
CGH Data Modeling and Smoothing in Stationary Wavelet
Packet Transform Domain.

Heng Huang∗1 , Nha Nguyen2, Soontorn Oraintara2and An Vo2

1Department of Computer Science and Engineering, University of Texas at Arlington, Texas, USA
2Department of Electrical Engineering, University of Texas at Arlington, Texas, USA

Email: Heng Huang∗- heng@uta.edu; Nha Nguyen - nhn3175@exchange.uta.edu; Soontorn Oraintara - oraintar@uta.edu; An Vo -

vpnan@gauss.uta.edu;

∗Corresponding author

Abstract

Background: Array-based comparative genomic hybridization (array CGH) is a highly efficient technique, allowing
the simultaneous measurement of genomic DNA copy number at hundreds or thousands of loci and the reliable
detection of local one-copy-level variations. Characterization of these DNA copy number changes is important
for both the basic understanding of cancer and its diagnosis. In order to develop effective methods to iden-
tify aberration regions from array CGH data, many recent research work focus on both smoothing-based and
segmentation-based data processing. In this paper, we propose stationary packet wavelet transform based ap-
proach to smooth array CGH data. Our purpose is to remove CGH noise in whole frequency while keeping true
signal by using bivariate model.

Results: In both synthetic and real CGH data, Stationary Wavelet Packet Transform (SWPT) is the best wavelet
transform to analyze CGH signal in whole frequency. We also introduce a new bivariate shrinkage model which
shows the relationship of CGH noisy coefficients of two scales in SWPT. Before smoothing, the symmetric
extension is considered as a preprocessing step to save information at the border.

Conclusions: We have designed the SWTP and the SWPT-Bi which are using the stationary wavelet packet
transform with the hard thresholding and the new bivariate shrinkage estimator respectively to smooth the array
CGH data. We demonstrate the effectiveness of our approach through theoretical and experimental exploration
of a set of array CGH data, including both synthetic data and real data. The comparison results show that our
method outperforms the previous approaches.

Background
Gene amplifications or deletions frequently con-
tribute to tumorigenesis. When part or all of a chro-
mosome is amplified or deleted, a change in DNA
copy number results. Characterization of these DNA
copy number changes is important for both the ba-

sic understanding of cancer and its diagnosis. Can-
cer researchers currently use array comparative ge-
nomic hybridization (array CGH) to identify sets of
copy number changes associated with the particu-
lar cancer or its congenital and developmental dis-
orders. In array CGH, because the clones contain
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sequences information directly connecting with the
genome database, array CGH offers rapid genome-
wide analysis at high resolution and the information
it provides is directly linked to the physical and ge-
netic maps of the human genome. Bacterial Arti-
ficial Chromosomes (BAC) based CGH arrays were
amongst the first genomic arrays to be introduced [1]
and are routinely used to detect single copy changes
in the genome, owing to their high resolution in the
order of 1 Mb [1, 2]. More recently Oligonucleotide
aCGH [3, 4] was developed to allow flexibility in
probe design, greater coverage, and much higher res-
olution in the order of 35-100 Kb [5].

In order to develop effective methods to iden-
tify aberration regions from array CGH data, the
previous research works focus on both smoothing-
based [5–9] and segmentation-based data process-
ing [10–14]. The array CGH is very noisy. For
example, in cDNA array CGH data, the signal to
noise ratio is often approximately 1 (0 dB) [15]. Re-
search in this area has been active in the last few
years. Beheshti et al. proposed to use the robust
locally weighted regression and smoothing scatter-
plots (lowess) method in [6]. Eilers and Menezes [7]
perform a quantile smoothing method based on the
minimization of the sum of absolute errors to cre-
ate sharper boundaries between segments. Hsu et
al. [8] investigated the usage of maximal overlap dis-
crete wavelet transform (MODWT) in the analy-
sis of array CGH data. They have shown transla-
tion invariant wavelets are promising methods for
array CGH data smoothing and also observed that
the denoising techniques may miss singleton clones
that have small changes but somehow are consis-
tent across tumors. In 2005, Lai [16] compared
11 different algorithms for analyzing array CGH
data. Many smoothing and estimation methods
were included in [16] such as CGHseg (2005) [17],
Quantreg (2005) [7], CLAC (2005) [18], GLAD
(2004) [11], CBS (2004) [14], HMM (2004) [19],
MODWT (2005) [8], Lowess [6], ChARM (2004) [13],
GA (2004) [12], ACE (2005) [20]. Lai concluded
that Wavelet, Quantreg and Lowess method gave
better detection results (higher true position rate
and lower false position rate) than other methods.
So, the wavelet based smooth was considered as the
promising approach. More recently Y. Wang and
S. Wang [5] extended the stationary wavelet (SWT)
denoising and regression for nonequispaced data, be-
cause the physical distance between adjacent probes
along a chromosome are not uniform, even vary dras-

tically. However, if a signal is decomposed by using
SWT or MODWT, we get unequal sub-bands and a
long high frequency sub-bands. Because true CGH
signals include many step functions, they contain im-
portant information in high frequency. If long high
frequency is used to remove noise, maybe, some high
frequency true information of CGH will be loosen.

In this paper, we propose to use the Stationary
Wavelet Packet Transform (SWPT) to denoise the
array CGH data. Because, in SWPT, all sub-bands
are also shift invariant, each sub-band provides a
shiftable description of signal in a specific scale as
the same SWT or MODWT. SWPT analyzes sig-
nal to many equally frequency sub-bands. So, infor-
mation in both of low and high frequency sub-band
are saved. Moreover, new bivariate shrinkage func-
tion is used in SWPT instead of universal threshold-
ing at the first time, soft thresholding [21–23] and
BayesShrink [24]. We demonstrate the effectiveness
of our approach through theoretical and experimen-
tal exploration of a set of array CGH data, including
both synthetic data and real array CGH data. The
comparison results show that our method outper-
forms the previous approaches about 6.4%− 57.9%.
Let see detail results in next section.

Results and Discussion
In this section, results of our proposed methods such
as the SWPT and the SWPT-Bi will be compared
to the other efficient smooth methods such as the
Lowess [16], the Quantreg [7, 25], the SWTi [5], the
DTCWTi-bi [26]. In our experiments, the artificial
chromosomes are generated using the methods pro-
posed in [27] and [5]. Finally, real data examples
are showed to make sure that our methods are still
better the others.

Synthetic data

First, we describe how to create synthesis data as
follow.

Artificial Chromosome Generation

Willenbrock and Fridlyand [27] proposed a simula-
tion model to create the synthetic array CGH data
with equally spaced along the chromosome. More
recently Y. Wang and S. Wang [5] extended this
model by placing unequally spaced probes along
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chromosome. As suggested in [27] and [5], the chro-
mosomal segments with DNA copy number c =
0, 1, 2, 3, 4 and 5 are generated with probability
0.01, 0.08, 0.81, 0.07, 0.02 and 0.01. The lengths for
segments are picked up randomly from the corre-
sponding empirical length distribution given in [27].
Each sample is a mixture of tumor cells and normal
cells. A proportion of tumor cells is Pt, whose value
is from a uniform distribution between 0.3 and 0.7.
As in paper [27], the log2ratio is calculated by

log2ratio = log2

(
cPt + 2(1− Pt)

2

)
, (1)

where c is the assigned copy number. The expected
log2ratio value is then the latent true signal.

Gaussian noises with zero mean and variance σ2
n

are added to the latent true signal. Till now, we
get the equally spaced CGH signal. Because the dis-
tances between two probes are randomly, the best
way to get these distances is from the UCSF Hu-
mArray2 BAC array. Thus, we create a real CGH
signal from the equally spaced CGH signal when the
unequally spaced probes are placed on the chromo-
some. Now, we have many artificial chromosomes
of length 200 Mbase which are created by many
noise levels σn = 0.1, 0.125, 0.15, , 0.175, 0.2, 0.25 and
0.275.

Comparison by RMSE

In this section, we will present the results when
applying six methods such as the Lowess [16], the
Quantreg [7,25], the SWTi [5], the DTCWTi-bi [26]
and our methods the SWPT and the SWPT-Bi. One
thousand artificial chromosomes with seven different
noise levels σn = 0.1, 0.125, 0.15, , 0.175, 0.2, 0.25 and
0.275 are denoised.

The denoising results of all methods are shown in
the Figure 1. We can see that the proposed SWPT
and SWPT-Bi methods yield the better performance
than the others. The SWPT and SWPT-Bi outper-
form the Lowess by 43.4%−55% and 48.4%−54.2%
respectably, the Quantreg by 50.3% − 53.7% and
49.5%−57.9% respectably and the SWTi by 27.5%−
31.5% and 26.8%− 35.3% in terms of the root mean
squared errors (RMSEs). If compared the DTCWTi-
bi, the SWPT-Bi gets better by 6.4% − 17.9% for
seven noise level and the SWPT performs better by
1% − 19.2% for six noise levels (0.1 − 0.225). For
all noise levels, the SWPT-Bi consistently achieves
much better results than the others.

Some examples of wavelet denoising results by
using the Lowess, the Quantreg, the SWTi, the
DTCWTi-bi, the SWPT and the SWPT-Bi methods
are shown in Figure 2 at the noise level of σ = 0.2.
In those Figures, the black solid lines represent the
latent true signals, the blue points stand for the
noisy DNA copy data log2ratio at the probe loci
and the red lines correspond to the denoised data.
We should note that the line connecting the denoised
data points is only for visualization purpose.

At the copy three c = 3 (from 1 kbase to 1.4x104

kbase) as shown in Figure 2, the log2ratio value
of the latent true signal is 0.3598, but these val-
ues of the Quantreg, the SWTi and the DTCWTi-bi
based denoised signal in Figure 2 are from 0.2262 to
0.4966, from 0.1774 to 0.3828 and from 0.09233 to
0.6182 respectably. These values can cause a mis-
take when we segment the DNA copy number data.
However, the denoised data using the Lowess, the
SWPT and the SWPT-Bi will be segmented cor-
rectly as the copy three (from 0.2 to 0.4) because the
log2ratio values are from 0.2129 to 0.3619, 0.2794 to
0.3649 and from 0.2565 to 0.3964. At the copy two
c = 2 (from 1.4x104 kbase to 1.2x105 kbase), the
denoised data in the second sub-figure (denoised by
Quantreg) of Figure 2 has an amplitude of 0.2262
which will make an error in segmentation process,
while the denoised data in other sub-figures of Fig-
ure 2 will give a correct segmentation. In this copy,
the denoised signals using DTCWTi-bi, the SWPT
and SWPT-Bi are approximately the latent true sig-
nals, while the denoised data using the Lowess, the
Quantreg and the SWTi have many ripples. At the
copy zero c = 0 (from 1.2x105 kbase to 1.79x105

kbase), if we use TPR (true position rate = num-
ber of denoised probes belove −0.4 / total of true
probes), the Lowess, the Quantreg and our meth-
ods gave a ratio of 22 over 34 instead of 17/34 and
14/34 of the SWTi and DTCWTi-bi. However, the
denoised signals of the Lowess, the SWPT and the
SWPT-Bi look better than of the Quantreg. At the
copy two c = 2 (form 1.79x105 kbase to the end of
the chromosome), the fourth, fifth and sixth sub-
figures’s signal (denoised by DTCWTi-bi, SWPT
the and SWPT-Bi) of Figure 2 look smoother than
the others. Furthermore, the denoised signals at
the first sub-figure (the Lowess’s) and the second
sub-figure (the Quantreg’s) may cause error when
segmentation because denoised signals change from
−0.3133 to 0.101 (Lowess) and from −0.2119 to
0.2084 (Quantreg).

3



From above results, we can see that our proposed
SWPT and SWPT-Bi methods with the stationary
wavelet packet transform are better than the others.
Now, real data will be used to test five smoothing
methods as follow.

Real Data Examples

In this paper, the BAC array data on 15 fibroblast
cell lines [8, 28] has been used to show that denois-
ing by the SWPT and the SWPT-Bi are better than
by the others such as the Lowess, the Quantreg, the
SWTi and the DTCWTi-bi. This data set is from
Stanford University, which can be freely downloaded
at [29]. Because the true copy number changes are
known for these cell lines, we choose these data as
a proof of principles. We pick up the chromosome
1 of GM13330 from these data and apply six al-
gorithms for denoising. In Figure 3, the number
copies are two and four. At the copy two (from 1
kbase to 1.56x105 kbase), the SWPT and SWPT-
Bi based smoothed signals are smoother than the
others. With the copy four, from 1.56x105 kbase to
the end of this chromosome, the performance of the
Lowess, the SWPT and the SWPT-Bi based denois-
ing methods are the better than of the Quantreg, the
SWTi and the DTCWTi-bi. From the above figures,
we can believe that our methods perform better than
the oethers in denoising of real CGH data.

Conclusions
In this paper, we explored the stationary wavelet
packet transform method with the new bivariate
shrinkage estimator in array CGH data denoising
study. In the simulation situations, the denoising
results from the SWPT and the SWPT-Bi are much
better (improve 6.4% − 57.9%) than the previous
methods in terms of the root mean squared error
measurement at different noise levels. Furthermore,
we also demonstrate our method by using the real
array CGH data. In our future work, we will de-
velop a smoothing and segmentation combinatorial
algorithm to improve the aberration regions identi-
fication from DNA copy number data.

Methods
Our methods named the SWPT (SWPT and uni-
versal shrinkage function) and the SWPT-Bi (SWPT

and bivariate shrinkage function) will be introduced.
First, let review wavelet transform and see how
SWPT operates.

Wavelet Methods

We will provide a brief review of wavelet transforms
which were used for array CGH data smoothing and
is used by this paper. We should note that the sim-
ple wavelet transform will be introduced firstly and
the SWPT will be mentioned finally.

Discrete Wavelet Transform

The discrete wavelet transform (DWT), showed in
Figure 4, based on the octave band tree structure,
can be viewed as the multiresolution decomposition
of a signal. It takes a length N sequence, and gen-
erates an output sequence of length N using a set
of lowpass and highpass fiters followed by a decima-
tor. It has N/2 values at the highest resolution, N/4
values at the next resolution, and N/2L at the level
L. Because of decimation, the DWT is a critically
sampled decomposition. However, the drawback of
DWT is the shift variant property. In signal de-
noising, the DWT creates artifacts around the dis-
continuities of the input signal [30]. These artifacts
degrade the performance of the threshold-based de-
noising algorithm.

Stationary Wavelet Transform

The stationary wavelet transform (SWT) [30],
showed in Figure 4, is similar to the DWT except
that it does not employ a decimator after filtering,
and each level’s filters are upsampled versions of the
previous ones. The SWT is also known as the shift
invariant DWT. The absence of a decimator leads
to a full rate decomposition. Each subband contains
the same number of samples as the input. So for a
decomposition of L levels, there is a redundant ratio
of (L + 1) : 1. However, the shift invariant prop-
erty of the SWT makes it preferable for the usage
in various signal processing applications such as de-
noising and classification because it relies heavily on
spatial information. It has been shown that many
of the artifacts could be suppressed by a redundant
representation of the signal [30].
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Dual-tree Complex Wavelet Transform

A dual-tree structure that produces a dyadic com-
plex DWT, showed in Figure 4, is proposed by
Kingsbury [31, 32]. In the case of 1-D signals,
the structure consists of two binary trees of multi-
resolution decomposition of the same signal. It is
therefore an overcomplete representation with a re-
dundant ratio of 2 : 1. In the two trees, the filters
are designed in such a way that the aliasing in one
branch in the first tree is approximately canceled by
the corresponding branch in the second tree. The
relation between the wavelet filters of the two trees
yields shift-invariant property [31].

The analysis FB for the DTCWT is an itera-
tive multi-scale FB. Each resolution level consists
of a pair of two-channel FBs. The purpose of the
dual-tree CWT is to provide a shiftable and scalable
multiresolution decomposition. The input signal is
passed through the first level of a multiresolution
FB. The low frequency component, after decimation
by 2, is fed into the second level decomposition for
the second resolution. The outputs of the two trees
are the real and imaginary parts of complex-valued
subbands. To reconstruct the signal, the real part
and imaginary part are inverted to obtain two real
signals, respectively. These two real signals are then
averaged to obtained the final output. For more de-
tails of the construction of the dual-tree, the reader
is referred to [33].

Discrete Wavelet Packet Transform

We continue with an another basic othornormal
wavelet transform. Discrete wavelet packet trans-
form (DWPT), which can be readily computed by
using a very simple adjustment of the pyramid algo-
rithm for DWT, will be mentioned. All of DWPT
scales are performed at the same level j. The
jth level DWPT decomposes the frequency interval
[0, 1/2] into 2j equal and individual intervals, each of
which has N/2j values if taking a length N sequence.
DWPT still keeps a shift variant property.

Stationary Wavelet Packet Transform

Stationary Wavelet Packet Transform (SWPT),
showed in Figure 4, still keeps two important prop-
erties of SWT such as shift invariance and redun-
dancy. In the SWPT, both scaling and wavelet co-
efficients are subjected to the high-pass and low-
pass filter when computing the next level coefficients.

At the given level L, there are 2L scales with the
same length as the input signal’s. The redundant
ratio is (2L) : 1 for a decomposition of L levels.
SWPT is really combination of SWT and DWPT.
So, it is very useful in denoising of DCN data. Af-
ter wavelet transform, reader should be introduced
a new shrinkage function to remove noise of CGH
data in SWPT domain as follow.

New Bivariate Shrinkage Function for SWPT-
Based Denoising.
In this sub-section, the bivariate shrinkage function
which describes the relationship of child and parent
(Figure 4) coefficients will be reminded. Because
SWPT, which decomposes a signal into many sub-
bands at the same scale, just has child and cousin co-
efficients (Figure 4) at the same level, new bivariate
shrinkage function will be developed to exploit the
relationship between child and cousin coefficients.

A simple denoising algorithm via wavelet trans-
form consists of three steps: decompose the noisy
signal by wavelet transform, denoise the noisy
wavelet coefficients according to some rules and take
the inverse wavelet transform from the denoised co-
efficients. To estimate wavelet coefficients, some of
the most well-known rules are universal threshold-
ing, soft thresholding [21–23] and BayesShrink [24].
In these algorithms, the authors assumed that
wavelet coefficients are independent. Sendur and Se-
lesnick [34] has recently exploited the dependency
between coefficients and proposed a non-Gaussian
bivariate pdf for the child coefficient wc and its par-
ent wp. Nguyen et el [26,35] applied that function to
recover CGH data successfully and got some promis-
ing results.

Now basing on the idea in [34], we try to dis-
cover the connection of child and cousin coefficients
in SWPT with CGH data. We assume that we get
the DNA copy number data Y which includes the de-
terministic signal D and the independent and identi-
cally distributed (IID) Gaussian noise n. This Gaus-
sian noise has zero mean and variance σ2

n.

Y = D + n. (2)

After decomposing the data Y by the SWPT, we
get the coefficients yk. In the wavelet domain, those
coefficients can be formulated as

y = w + n,
y = w + n,

(3)
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where y and y are noisy wavelet coefficients, w

and w are true coefficients, w represents the cousin
of w (child), n and n are independent Gaussian
noise coefficients. If the cousin scale y continue be-
ing decomposed, we will get detail and approxima-
tion coefficients. Let’s call y as approximation co-
efficients of y. We can calculate y3 from y2 by the
follow equation:

y = w + n,
y[n] = h[n] ∗ y[n]

=
∑N

k=1(h[n− k].y[k]),
(4)

where h[n] is the low pass filter and N is the length
of signal y2. In general, we can write

y = w + n, (5)

where y = (y, y), w = (w, w) and n = (n, n).
The noise pdf of two next scales should be followed
as

pn(n) =
1

2πσn
2

exp(−n2
1 + n2

3

2σ2
n

). (6)

The standard MAP estimator [34] of w from y is
followed as

ŵ(y) = arg max
w

[log(pn(y-w)) + log(pw(w))]. (7)

As [34], we propose a non-gaussian bivariate pdf
for w and w as

pw(w) =
k

2πσ2
exp(−

√
2k

σ

√
|w1|2 + |w3|2). (8)

With this pdf, two variables w and w are really
dependent. Let us define:

f(w) = log(Pw(w))
= log( k

2πσ2 )−
√

2k
σ

√
|w1|2 + |w3|2.

(9)

By using (6), (7) becomes:

ŵ(y) = arg max
w

[− (y1 − w1)2 + (y3 − w3)2

2σ2
n

+ f(w)].

(10)
Solving above equation is the same solving of two
following equations:

(y1 − w1)
σ2

n

+ fw1(ŵ) = 0, (11)

(y3 − w3)
σ2

n

+ fw3(ŵ) = 0, (12)

where fw1 and fw3 represent the derivative of f(w)
with respect to w1 and w3, respectively. We can get
fw1 and fw3 from (9)

fw1(ŵ) =

√
2kw1

σ
√
|w1|2 + |w3|2

. (13)

fw3(ŵ) =

√
2kw3

σ
√
|w1|2 + |w3|2

. (14)

Substituting (13) and (14) into the (11) and (12)
gives:

ŵ1.(1 +
√

2kσ2
n

σr ) = y1, ŵ3.(1 +
√

2kσ2
n

σr ) = y3,
(15)

where r =
√
|ŵ1|2 + |ŵ3|2. Drawing r from (15):

r = (
√
|y1|2 + |y3|2 −

√
2kσn

2

σ
)+. (16)

If replacing r by (16) into (15), the MAP estimator
can be written as:

ŵ1 =
(
√
|y1|2 + |y3|2 −

√
2kσn

2

σ )+√
|y1|2 + |y3|2

.y1, (17)

where (u)+ is defined by

(u)+ =
{

0 if u < 0,
u otherwise. (18)

Replacing y3 from (4) to (17), we can rewrite the
MAP estimator as

ŵ1 =
y1(

√
|y1|2 + |∑N

k=1(h[n− k]y2[k])|2 −
√

2kσn
2

σ )+√
|y1|2 + |∑N

k=1(g[n− k].y2[k])|2
(19)

In (19), σ can be estimated by

σ̂ =
√

(σ̂2
y − σ̂2

n)+, (20)

where σ̂n is the noise deviation which is estimated
from the finest scale wavelet coefficients by using a
robust median estimator [22] as follows

σ̂2
n =

median(|yi|)
0.6745

. (21)

σ̂y is the deviation of observation signal estimated
by

σ̂2
y =

1
M

∑

yi∈N(k)

|yi|2, (22)
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where M is the size of the neighborhood N(k). In
the packet wavelet transform, the cousin scales have
not any parent scale. In this case, we can use hard
thresholding estimator [21] to recover cousin coeffi-
cients ŵcs:

ŵcs = (ycs − σn

√
2 log N)+, (23)

Now, after getting new bivariate shrinkage functions,
we should compare this new function to the bivari-
ate function of Sendur [34] as the table 1. From
this table, our function has four different parts with
Sendur’s. Now, we have one more pre-processing
step to save data at the border of CGH data. That
is signal extension which will be discussed more as
follow.

Signal Extension

CGH data is finite signal. If we apply wavelet
smooth method directly, we may get error at the
border of denoised signal. So, extension step is a
very important preprocessing step before denoising.
There are three main extension methods. Accord-
ing to the book [36] (chapter 8), symmetric exten-
sion is the best if applied to a filtered image be-
cause we can save information at the border better.
With CGH data, we also need save the information
at the border. So, we recommend that symmetric
extension method should be used as a preprocessing
step before denoising. Let’s assume that the length
of the CGH signal is N . In order to get the best
performance in the wavelet denoising algorithm, the
length of the input signal is required to be a power of
two [37]. If N is not a power of two, we can extend
our signal to make sure N = 2j by using symmet-
ric extension method. Finally, the SWPT-Bi will be
detailed in next part.

Proposed Method

The DWT with the redundant ratio of 1 : 1 is ef-
ficient for the denoising applications. However, the
DWT creates artifacts around the discontinuities of
the input signal [30] because it is shift-variant. To
overcome this problem, SWT [5] or MODWT [8] and
DTCWT [26,35] with translation invariant property
was proposed for signal denoising. It has been shown
that many of the artifacts could be suppressed by
a redundant representation of the signal [30]. One
important thing is that CGH data contains many

step functions which their information is in both low
frequency and high frequency. The above wavelet
methods have one disadvantage which some high fre-
quency components of CGH data were removed. In
this paper, the SWPT will be used to overcome some
above problems because it keeps shift invariant prop-
erty and looks for signal both in low frequency and
in high frequency band for denoising operation. Sev-
eral methods were proposed for selecting threshold-
ing values such as hard universal [21, 22] and un-
universal thresholding [23]. However, the depen-
dency between wavelet coefficients are not exploited
in these methods. Thus, we propose the usage of
shift invariant SWPT and new bivariate shrinkage
estimator which takes advantage of the dependency
between wavelet coefficient and its cousin for array-
based DNA copy number data denoising.

Our purpose is to find D̂ from Y so that the root
mean squared error (RMSE) (24) is the smallest.

RMSE =

√√√√ 1
N

N∑

i

(D̂i −Di)2, (24)

and N is the number of input samples, D = {Di}
and D̂ = {D̂i}.

We propose a stationary wavelet packet trans-
form and new bivariate shrinkage function based
smooth method (SWPT-Bi). The SWPT-Bi can be
summarized as follows:

Step 1 : Extend Y by using symmetric extension
method and decompose new data Y

′
by the

SWPT to L levels as (25). The numbers of de-
composition levels [38] (at the remark 11) can
be computed by

L = log2(N)− J. (25)

where J = 3, 4, 5, 6. This is a perfect number
of levels [38] which yields the best denoising re-
sult. In this paper, we use J = 4 as the same
in [8] and [5].

Step 2 : Calculate the noise variance σ̂2
n and the

marginal variance σ̂2 for wavelet coefficient yk

by using (21), (22) and (20).

Step 3 : Estimate the child coefficients ŵc = ŵ1 as
in (19) and estimate the counsin coefficients
ŵcs as in (23). In this case, k = 1.45 should
be chosen.
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Step 4 : Reconstruct data D̂ from the denoised co-
efficients ŵc and ŵcs by taking inverse SWPT.

We also propose one simple method SWPT. In the
SWPT method, hard thresholding [22] method is
used. The SWPT method can be summarized as
follows:

Step 1 : Extend Y by using symmetric extension
and decompose new data using the SWPT.

Step 2 : Estimate the noise variance σ2
n by (21).

Step 3 : Find the denoised coefficients from noisy
coefficients as follow

ŵi = (yi − σn

√
2 log N)+, (26)

where N is length of y.

Step 4 : Reconstruct data D̂ from the denoised co-
efficients ŵi by taking inverse SWPT.
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Figures
Figure 1 - Comparison by RMSE
Comparison of average RMSEs obtained from the 1,000 artificial chromosomes with each of the 7 noise levels
using the Lowess, the Quantreg, the SWTi, the DTCWTi-bi and our methods such as the SWPT and the
SWPT-Bi.

Figure 2 - Example of wavelet denoising results
Example of wavelet denoising results at the noise level of σ = 0.2 using the Lowess, the Quantreg, the SWTi,
the DTCWTi-bi and our methods such as the SWPT and the SWPT-Bi..

Figure 3 - Real Data Examples
The wavelet denoising results of array CGH data on chromosome 1 in the real signal GM13330 using some
methods such as the Lowess, the Quantreg, the SWTi, the DTCWTi-bi and our methods such as the SWPT
and the SWPT-Bi.

Figure 4 - Wavelet Transform
Analysis filter bank and the position of child, parent and cousin coefficients of discrete wavelet transform
(DWT), stationary wavelet transform (SWT), dual tree wavelet complex transform (DTCWT), discrete
wavelet packet transform (DWPT) and stationary wavelet packet transform (SWPT).
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Tables
Table 1 - Comparison table of our new bivariate shrinkage function and function in [34]

Comparison Table
Method New bivariate shrinkage function. Bivariate shrinkage function in [34].

Applying to CGH data. image.
Relationship child and cousin coefficient. child and parent coefficient.

y3 y3 = h ∗ y2, where h is a low pass filter. yp = g ∗ y2, where g is a high pass filter.
Transform SWPT and DWPT. DWT, SWT and DTCWT.
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Figure 1-Comparison by RMSE
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Figure 2 - Example of wavelet denoising results.

Fig. 1. Example of wavelet denoising results.
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Figure 3 - Real data examples.

Fig. 1. Example of wavelet denoising results at the noise level of σ = 0.2 using Lowess, Quantreg, SWTi, DTCWTi-bi and

SWPT-Bi.
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