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Abstract—A computational framework is presented for surface
based morphometry to localize shape changes between groups
of 3D objects. It employs the spherical harmonic (SPHARM)
method for surface modeling and random field theory (RFT)
for statistical inference. Several new components are introduced
to overcome previous limitations: (1) a general linear model is
used to facilitate controlling for covariates; (2) a new SPHARM
registration method SHREC is proposed to better align SPHARM
models; and (3) an estimated smoothness is used in RFT-based
analysis to obtain more accurate results. This framework is
applied in a mild cognitive impairment (MCI) study to examine
hippocampal shape changes related to diagnostic and genetic
conditions. Several interesting findings from our analyses suggest
combining imaging phenotypes and genetic profiles has the po-
tential to elucidate biological pathways for better understanding
MCI and Alzheimer’s disease.

I. INTRODUCTION

Statistical morphometric analysis is used in biomedical
imaging to study various structures of interest, and aims to
identify morphometric abnormalities associated with a partic-
ular condition in order to aid diagnosis and treatment. We have
previously developed a surface-based morphometry (SBM)
framework and applied it to a neuroimaging genetics study for
relating hippocampal shape changes to certain conditions in
mild cognitive impairment (MCI) [18], [19]. In this work, we
introduce several novel components into our SBM framework
in order to achieve more accurate and more effective results.
We use the same MCI data to demonstrate the effectiveness
of our new framework.

MCI [14] is characterized by memory complaints and
impairment in the absence of dementia and confers a high
risk for Alzheimer’s disease (AD). Brain imaging methods for
identifying medial temporal morphological abnormalities [4],
[16] in circuits required for learning and memory have been
studied for early diagnosis and treatment of MCI and AD. The
connection between genotype and imaging phenotype has yet
to be established, which can help identify possible genetic risk
factors for MCI and AD.

Although Apolipoprotein E (APOE) appears related to sub-
tle cognitive and neuroimaging changes [20], late-onset AD is
a complex disorder that undoubtedly involves many genes and
polymorphisms. For example, the Interleukin-6 (IL-6) gene

is a proinflammatory cytokine involved in neuronal signaling
that appears to reduce hippocampal neurogenesis [12], and
the single-nucleotide polymorphism (SNP) of IL-6 in the -174
promoter region appears to modulate the reduction of medial
temporal volume and gray matter concentration in older adults
with memory decline [15].

In this study, we perform morphometric analysis aiming at
a global and local quantitative representation of hippocampal
shape changes related to certain conditions in MCI. One
condition to evaluate is the interaction between morphometric
changes of the hippocampus and the IL-6 -174 SNP. We
classify this as an imaging genetics study, where imaging
genetics [9] refers to the study of genetic variation using
imaging measures as phenotypes.

To achieve the above goal, we develop an improved SBM
framework that can localize regionally specific shape changes
between groups of 3D objects. Our framework incorporates
spherical harmonic (SPHARM) method [2] for surface mod-
eling, heat kernel smoothing [5] for increasing surface signal
to noise ratio, and random field theory (RFT) [5], [21] for sta-
tistical inference directly on the surface. This new framework
overcomes several limitations of our previous method [18],
[19], which are described below.

Our previous method employs t-test for statistical inference
and cannot exclude the effect of any covariate. In this work, we
perform statistical analysis using general linear model (GLM),
which allows us to obtain more accurate results by removing
effects of covariates. For example, to identify hippocampal
shape changes in MCI, we often need to remove the age effect.
To relate shape changes to IL-6 SNP, the effect of APOE-e4
needs to be excluded.

Our previous method uses the first order ellipsoid (FOE) for
registering SPHARM models, which may not work in general.
In this work, we present a general registration approach
called SHREC, based on minimizing the distance between the
corresponding SPHARM models [17]. We demonstrate that
SHREC can not only create more accurate registration than
the FOE approach but also do it efficiently.

Smoothness estimation is a key step in RFT-based analysis
[21]. The smoothness measure used in our previous study is
predicted from heat diffusion equations [5]. A recent study [8]



Fig. 1. Sample voxel object surface (a) and its SPHARM reconstructions
(b-d) using coefficients up to degrees 1, 8 and 15.

shows that the accuracy of such a prediction is limited. In this
work, we use the approach proposed in [8] to estimate the
smoothness for more accurate results.

II. SURFACE MODELING AND REGISTRATION

A. SPHARM Description

The spherical harmonic (SPHARM) description [2] is used
for modeling all the hippocampal surfaces. Its first step is
to create a continuous and uniform mapping from the object
surface to the surface of a unit sphere. It is formulated as a
constrained optimization problem with the goals of topology
and area preservation and distortion minimization. The result
is a bijective mapping between each point v on a surface
and a pair of spherical coordinates θ and φ: v(θ, φ) =
(x(θ, φ), y(θ, φ), z(θ, φ))T .

Now the object surface can be expanded into a complete set
of spherical harmonic basis functions Y m

l , where Y m
l denotes

the spherical harmonic of degree l and order m. The expansion
takes the form:
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m
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T . The coefficients cm
l up to a

user-desired degree can be estimated by solving a set of
linear equations in a least squares fashion. The object surface
can be reconstructed using these coefficients, and using more
coefficients leads to a more detailed reconstruction.

Figure 1 shows a sample surface and its SPHARM re-
constructions using coefficients up to degrees 1, 8 and 15.
The degree one reconstruction is always an ellipsoid for
any SPHARM model. We call it the first order ellipsoid
(FOE). Here we superimpose a colored mesh onto a SPHARM
reconstruction to show its underlying parameterization. On the
mesh, the yellow, red, and blue dots indicate the north pole
(0, 0), the south pole (0, π), and the crossing point of the zero
meridian and the equator (0, π/2), respectively.

B. SPHARM Registration

SPHARM registration aims to register all the models into
a common reference system to facilitate shape comparison.
It creates a normalized set of SPHARM coefficients, which
are comparable across objects, to form a shape descriptor
(i.e., excluding translation, rotation, and scaling). Scaling

Fig. 2. SHREC idea: (a) template, (b) FOE aligned object, (c) roughly
aligned in object space, (d) aligned in parameter space.

invariance can be achieved by adjusting the coefficients so that
a certain volume is normalized. In our experiments, we employ
three scaling schemes HP, BV, and IC, which normalize for
hippocampal volume (HP), brain tissue volume (BV), and
intracranial volume (IC), respectively. Ignoring the degree 0
coefficient results in translation invariance.

To achieve rotation invariance, traditional SPHARM meth-
ods try to align FOE to a canonical position [2]. This approach
works only if the FOE is a real ellipsoid but not an ellipsoid
of revolution or a sphere. In the latter case, some undesired
result may happen (e.g., Figure 2(a,b)). To bridge this gap,
we present a SPHARM registration method by minimizing
the root mean squared distance (RMSD) between two models
instead of aligning the FOEs and by incorporating the widely
used iterative closest point (ICP) strategy [1]. We call our
algorithm SHREC, standing for SPHARM REgistration with
ICP [17]. The key idea is to perform the following two steps
alternately until some stopping criterion is met: (1) creating
surface correspondence, and (2) minimizing the distance be-
tween the corresponding surface parts. The correspondence
between SPHARM models is implied by the underlying pa-
rameterization: two points with the same parameter pair (θ, φ)
on two surfaces are defined to be a corresponding pair. Thus,
in order to create an ideal correspondence, we can first align
two models in the object space (Figure 2(c)) and then rotate
the parameter net of one model to best match the other’s
(Figure 2(d)).

1) Rotating Parameterization: A naive solution for rotating
the parameterization of a SPHARM model is to recalculate
the SPHARM coefficients using the rotated parameterization.
However, this requires to solve three linear systems and is
time-consuming. To accelerate the process, we use a rotational
property in the harmonic theory and rotate SPHARM coeffi-
cients without recalculating the SPHARM expansion.

Let v(θ, φ) =
∑∞

l=0

∑l
m=−l c

m
l Y

m
l (θ, φ) be a SPHARM

parametric surface. After rotating the parameter net on the
surface in Euler angles (αβγ), the new coefficients cml (αβγ)
can be calculated as follows [3], [10], [13]

cml (αβγ) =
l∑

n=−l

Dl
mn(αβγ) cnl (1)

where
Dl
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mn(β)e−iαm,

dl
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t=max(0, n−m)

(−1)t



Fig. 3. Icosahedral samples at levels 1-3.
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This rotational property was previously used in [3], [13] to
simulate rotations of a spherical function by rotating only the
harmonic expansion coefficients. In SPHARM representation,
we use three spherical functions (i.e., x(θ, φ), y(θ, φ), z(θ, φ))
to describe a 3D object so that we can deal with intrusions
and protrusions, and model any simply connected object.
SPHARM separates the geometry information in the object
space from the parameterization in the parameter space. If we
rotate all three functions by (αβγ), only the parameterization
is rotated in the parameter space and the object stays the same
in the object space.

2) Registration of Parameterization: We first focus on how
to create surface correspondence between two models that
are roughly aligned in the object space. Since the underlying
parameterization defines the correspondence between different
SPHARM surfaces, our task is to rotate the parameterization
of one model to best match the other’s. The goodness of the
match is measured by the root mean squared distance (RMSD)
between two models. RMSD can be calculated directly from
SPHARM coefficients. Let S1 and S2 be two SPHARM
surfaces, where their SPHARM coefficients are formed by cm

1,l

and cm
2,l, respectively, for 0 ≤ l ≤ Lmax and −l ≤ m ≤ l.

The RMSD between S1 and S2 can be calculated as follows
[7]:

RMSD =

√√√√ 1
4π

Lmax∑
l=0

l∑
m=−l

||cm
1,l − cm

2,l||2. (2)

We employ a sampling-based strategy that fixes one pa-
rameterization and rotates the other to optimize the surface
correspondence by minimizing the RMSD defined in Eq. 2.
The rotation space can be sampled nearly uniformly using
icosahedron subdivisions (Figure 3). This assigns rotation
angles to β and γ. Let n be the number of icosahedral samples.
The expansion coefficients are then rotated through (0βγ) and
then by

√
n equal steps in α using Eq. 1, evaluating the RMSD

at each orientation. The result is the best orientation that
minimizes the RMSD. Conceptually, each icosahedral vertex is
rotated onto the north pole, followed by further rotations about
the north-south axis; this gives a nearly uniform coverage of
the parameter space.

Clearly, the registration accuracy of this approach mostly
depends on its sampling resolution. More samples usually
indicate a better result but more running time. In order to
achieve good accuracy and also keep the running time under

control, we propose a hierarchical sampling scheme instead of
simple icosahedral sampling. Our idea is to begin our search at
low resolution and find top K promising candidate orientations.
Then we perform local searches at high resolution for these
candidates to update our candidate set. The process can be
repeated for higher and higher resolutions until the result is
satisfactory or there is no more change in the top K list. This
approach is described in Algorithm 1.

Algorithm 1 Hierarchical registration of parameterization.
1: i:=1
2: repeat
3: Create icosahedral samples at level i for β’s and γ’s
4: Let n be the number of icosahedral samples
5: Create

√
n equally spaced samples in [0, 2π) for α’s

6: if i=1 then
7: Rotate parameterization using each (αβγ), and keep

the top K candidates that minimize RMSD
8: else
9: Keep only local icosahedral samples for β’s & γ’s

10: Rotate parameterization for each top K candidate
using each (αβγ), and create a new set of top K
candidates for the next iteration

11: i:=i+1
12: until No more changes in top K list or satisfactory result

obtained
13: Return the best result in top K list

Similar two-step approaches for registering spherical har-
monic expansions have been proposed in [10], [13]. At low
resolution, [10] uses a random generator to create rotation
samples. One disadvantage of this approach is that differ-
ent runs often derive different results. For [13], icosahedral
samples are also used at low resolution. At high resolution,
both [10] and [13] use a quasi-Newton function minimization
method to identify a nearby local minimum. In this work, our
hierarchical sampling method suggests a unified scheme using
icosahedral samples at both low and high resolutions, is very
easy to implement, and works very well.

3) SPHARM Registration using ICP: A simple method
to use ICP [1] is as follows. We can first create surface
samples and then use ICP to align these points together in
the object space. Here ICP removes both translational and
rotational effects. Then we can register the parameterization to
establish the surface correspondence. This approach is simple,
can roughly align SPHARM models together, but does not
derive optimized results.

To optimize an initial alignment, we can divide the reg-
istration into two stages, one for the parameter space and
one for the object space. Now, we can alternately improve
the alignment in the object space and the alignment in the
parameter space. This is basically the ICP idea. The align-
ment in the parameter space can be improved by running
Algorithm 1. To improve the alignment in the object space,
since an initial surface correspondence has already be created,



we can simply create corresponding surface samples between
SPHARM models and use a quaternion-based algorithm to
align two corresponding point sets together in a least squares
sense [1]. For convenience, we call this quaternion-based
algorithm as CPS (i.e., aligning corresponding point sets).
To start the above iterative procedure, we need an initial
registration, which can be done by ICP or FOE. Algorithm 2
summarizes the above ideas and presents SHREC.

Algorithm 2 SHREC: SPHARM registration with ICP
1: Set up initial alignment using FOE or ICP
2: repeat
3: Run CPS to align models in the object space
4: Run Algorithm 1 to align the parameter nets
5: until No more changes in the parameter space

III. STATISTICAL MORPHOMETRIC ANALYSIS

A. Surface Signal Processing

To perform statistical shape analysis, we need to extract
signals or variables on the surface to describe a shape. We
define the mean of all the healthy controls as our template, xt,
which can be thought of as an average and normal shape. For
an individual shape x, we can use its deformation field δ(x) =
x − xt relative to the template xt to describe it. Note that,
for each surface landmark, there are three related elements
(corresponding to x, y, z coordinates) in δ(x).

We employ the NML and FLD schemes in [18] to define
the surface signal. In NML, we look at the deformation
component along the surface normal direction. In FLD, we
examine the most “discriminative” direction, since our goal is
to detect shape changes between groups. We use Fisher’s linear
discriminant [6] to find the direction; and use the deformation
component along this direction as surface signal.

To increase the signal-to-noise ratio (SNR), we employ heat
kernel smoothing (HKS) [5] that generalizes Gaussian kernel
smoothing to arbitrary Riemannian manifolds. The smoothness
(i.e., full-width-half-max (FWHM) size of the heat kernel) can
be predicted from heat diffusion equations. A recent study [8]
shows that the accuracy of such a prediction is limited, which
suggests a smoothness estimation step is necessary even for
RFT-based analysis using HKS.

The smoothness is related to the covariance matrix of the
partial derivatives of the error field. In practice, it is calculated
using the residual values from the statistical analysis. In
this work, we estimate the smoothness FWHMsurf from the
residual error of each subject after fitting it to the linear model
and we use the following approach proposed in [8].

FWHMsurf = dv ·
√√√√ −2 ln 2

ln(1 − var(ds)
2 var(s) )

(3)

where dv is the average inter-neighbor distance, var(ds) is the
variance of inter-neighbor differences, and var(s) is the overall
variance of the values at each vertex. We calculate a single

smoothness for the entire data set by averaging all individual
FWHMs.

B. General Linear Model

As noted before, in our previous study [18], [19], we employ
t-test for statistical inference, which cannot exclude the effect
of any covariate. However, in a typical neuroimaging study, it
is often necessary to remove the effect of certain covariates
(e.g., age, APOE-e4). To achieve this goal, we consider the
following general linear models (GLMs):

signal = φ1 + φ2 · age + ψ1 · group + ε

signal = φ1 + φ2 · age + φ3 · apoe-e4 + ψ1 · group + ε

To make a general form, let Z = (z1, ..., zk) to be nuisance
variables such as age and APOE-e4 and X = (x1, ..., xp) to
be the variable of interest such as group. Then we have GLM
in the following form

y = ZΦ +XΨ + ε (4)

where Φ = (φ1, ..., φk)T and Ψ = (ψ1, ..., ψp)T . We assume
the usual zero mean Gaussian noise. Then we test if the group
is significant, that is,

H0 : Ψ = 0 for all y ∈ ∂Ω
vs.

H1 : Ψ �= 0 for some y ∈ ∂Ω.

The fit of model is measured by the residual sum of squares
or the sum of he squared errors (SSE):

SSE0 =
m+n∑
i=1

(yi − ZiΦ̂0)2

SSE1 =
m+n∑
i=1

(yi − ZiΦ̂1 −XiΨ̂1)2

where Φ̂0, Φ̂1, Ψ̂1 are the least squares estimators of the
parameters and Zi and Xi are data for the i-th subject. Then
under H0,

F =
(SSE0 − SSE1)/p

SSE0/(m+ n− p− k)
∼ Fp,m+n−p−k (5)

The larger the F value, it is more unlikely to accept H0. For
testing group difference controlling for age, k = 2 and p = 1,
while for testing group difference controlling for both age and
apoe-e4, k = 3 and p = 1.

C. Random Field Theory

We use random field theory (RFT) [5], [21] for multiple
comparison corrections on the surface. The application of RFT
involves two steps: (1) estimate the smoothness of the surface
data, which we have discussed before; (2) use the smoothness
values in the appropriate RFT equation to determine statistical
thresholds that control the familywise error rate (FWER) and
provide corrected P values for the result.

Here we give RFT equations for an F field. For a T field,
see [5] for its equations. If F (x) is a smooth F field, the



Age Education Sex IL-6
(mean±std) (mean±std) (M,F) (CC,CG,GG)

HC 70.6±5.0 16.6±2.7 12, 28 10, 13, 17
CC 72.8±6.1 16.5±2.7 16, 23 7, 25, 7

MCI 72.2±6.9 16.4±3.2 21, 16 10, 18, 9
ALL 71.8±6.1 16.6±2.7 49, 67 27, 56, 33

TABLE I
PARTICIPANT CHARACTERISTICS

corrected P value for correcting multiple comparisons over
all vertices on the hippocampal surface ∂Ω is given by

P ( sup
x∈∂Ω

F (x) > h) ≈
2∑

d=0

µd(∂Ω)ρd(h) (6)

where µd are the d dimensional Minkowski functionals of
∂Ω and ρd are the d dimensional Euler characteristic (EC)
density. The Minkowski functionals are µ0 = 2, µ1 = 0, µ2 =
area(∂Ω)/2, the half area of the template hippocampus ∂Ω.
For an F random field with α and β (α = p and β =
m + n − p − k for the above case) degrees of freedom, the
EC-densities are given by

ρ0(h) =
∫ ∞

h

Γ(α+β−2
2 )

Γ(α
2 )Γ(β

2 )
α

β

(
αx

β

)α−2
2

(
1 +

αx

β

)− (α+β)
2

dx

ρ2(h) =
λ

2π
Γ(α+β+2

2 )

Γ(α
2 )Γ(β

2 )

(
αh

β

)α−2
2

(
1 +

αh

β

)− (α+β−2)
2

×
[
(β − 1)

αh

β
− (α− 1)

]

where λ = 1/(2σ2) measures the smoothness of fields. In
terms of FWHM of a smoothing kernel, the smoothness of
field is given as λ = 4 ln 2/FWHM2. As noted before, the
FWHM is estimated using an approach described in [8].

IV. EXPERIMENTAL RESULTS

A. Data Set

Participants include healthy controls (HC, n = 40), eu-
thymic older adults with cognitive complaints (CC, n = 39)
but intact neuropsychological performance, and patients with
amnestic MCI (n = 37). Table I shows several participant
characteristics [16]. MRI scan data are acquired on a 1.5
Tesla GE scanner as a T1-weighted SPGR coronal series.
The hippocampi are segmented using the BRAINS software
package [11]. A 3D binary image is reconstructed from each
set of 2D hippocampal segmentation results.

All hippocampi are expanded using SPHARM coefficients
up to degree 15; thus, each one is described by (15+1)2 ∗3 =
768 coefficients. The tests are performed on a Dell Workstation
PWS670 with a Xeon 3GHz CPU and 1GB of RAM, running
WinXP and Matlab 7. Different scaling schemes are tested in
our experiments: normalizing for hippocampal volume (HP),
brain tissue volume (BV), and intracranial volume (IC). For
each scaling scheme, we create a template that is the mean of
the controls.

Fig. 4. Sample SHREC result: (a) template, (b) FOE aligned object, (c) after
CPS, (d) after Alg. 1, (e) after another CPS and Alg. 1.

RMSD (before) RMSD (after) Time (sec.)

left 1.788 ± 0.408 1.753 ± 0.384 60.0 ± 23.3
right 1.854 ± 0.446 1.815 ± 0.416 60.0 ± 21.3

TABLE II
SHREC RESULTS ON ALIGNING 116 HIPPOCAMPAL PAIRS

B. Registration using SHREC

As noted before, FOE registration cannot work when the
FOE is not a real ellipsoid but a ellipsoid of revolution or
a sphere. FOE registration has also a symmetry problem and
may create multiple results. In these cases, SHREC can be
used to align things together and remove the ambiguity. Using
SHREC, we can also improve the result of FOE registration.
Figure 4 shows a sample result. In (a), the template is shown.
In (b), the result of FOE registration is shown. In (c), the
result of aligning (b) to (a) by running CPS is shown. In (d),
the result of aligning (c) to (a) by running Algorithm 1 is
shown. In (e), the final result is shown. We see that SHREC
improves the RMSD effectively and progressively from (b) to
(e) through its iterative procedures.

In another experiment, we run SHREC on 116 pairs of left
and right hippocampi that are already aligned using FOE reg-
istration. The templates to which SHREC registers hippocampi
are the mean left and right hippocampi. Table II shows simple
statistics of the results in terms of registration accuracy in
RMSD and the running time. The statistics include mean and
standard deviation shown as (mean ± std). The second column
shows the RMSD to the template before running SHREC; and
the third column shows the RMSD after running SHREC. The
improvement over the FOE registration is obvious. The last
column shows the running time. We can see that SHREC
is very efficient, considering that all the experiments are
performed on a common desktop.

C. Group Analyses

In the first experiment, we perform pairwise group analyses
among HC, CC and MCI using NRM signals and the IC scal-
ing scheme. Figure 5(a) shows the t-values mapped onto the
mean right hippocampus, while Figure 6(a) shows the f-values
derived from general linear model (GLM) while controlling for
age. Using random field theory (RFT), corrected p values can
be calculated for both t-maps and f-maps, which are converted
to − log(corrected p-values) and then shown in Figure 5(b)
and Figure 6(b). These analyses indicate that statistically



Fig. 5. Results of t-test for NRM signals on right hippocampi (IC scaling):
(a) t-maps; (b) − log(corrected p values).

Fig. 6. Results of f-test for NRM signals on right hippocampi (controlling
for age): (a) f-maps; (b) − log(corrected p values).

significant regions of shape changes mostly appear between
HC and MCI. The CC group shows a more intermediate
pattern.

Figure 7 and Figure 8 show significant regions after thresh-
olding at 95% confidence level for t-maps and f-maps, respec-
tively. Here we show the results using both NRM signals (see
(a)) and FLD signals (see (b)). After excluding the age effect,
GLM gives more conservative results than t-test in terms of
significant shape changes. Another observation is that FLD
signals are more sensitive than NRM ones on localizing the
shape changes, which matches our intuition.

Note that significant regions on a t-map can be either blue
(large negative t-values) or red (large positive t-values), while
those on an f-map can only be red because there is no negative
f-values. In all the experiments, we use FWHM = 8mm for
heat kernel smoothing. The estimated FWHMs are printed
in most of the figures and they have a range between 6.7
(Figure 9) and 11.1 (Figure 10). For each of Figures 7-10,
two rows correspond to two different views.

Due to the space limit, we can only summarize our findings
and demonstrate a few results here. A more detailed report will
be written in an extended version of this work. In pairwise
group analyses among HC, CC and MCI, substantial shape
changes can be detected on right hippocampi using GLM
controlling for age under BV or IC scaling scheme between
HC and MCI, but neither between HC and CC nor between
CC and MCI. See Figures 5-8 for example.

In most of our experiments, t-test is very optimistic and of-

Fig. 7. Significant regions (95% confidence level) of t-test for HC versus MCI
on right hippocampi: (a) NRM signals; (b) FLD signals. Two rows correspond
to two different views.

Fig. 8. Significant regions (95% confidence level) of f-test for HC versus
MCI on right hippocampi (controlling for age): (a) NRM signals; (b) FLD
signals.

ten reports many shape changes. We feel that, after controlling
age, APOE-e4, or both, GLM gives more reliable results and
contains less false positives. Thus, in the rest, we only report
our GLM results using FLD signals.

In the second experiment, we perform pairwise group anal-
yses among different IL-6 polymorphisms: C/C, C/G, and
G/G. Using f-test, shape changes can be identified on the
left hippocampi between G/G and C/G (Figure 9(a)), and on
the right hippocampi between G/G and C/C (Figure 9(b)).
Between C/C and C/G, there is no significant changes on either
left or right hippocampi.

In the third experiment, we perform group analyses for HC
versus each IL-6 -174 SNP genotype (C/C, C/G, G/G) for the
diagnostic group MCI. Significant changes can be detected
only between HC and homozygous MCIs (i.e., C/C and G/G)
on right hippocampi (Figure 10).

Fig. 9. f-test for G/G versus C/G or C/C (controlling for age and APOE-e4,
HP scaling): (a) G/G vs C/G on left hippocampi; (b) G/G vs C/C on right
hippocampi.



Fig. 10. f-test for HC vs each MCI genotype on right hippocampi (controlling
for age and APOE-e4, IC scaling): (a) HC vs MCI C/C, (b) HC vs MCI C/G.,
(c) HC vs MCI G/G.

V. CONCLUSIONS

We have performed a mild cognitive impairment (MCI)
study to examine hippocampal shape changes related to certain
conditions including the diagnostic group and the IL-6 -174
SNP. In our analysis, we haved developed an improved surface
based morphometry (SBM) framework that can localize re-
gionally specific shape changes between groups of 3D objects.
Our framework employs the spherical harmonic (SPHARM)
method for surface modeling and random field theory (RFT)
for statistical inference. To overcome several limitation of
our previous method, this new framework incorporates the
following new components: (1) f-test using GLM is used for
statistical inference to remove effects of related covariates such
as age, APOE-e4, or both; (2) a new SPHARM registration
method SHREC is proposed to better align SPHARM models;
and (3) an estimated smoothness is used in RFT-based analysis
to obtain more accurate results.

Our result shows that substantial shape changes mostly
appear between CN and MCI, and the CC group showed a
more intermediate pattern. Among different IL-6 genotype,
we can detect shape changes between G/G and either of C/C
and C/G, while no shape change appears between C/C and
C/G. If we compare HC with each genotype in the MCI
group, shape changes can be detected only between HC and
homozygous MCIs (i.e., C/C and G/G). These findings suggest
that brain imaging phenotypes, genetic profiles, and cognitive
measures, in combination, have the potential to elucidate
the biological pathways related to memory processes and
therapeutic response in MCI and AD. An interesting future
topic could be to investigate a systems biology approach for
understanding the genetic architecture of MCI and AD by
examining more neuroimaging phenotypes related to candidate
pathways composed of ensembles of genomically distributed
but functionally related genes.
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