi.

0.6

(b)

Denoised by DTCWTi

x10°

(d)

x10°



TABLE |

by the DTCWT. Our purpose is to find from Y so that the COMPARISON OF AVERAGERMSES OBTAINED FROM THE1,000
root mean squared error (RMSE) (11) is the smallest. ARTIFICIAL CHROMOSOMES WITH EACH OF THEG NOISE LEVELS USING
THE SWT,THE SWTI, THEDTCWTIAND THE DTCWTI-BI.
N
1 . : : __
- | = . _ D)2 o SWT | SWTi | DTCWTi | DTCWTi-bi
RMSE J N Z(D i = D)%, (11) 0.125 | 0.0460 | 0.0422| 0.0350 0.0347
v 0.15 0.0548 | 0.0497 0.0393 0.0387
and N is the number of input samples. 8'25 8'82%2 8'8?21 8'8‘5128 8'8‘5122
The proposed method as called the DTCWTi-bi can be 02751 00952 | 0.0810 | ©0.0558 00555
summarized as follows: 0.3~ [ 0.1027] 0.0867 | 0.0587 0.0585

Step 1:Interpolate the DNA copy number daia and get

the interpolated DNA copy number data. o o
Step 2:Insert zeros into” and decompose new data’ the RMSEs. Moreover, the DTCWTi-bi is more efficient and

by the DTCWT td. levels as (10). has less computation than the SWTi because the redundancy
Step 3 :Calculate the noise variancg,? and the marginal ratio of the DTCWT2 : 1 is much less than that of the SWT

variances? for wavelet coefficien; by using (7), 4 : 1 (if the number of level decompositioh = 3). For all
(8) and (6). noise levels, the DTCWTi-bi consistently achieves muchdpet

Step 4 :Estimate the coefficients, as in (4). results than the SWT and SWTi.

Step 5 :Reconstruct datd) from the denoised coefficients From the table I, we also found the evidence to prove that
iy, by taking inverse DTCWT. the bivariate shrinkage function should be applied to thediCG

To compare the performance of the DTCWTi and thdata denoising ms;ead of the universal threshol_dmg otettra
y term thresholding. For example, at the noise levgl=

DTCWTi-bi algorithm with other methods such as the SW 15, the RMSE of the DTCWTi-bi method 0387, but that

and the SWTI [13] in array-based DNA copy number dataf the DTCWTi method i€.0393. In this case, the DTCWTi-
denoising, we also implement the DTCWTi, the SWTi an§i outperforms DTCWTi b&/l 5%' '
the SWT. The main po_mts of these methods are as follows Some examples of wavelet denoising results by using SWT,
DTCWTThe DTCWTi method has the same step 1, stepgyTj DTCWTi and DTCWTi-bi methods are shown in Fig. 5
and step 5 as the DTCWTi-bi. They are different iny the noise level of = 0.15, in Fig. 6 at the noise level of
step 3 and step 4. The universal thresholding valye_ ( 2 and in Fig. 7 at noise level = 0.25. In those figures,
is applied to modify the noisy DTCWT coefficients.the plack solid lines represent the latent true signalshtbe
DWT coefficients of the array CGH signal at leviel ngints stand for the noisy DNA copy datagsratio at the
are used to estimate noise by (7). probe loci and the red lines correspond to the denoised data.
SWT : The SWT method comes from paper [13]. CoMye should note that the line connecting the denoised data
pared with the DTCWTi, the SWT method has,ints is only for visualization purpose.
two different steps: 1) the array CGH signal is atthe copy one (from kbase to 4.001 kbase) as shown in
decomposed by the SWT; 2) the real coefficients Glig. 5, thelog,ratio value of the latent true signal is0.2975,
SWT subbands are denoised instead of the complgyt these values of the SWT-based data in Fig. 5(a) are
coefficients. The universal thresholding is also usgglym —0.1454 to —0.4156. These values can cause a mistake
_in this method. . . when we segment the DNA copy number data. However, the
SWTi : It extends the SWT method by interpolating arrayenoised data using the DTCWTi and the DTCWTi-bi will
CGH signal before decomposition. The term bye segmented correctly as the copy one (frof to —0.2)
term thresholding is applied to denoise the SWhecause théng,ratio values are from-0.2371 to —0.2957 in
coefficients [13]. Fig. 5 (d) and from—0.2403 to —0.3236 in Fig. 5(c). At the
For the SWT and SWTi, only the scaling coefficients areopy zeroc = 0 (from 4.001 kbase to 0.54x10° kbase), the
denoised. However, for the DTCWTi and DTCWTi-bi, alldenoised data in Fig. 5(b) has an amplituded@f181 which

subband coefficients are denoised. will make an error in segmentation process, while the derbis
» data in Fig. 5 (c) and (d) will give a correct segmentation.
E. Empirical Results Fig 5(a) has a negative peak of).7178 which corresponds

In this section, we will present the results when ape an error rate o81% at 0.53x10° kbase. Fig 5(b) gives the
plying four methods in section IV-D. One thousand artilarger error rate ofi2%, while it is only 16% in Fig 5(d).
ficial chromosomes with six different noise levels, = At the copy twoc = 2 (form 0.54x10° kbase to the end of
0.125,0.15,0.2,0.25,0.275 and 0.3 are denoised. the chromosome), Fig 5(c) and (d) look smoother than (a)

The denoising results of all methods are shown in thend (b). When compared with Fig 5(c), the denoised data in
table I. We can see that the proposed DTCWTi-bi methddg 5(d) tracks the latent true signal more closely than in
yields the better performance than the others. The DTCWHig 5(c) because the bivariate shrinkage function is agplie
bi outperforms the SWT b4.6% — 43%, the SWTi [13] by to recover the latent true signal in Fig 5(d).

17.8% — 32.5% and the DTCWTi by0.9% — 1.5% in terms of From 1 to 1.16x10° kbase, the denoised signals using



DTCWTi and DTCWTi-bi are approximately the latent true
signals, while the denoised data using the SWT and the SWTi Denoised by SWT
have many ripples as shown in Fig. 6. Frami2x10° kbase ‘ ‘ ‘ ‘
to 1.77x10° kbase, logsratio of the latent true signal is
—0.5001. When the DTCWTi-bi method is applied, this value
is —0.5185 with the error rate 0f3.7%. However, when the
SWT, the SWTi and the DTCWTi are used, this value is
—0.6002, —0.409 and —0.6011 with the error rate 020%,
18.2% and20.2%, respectively. It means that the denoised data
using DTCWTi-bi tracks the latent true signal very well. In
Fig. 6, the DTCWTi-bi achieves better accuracy than the SWTi

Observed log2ratio

by 9.4% and the SWT byl5.38% in terms of the RMSEs. 1 5 - : —

In Fig. 7, the RMSE values of the SWT, the SWTi, kbase x10*
the DTCWTi and the DTCWTi-bi ar®.0794,0.0774,0.0723 (@)
and 0.0716, respectively. If compared to SWTi method, the ‘ Denoised by SWTi_

DTCWTi-bi outperforms by7.5%.

From above results, we can see that our proposed DTCWTi-
bi method with the bivariate shrinkage estimator is betiant
the others in terms of the RMSEs and the efficiency in the
DNA copy number data denoising application.

Observed log2ratio

F. Real Data Examples

In this paper, the BAC array data on 15 fibroblast cell
lines [16], [2] has been used to show that denoising by the

DTCWTi-bi is better than by the SWTi. This data set is ? N
from Stanford University, which can be freely downloaded e
at http://www.nature.com/ng/journal/v29/n3/suppinigp’54 (b)

Denoised by DTCWTi
S1.html. Because the true copy number changes are known cnosed™ k

for these cell lines, we choose these data as a proof of
principles. We pick up the chromosome 9 of MPEG600 from

these data and apply the SWT, the SWTi, the DTCWTi and
the DTCWTi-bi algorithm for denoising.

In Fig. 8, the number copy is from zero to two. With the
copy two, from4.43x10* kbase to the end of this chromo-
some, Fig. 8(c) and (d) show that the DTCWTi and DTCWTi-
bi give smoother denoised signal than the SWT and the SWTi.
With the copy zero and the copy one, the performance of the
DTCWTi-bi denoising method in Fig. 8(d) is the best when
compared with Fig. 8(a), (b) and (c). From the above figures,
it is easy to see that DTCWTi and, specially, DTCWTi-bi
perform better than SWT and SWTi in denoising of real CGH
data.

Observed log2ratio

V. CONCLUSIONS

In this paper, we explored the dual-tree complex wavelet
transform method with the bivariate shrinkage estimator in
array CGH data denoising study. The unequal spacing of
probes on the chromosome is taken into account. In the
simulation situations, the denoising results from DTCV4Ti-

Observed log2ratio

are much better (imprové7.8% — 43%) than the previous - 5 i . 5 "
methods in terms of the root mean squared error measurement kbase X
at different noise levels. Furthermore, we also demorestrat (d)

method by using the real array CGH data. In our future workig. 8. The wavelet denoising results of array CGH data onrosome 9
we will develop a smoothing and segmentation combinatorialthe real signal MPE600 using (a) SWTi, (b) SWTi, (c) DTCWAFid (d)
algorithm to improve the aberration regions identificafimm PTCWTi-bi

DNA copy number data.
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