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Mass Spectrometry (MS) is increasingly being used to discover disease related proteomic patterns. The peak detection
step is one of most important steps in the typical analysis of MS data. Recently, many new algorithms have been
proposed to increase true position rate with low false position rate in peak detection. Most of them follow two
approaches: one is denoising approach and the other one is decomposing approach. In the previous studies, the
decomposition of MS data method shows more potential than the first one. In this paper, we propose a new method
named GaborLocal which can detect more true peaks with a very low false position rate. The Gaussian local maxima
is employed for peak detection, because it is robust to noise in signals. Moreover, the maximum rank of peaks is
defined at the first time to identify peaks instead of using the sinal-to-noise ratio and the Gabor filter is used to
decompose the raw MS signal. We perform the proposed method on the real SELDI-TOF spectrum with known
polypeptide positions. The experimental results demonstrate our method outperforms other common used methods
in the receiver operating characteristic (ROC) curve.

1. INTRODUCTION

Mass Spectrometry (MS) is an analytical technique
has been widely used to discover disease related pro-
teomic patterns. From these proteomic patterns,
researchers can identify bio-markers, make a early
diagnosis, observe disease progression, response to
treatment and so on. Peak detection is one of most
important steps in the analysis of mass spectrum be-
cause its performance directly effects the other pro-
cessing steps and final results such as profile align-
ment 1, bio-marker identification 2 and protein iden-
tification 3.

There are two types of peak detection ap-
proaches: denoising 4, 5 and non-denoising (or de-
composing) 6, 7 approaches. There are several simi-

lar steps between these two approaches such as base-
line correction, alignment of spectrograms and nor-
malization. They also use local maxima to detect
peak positions and use some rules to quantify peaks.
Specially, both approaches use the signal to noise ra-
tio (SNR) to remove some small energy peaks whose
their SNR values are less than a threshold. However,
in the denoising approach, before detecting peaks, a
denoising step is added to reduce the noise of mass
spectrum data. In the non-denoising approach, a de-
composition step is used to analyze mass spectrum
into different scales before the peak detection by lo-
cal maxima. When the smoothing step is applied
into the denoising approach, it possibly removes both
noise and signal. If the real peaks are removed by
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smoothing step, they can never be recovered in the
other processing steps. As a result, we lose some
important information and introduce error into MS
data analysis. Thus, the way we decompose a signal
into many scales without denoising is a really better
approach with great potentials.

The SNR is used to identify peaks in both de-
noising and non-denoising methods. In paper 6, P.
Du et al estimated the SNR in the wavelet space
and got much better results than the previous work.
But they still failed to detect the peak at 147300 and
some peaks with small SNR. This problem came from
the SNR value estimation and all previous methods
estimated the SNR value by using the relationship
between the peak amplitude and the surrounding
noise level. Since some sources of noise can also have
high amplitudes, the high amplitude peak does not
always guarantee to be real peak. On the other hand,
some low amplitude peaks can also be real peaks. It
is clearly that the way using SNR to quantify peaks
is not efficient and accurate. More details of this
problem will be discussed in section 3.4. In this pa-
per, we propose a new robust decomposing based
MS peak detection approach. We use the Gabor fil-
ters to create many scales from one signal without
smoothing. The Gaussian local maxima is exploited
to detect peaks instead of the local maxima because
the Gaussian local maxima method is more robust to
the noise of mass spectrum. Finally, we use the max-
imum rank (MR) of peaks to remove some false peaks
instead of the SNR. The real SELDI-TOF spectrum
with known polypeptide composition and position is
used to evaluate our method. The experimental re-
sults show that our new approach can detect both
high amplitude and small amplitude peaks with a
low false position rate and is much better than the
previous methods.

2. METHODS

In this section, we first introduce the basic knowledge
of Gabor filters. After that, our proposed method
which is a combination of the Gabor filters and the
Gaussian local maxima will be detailed. At last, we
will use one example to show how our method works.

2.1. Gabor Filters
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Fig. 1. The real parts of the uniform Gabor filters.

The Gabor filters 8 were developed to create Gaus-
sian transfer functions in the frequency domain.
Thus, taking the inverse Fourier transform of this
transfer function, we get a filter closely resembling
to the Gabor filters. The Gabor filters have been
shown to have optimal combined localization in both
the spatial and the spatial-frequency domain 9, 10. In
certain applications, this filtering technique has been
demonstrated to be robust and fast 11 and the recur-
sive implementation of 1D Gabor filtering has been
shown in paper 12. This recursive algorithm for the
Gabor filter achieves the fastest possible implementa-
tion. For a signal consisting of N samples, this imple-
mentation requires O(N) multiply-and-add (MADD)
operations. A generic one dimensional Gabor func-
tion and its Fourier transform are given by:

h(t) =
1√
2πσ

exp(− t2

2σ2
) exp(j2πFit), (1)

H(f) = exp(− (f − Fi)2

2σ2
f

), (2)

where σf = 1/(2πσ) represents the bandwidth of the
filter and Fi is the central frequency.

The Gabor filter can be viewed as a Gaussian
modulated by a complex sinusoid (with centre fre-
quencies Fi). This filter responds to some frequency,
but only in a localized part of the signal. The co-
efficients of Gabor filters are complex. Therefore,
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the Gabor filters have one-side frequency support as
shown in Fig. 2 and Fig. 4. We also illustrate the
real parts of the Gabor filters in Fig. 1 and Fig.3.
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Fig. 2. Frequency supports of the uniform Gabor filters.

Given a certain number of subbands, in order
to obtain a Gabor filter bank, the central frequen-
cies Fi and bandwidths σf of these filters are chosen
to ensure that the half-peak magnitude supports of
the frequency responses touch each other as shown
in Fig. 2 and Fig.4. The Gabor filter bank can be
designed to be uniform (in Fig. 2) or non-uniform (in
Fig. 4). In our experiments, we use the Gabor filter
bank with nine non-uniform subbands.
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Fig. 3. The real parts of the non-uniform Gabor filters.
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Fig. 4. Frequency supports of the non-uniform Gabor filters.

After decomposing a MS signal, nine subbands
are created as follows:

yi(t) = hi(t) ∗ x(t), (3)

where x(t) is the input signal, i = 1,2,...,9, and ∗ is
the 1D convolution. This is an over-complete repre-
sentation with the redundant ratio of 9.

2.2. GaborLocal Method

MS data

Full Frequency MS Signal A Full Frequency MS Signal B

Pre-processing Pre-processing

Gaussian Local 
Maxima

Gaussian Local 
Maxima

Number of Peaks Number of Peaks

Intersection

Gabor Filter

Baseline Correction

Fig. 5. Flowchart of Gabor-Gaussian local maxima method
for peak detection in the MS data.
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Our main idea is to amplify the true signal and com-
press the noise of mass spectrum by using the Gabor
filter bank. After that, we use the Gaussian local
maxima to detect peaks and the maximum rank of
peaks which will be defined later to quantify peaks.
This method is named as Gabor filter - Gaussian lo-
cal maxima (GaborLocal). Fig. 5 is the flowchart of
our GaborLocal method. The GaborLocal can be de-
tailed into the four steps including the full frequency
MS signal generation, the peak detection, the peak
quantification, and the intersection.
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Fig. 6. The frequency response of three raw MS signals -
the 17th, 19th and 39th MS data of the CAMDA 2006.

2.2.1. Full frequency MS signal generation

Mass spectrum is decomposed to many scales by us-
ing the Gabor filters after the baseline correction.
Our purpose is to emphasize some hidden peaks
buried by noise. When we analyze 60 MS signals of
the CAMDA 2006 in the frequency domain, we notice
that the valuable information of these signals locate
from zero to around 0.06 (rad/s), and the noises lo-
cate from 0.06 to π (rad/s). The frequency responses
of three raw MS data (the 17th, 19th and 39th MS
data of the CAMDA 2006) are shown in Fig. 6 as an
example. Therefore, the bandwidth σf of the Gabor
filters which enhances peaks must be less than 0.06.
In our experiments, we use σf = 0.01. If the uniform
Gabor filter is used, the number of scales must be

N =
π

0.01
≈ 314 scales. (4)

With 314 scales in (4), we know that the uni-

form Gabor filter is not efficient. If the non-uniform
Gabor filter is used, the number of scales should be
calculated as follows:

σf =
π

2N
,

N = log2(
π

σf
),

N ≈ 8.3 scales with σf = 0.01. (5)

Based on the Eq. (5), we use the non-uniform
Gabor filters with 9 scales to decompose the MS data
(we use CAMDA 2006 data 13 for experiments). If
we transform yi(t), hi(t) and x(t) in Eq. (3) into the
frequency domain, we get

Yi(f) = X(f).Hi(f), (6)

where X(f) is the frequency response of the raw MS
signal, Hi(f) is the frequency response of the ith

Gabor filter, and Yi(f) is the frequency response of
the ith scale. After getting 9 signals according to 9
frequency sub-bands in complex values, the full fre-
quency signal A will be created by summing above
signals in complex values first and taking their abso-
lute values at the final. To create the full frequency
signal B, we take the absolute values for each sub-
band and then sum all these sub-bands. After this
step, we have two full frequency signals A and B.
Let’s denote y(t) and Y (f) as the full frequency sig-
nal in time domain and frequency domain, respec-
tively.

Y (f) =
∑

i=Ni

Yi(f), (7)

where Ni are the scales which are used to create the
full frequency signal. From Eq. (6) and (7), we get

Y (f) =
∑

i=Ni

X(f)Hi(f)

= X(f)
∑

i=Ni

Hi(f) = X(f)Hs(f), (8)

where Hs(f) =
∑

i=Ni
Hi(f) is called the summary

filter. From Eq. (2), the summary filter can formu-
lated as follows

Hs(f) =
∑

i=Ni

exp(− (f − Fi)2

2σ2
f

). (9)

Our purpose in this step is to amplify the true signal
and compress the noise. The black line in the Fig. 7
is Hs(w) which can amplify the true signal from 0 to
0.06 rad

s and compress noise from 0.06 to π. In this
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case, if we use Ni = [1 2 ... 9] we can get the sum-
marized filter represented by the blue line in Fig. 7.
The Fig. 9 shows the frequency response of the 19th

raw MS signal (blue line) and that of full frequency
signal (red line). We can see that the signal from 0 to
0.06 is amplified and the noise from 0.06 to π is com-
pressed. Therefore, in both full frequency MS signal
A and B, all peaks have been emphasized to help
the next peak detection step. In this step, baseline
correction is also used and is detailed as follows
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Fig. 7. The frequency response of the summary filter.

Baseline correction The chemical noise or the
ion overloading is the main reason causing a varying
baseline in mass spectrometry data. Baseline correc-
tion is an important step before using Gabor filter
to get the full frequency MS signals. The raw MS
signal xraw includes some real peaks xp, the baseline
xb, and the noise xn.

xraw = xp + xb + xn. (10)

The baseline correction is used to remove the arti-
fact xb. In this paper, we use ‘msbackadj’ function of
MATLAB to remove baseline. The msbackadj func-
tion estimates a low-frequency baseline first which is
hidden among the high-frequency noise and the sig-
nal peaks and then subtracts the baseline from the
spectrogram. This function follows the algorithms in
Andrade et al.’s paper 14.

Illustration In order to understand this step
easier, one example of the way to create full fre-

quency MS signal is shown in Fig. 8.
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Fig. 8. One example of the step named full frequency MS
signal generation. Raw MS data is the 19th MS signal of
CAMDA 2006.

In this example, the 19th MS signal of CAMDA
2006 is chosen as raw MS data. After the baseline
correction, MS signal is used as the input of the Ga-
bor filters. A Gabor filter bank with 9 non-uniform
sub-bands is employed to create 9 MS signals with 9
different frequency sub-bands. In Fig. 8, the signals
of scale 1, 4, 8 and 9 are visualized. Some noises
in high frequency are separated from the MS signal
of the scale 1, 2, ..., 5. In the MS signal under
the scales 6, ..., 9, all high intensity peaks are still
kept. After combining the MS signals of all scales in
two ways, the full frequency MS signal A and B are
created. The comparison between the raw MS and
full frequency signal in frequency domain is shown
in Fig. 9. This figure shows our purpose which am-
plifies the important signal and compresses the noise
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has been achieved. We should remember that this
is just a compression of noise instead of removing
noise. As the outputs, two full frequency MS signal
A and B will be used to detect peaks in the next step
instead of raw MS data.
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Fig. 9. The frequency response of the 19th MS signal of
CAMDA 2006 before and after using the summary filter.

2.2.2. Peak detection by Gaussian local

maxima

All peaks are detected as many as possible by us-
ing Gaussian local maxima with the full frequency
MS signal A as well as the full frequency MS sig-
nal B. The Gaussian local maxima is used instead
of local maxima because Gaussian local maxima is
robust with noise in peak detection. Before detect-
ing peaks, pre-processing step is also applied such as
elimination peaks in the low-mass region. Now, the
Gaussian local maxima will be introduced as follows
Gaussian local maxima We assume that we want
to find local maxima of y(t). We should follow two
steps: computing derivative of y(t) and finding zero
crossing. The derivative of y(t) is approximated by
the finite difference as follows:

d(y(t))
dt

= lim
h−>0

y(t + h)− y(t)
h

≈ y(t + 1)− y(t).

(11)
At t = t0, if the derivative of y(t) equals to zero
and has a change from positive to negative or from
negative to positive, we have zero-crossing. If the
derivative of y(t) changes from positive to negative
at t0, we have local maxima at t0. With discrete

signal, (11) can be rewritten as follows

d(y(n))
dn

= y(n + 1)− y(n) = y(n) ∗ [1 − 1]. (12)

Unfortunately, MS data always have noise. Thus, we
assume that Gaussian filter g(t, σ) is used to handle
the denoise in MS data (this is not a denoising step).
Finally, derivative of y(t) ∗ g(t, σ) will replace the
derivative of y(t) as follows

d(y(t) ∗ g(t, σ))
dt

=
d(

∫
(y(τ).g(t− τ, σ)dτ))

dt

=
∫

(y(τ).
d(g(t− τ, σ))

dt
dτ) = y(t) ∗ d(g(t, σ))

dt
,

(13)
where

g(t, σ) = exp(− t2

2σ2
). (14)

Taking the derivative of g(t, σ) in (14), we have

d(g(t, σ))
dt

=
−t

σ2
exp(− t2

2σ2
). (15)

From (13) and (15), we have

d(y(t) ∗ g(t, σ))
dt

= y(t) ∗ (
−t

σ2
exp(− t2

2.σ2
)). (16)

Instead of finding zero crossing of d(y(t))
dt , we find

zero-crossing of d(y(t)∗g(t,σ))
dt by (16). With discrete

signal, (16) can be rewritten as follows

d(y(n) ∗ g(n, σ))
dn

= y(n) ∗ v(n), (17)

where v(n) is listed in the table 1. Using Gaussian fil-
ters makes the Gaussian local maxima method more
robust with noise.

2.2.3. Peak quantification by maximum

rank

After detecting many peaks in full frequency MS sig-
nals, a new signal is obtained from these peaks. This
new signal will be the input of the next peak detec-
tion loop where the Gaussian local maxima method
is also applied. Then, many loops are repeated until
the number of peaks obtained is less than a thresh-
old. Now, we define the maximum rank of peaks as
follows:

Maximum rank We assume n loops are used
and get m1 peaks at the loop 1, m2 peaks at loop
2,...and mn peaks at the loop n. We have m1 >
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Table 1. The value of vector v(n) with different lengths.

length n = 1 2 3 4 5 6 7 8 9 10

5 0.0007 0.2824 0 -0.2824 -0.0007
6 0.0007 0.1259 0.7478 -0.7478 -0.1259 -0.0007
7 0.0007 0.0654 0.6572 0 -0.6572 -0.0654 -0.0007
8 0.0007 0.0388 0.4398 0.6372 -0.6372 -0.4398 -0.0388 -0.0007
9 0.0007 0.0254 0.2824 0.7634 0 -0.7634 -0.2824 -0.0254 -0.0007
10 0.0007 0.0180 0.1851 0.6572 0.5329 -0.5329 -0.6572 -0.1851 -0.0180 -0.0007

Table 2. Definition of maximum rank of peaks. Y means that the peak can be de-
tected at that loop. N means that the peak can not be detected at that loop. The peak
with the maximum rank equaling to 1 is able to be detected at all of the loops. The
peak with the maximum rank equaling to n only appeared at the first loop.

Maximum Rank Loop 1 Loop 2 Loop 3 Loop 4 ... Loop (n− 1) Loop n

1 Y Y Y Y ... Y Y
2 Y Y Y Y ...Y N
... ... ... ... ... ... ...
n Y N N N ...N N

m2 > ... > mn. Maximum peak (MR) is defined as
the table 2.

We have mn peaks with MR = 1, mn−1 − mn

peaks with MR = 2,...and m1 − m2 peaks with
MR = n. In our algorithm, the probability of the
true peaks with MR = i is higher than with MR > i.

Demonstration Fig. 10 shows an example of
the step named the peak quantification by using the
maximum rank. First, the full frequency MS signal A
is used to detect peaks by using Gaussian local max-
ima. At the loop 1, we can detect 1789 peaks. From
these 1789 peaks, we create a new signal with 1789
positions. At the next loops 2, 3, 4, we can detect
509, 143, 39 peaks, respectively. At the loop 5, 15
peaks can be detected. Because we choose a thresh-
old of 16 and number of peaks = 15 < 16, we stop
at the loop 5. Actually, we can select the threshold
from 38 to 16 and also get 15 peaks at the final loop.
Now, we get 15 peaks with MR = 1, 39 − 15 = 24
peaks with MR = 2, 143 − 39 = 104 peaks with
MR = 3, 509 − 143 = 366 peaks with MR = 4 and
1789−509 = 1280 peaks with MR = 5. In this case,
we only keep 15 peaks with MR = 1. We also do the
same on the full frequency MS signal B and can get
12 peaks with MR = 1 at the last loop.
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Fig. 10. One example of the step named peak detection and
quantification.
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2.2.4. Intersection
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Fig. 11. One example of the step named intersection.

Now, we have two results of peak detection from
two full frequency MS signals. The intersection of
two above results will be the final result. For exam-
ple, Fig. 11 shows how to do the intersection of two
results. We have 15 peaks in the signal A and 12
peaks in the signal B but we just get 9 peaks as the
final result. With this result, we get 7 true peaks
and 2 false peaks. This result shows that the true
position rate equal to 7

7 = 1 and the false position
rate equal to 2

9 ≈ 0.22.

3. EXPERIMENTAL RESULTS AND
DISCUSSIONS

In this section, our GaborLocal method will be com-
pared to two other most common used methods: the
Cromwell 4, 5 and the CWT 6. We will evaluate
the performance of three methods by using the ROC
curve that is the standard criterion in this area.

3.1. Cromwell Method

Cromwell method is implemented as a set of MAT-
LAB scripts which can be downloaded from 15. The
algorithms and the performance of the Cromwell
were described in 5, 4. The main idea of the Cromwell
method can be summarized as follows

(a) Denoise the individual spectrum using the un-
decimated discrete wavelet transform. The hard
thresholding method was used to reset small
wavelet coefficients to zero. In these papers,
the authors used the median absolute deviation
(MAD) to estimate the thresholding.

(b) Estimate and remove the baseline artifact by
using a monotone local minimum curve on the
smoothed signal.

(c) Normalize the spectrum by dividing the total ion
current, defined to be the mean intensity of the
denoised and baseline corrected spectrum.

(d) Identify peaks by using local maxima and signal
to noise ratio (SNR).

(e) Match peaks across spectrum and quantify peaks
using either the intensity of the local maximum
or computing the area under the curve for the
region defined to be the peaks.

3.2. CWT Method

The algorithm of CWT method has been imple-
mented in R (called as ‘MassSpecWavelet’) and the
Version 1.4 can be downloaded from 16. This method
was proposed by Pan Du et al. 6 in 2006 and can be
summarized as follows:

(a) Identify the ridges by linking the local maxima.
Continuous wavelet transform (CWT) is used to
create many scales from one mass spectrum. The
local maxima at each scale is detected. The next
step is to link these local maxima as lines.
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(b) Identify the peaks based on the ridge lines.
There were three rules to identify the major
peaks. They are the scale with the maximum
amplitude on the ridge line, the SNR being larger
than a threshold and the length of ridge being
larger than a threshold. We should notice that
the SNR is estimated in the wavelet space. This
is a nice motivation of this method.

(c) Refine the peak parameter estimation.

3.3. Evaluation Using ROC Curve
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Fig. 12. Detailed receiver operating characteristic (ROC)
curves obtained from 60 MS signals using Cromwell, CWT,
and our GaborLocal method. The sensitivity is the true posi-
tion rate.
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Fig. 13. Average receiver operating characteristic (ROC)
curves obtained from 60 MS signals using Cromwell, CWT,
and our GaborLocal method. The sensitivity is the true posi-
tion rate.

The CAMDA 2006 dataset 13 of all-in-1 Protein
Standard II (Ciphergen Cat. # C100−007) is used to
evaluate three algorithms: the Cromwell, the CWT,
and our method. Because we know polypeptide com-
position and position, we can estimate the true po-
sition rate (TPR) and the false position rate (FPR).
Another advantage of this dataset is that they are
real data and better than the simulated data in eval-
uation.

The TPR is defined as the number of identified
true peaks divided by the total number of true peaks.
The FPR is defined as the number of falsely iden-
tified peaks divided by the total number of iden-
tified peaks. We call an identified peak as true
peak if it is located within the error range of 1%
of the known m/z value of true peaks. There are
seven polypeptides which create seven true peaks
at 7034, 12230, 16951, 29023, 46671, 66433 and
147300 of the m/z values. Fig. 12 shows the TPR
and the FPR of three above methods with an as-
sumption that there is only one charge. To calcu-
late the ROC curve of Cromwell and CWT meth-
ods, the SNR thresholding values are changed. The
SNR thresholding values are chosen from 0 to 20 for
Cromwell method, from 0 to 65 for CWT method.
In our GaborLocal method, the threshold of num-
ber of peaks is changed from 2000 to 10 to create
the ROC curve. In the Fig. 12, the performance
of Cromwell method is much worse than CWT and
our GaborLocal methods. Most of ROC points of
Cromwell method locate at the bottom of right cor-
ner and most of ROC points of CWT and Gabor-
Local methods are well placed on the top regions.
In our method, some ROC points appear at the top
line with TPR = 1 and some ROC points go with
TPR = 1 and FPR = 0. However, it does not hap-
pen to the CWT. Therefore, GaborLocal is the best
one.

If we take the average of those detailed ROC re-
sults of Fig. 12, we get the average ROC curve as
the Fig. 13. We should notice that we take aver-
age of all ROC points with the same SNR thresh-
old (for Cromwell and CWT) and with the same
peak threshold (for our method). From the Fig. 13,
the results of our method and CWT are much bet-
ter than the Cromwell’s one. Therefore, the decom-
posing approach without smoothing (both SWT and
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GaborLocal) is more efficient than the denoising ap-
proach (like Cromwell). At the same FPR, the TPR
of our method is consistently higher than the TPR of
CWT. Because the maximum rank was used to iden-
tify peaks in the GaborLocal method instead of the
SNR. It is clear that the utilizing maximum rank to
identify peak gives out valuable results. This method
has a significant contribution to detect both high en-
ergy and small energy peaks. The other advantage of
this method is that the threshold of number of peaks
can be created easier than the SNR. Therefore, the
GaborLocal method is an more efficient and accurate
method for real MS data peak detection.

3.4. Examples
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Fig. 14. The ROC curve of three methods such as Cromwell,
CWT, and our method with the 17th mass spectrum signal

Now, we study one example shown in Fig. 15 in which
the 17th spectrum signal of CAMDA 2006 dataset is
picked and tested with three above methods. Fig. 15
(a) includes four sub-figures. The first sub-figure de-
scribes the real peak positions and raw data. The
second and third sub-figure show the full frequency
MS signal A&B with identified peaks. The last sub-
figure is the final result after doing intersection.

We get 12 peak candidates from the full fre-
quency MS signal A and 10 peak candidates from
the full frequency MS signal B. Finally, we get 7 peak
candidates after intersection of 12 and 10 peaks. In
the result, our method can detect exactly 7 peaks
over 7 true peaks. Fig. 15 (b) shows 9 detectable

peaks from CWT method. Among 9 above peaks,
there are only 5 true peaks. The CWT loses two
peaks at 7034 and 147300 of the m/z values. Fig. 15
(c) shows the result of Cromwell’s method. There are
three true peaks being detectable by this method.
Some peaks with low SNRs can not be detected.
Of course, if we decrease the SNR threshold, more
peaks can be detected. However, we also get more
false peaks and the FPR will be increased dramati-
cally. In general, if the thresholding values of three
above methods are changed, we can get the ROC
curve in Fig. 14. From this figure, the performance
of our method keeps TPR = 1 with any value of the
FPR (from 1 to 0). However, the TPR’s values of
Cromwell and CWT methods decrease very quickly
when the FPR’s value decreases. At the FPR = 0,
the TPR of Cromwell method equals 0.1429. In
CWT method, even the FPR ≈ 1, the TPR only
equals to 0.8571. The CWT and Cromwell methods
are limited in peak detection performance because
of the way using the SNR to identify peaks. Fig. 14
and Fig. 15, we can prove that

(1) Decomposition of MS data makes peak detection
easier.

(2) Using SNR to identify peaks can not detect low
SNR peaks.

(3) Using the MR can detect more true peaks than
using the SNR.

4. CONCLUSION

In this paper, we proposed a new approach to solve
peak detection problem in MS data with promis-
ing results. Our GaborLocal method combines the
Gabor filter with Gaussian local maxima approach.
The maximum rank method is presented and used at
the first time to replace the previous SNR method
to identify true peaks. With real MS dataset, our
method gave out a much better performance in the
ROC curve compared to two other most common
used peak detection methods. In our future work,
we will develop new protein identification method
based on our GaborLocal approach.
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Fig. 15. Example of peak detection of the 17th mass spectrum signal using Cromwell, CWT and our GaborLocal method.


