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Abstract

Tensor based dimensionality reduction has recently been
extensively studied for computer vision applications. To our
knowledge, however, there exist no rigorous error analysis
on these methods. Here we provide the first error analysis
of these methods and provide error bound results similar to
Eckart-Young Theorem which plays critical role in the de-
velopment and application of singular value decomposition
(SVD). Beside performance guarantee, these error bounds
are useful for subspace size determination according to the
required video/image reconstruction error. Furthermore,
video surveillance/retrieval, 3D/4D medical image analy-
sis, and other computer vision applications require partic-
ular reduction in spatio-temporal space, but not along data
index dimension. This motivates a D-1 tensor reduction.
Standard method such as high order SVD (HOSVD) com-
press data in all index dimensions and thus can not perform
the classification and pattern recognition tasks. We provide
algorithm and error bound analysis of the D-1 factoriza-
tion for spatio-temporal data dimensionality. Experiments
on video sequences demonstrate our approach outperforms
the previous dimensionality deduction methods for spatio-
temporal data.

1. Introduction

Tensor based dimensionality reduction has recently been
extensively studied for computer vision applications. Video
surveillance/retrieval, 3D/4D medical image analysis, and
other computer vision applications require particular di-
mensionality reduction in spatio-temporal space. At the
beginning, standard Principal component analysis (PCA)
was used to reduce feature dimensionality. E.g. Sirovich
and kirby used PCA for human facial images [8]; Turk and
Pentland [9] proposed the well-known PCA based eigen-
face method for face recognition. PCA works well for vec-
tor dimensionality reduction, but it is not natural to apply

PCA into two dimensional images. In computer vision area,
there are several tensor based methods have been proposed.
Shashua and Levine [10] employed rank-1 decomposition
[13] to represent images; Yang et al. [15] proposed a two di-
mensional PCA (2DPCA). Ye et al. [16] proposed a method
called Generalized Low Rank Approximation of Matrices
(GLRAM) to project the original data onto a two dimen-
sional space. Ding and Ye proposed a non-iterative algo-
rithm called two dimensional singular value decomposition
(2DSVD) [3]. There are several other 3D tensor factoriza-
tion methods and they have been proved to be equivalent to
2DSVD and GLRAM in [7]. For higher dimensional ten-
sor, Vasilescu and Terzopoulos [14] used high order singu-
lar value decomposition (HOSVD) [2].

Although many tensor factorization methods have been
proposed, to our knowledge, there exist no rigorous error
analysis on these methods. In this paper, we provide the
first error analysis of these methods and provide error bound
results similar to Eckart-Young Theorem which plays crit-
ical role in the development and application of SVD. Be-
side performance guarantee, these error bounds are use-
ful for subspace size determination according to the re-
quired video/image reconstruction error. In the real world
case, we usually have an expectation on the feature reduc-
tion or video/image reconstruction errors and want to bal-
ance the errors with subspace size which is related to time
and space complexity. Using our error bound, people can
easily decide the subspace size without running any pro-
gram. Furthermore, in order for classification and clus-
tering usage, video surveillance, retrieval, and other com-
puter vision applications always require particular reduction
in spatio-temporal space, but not along data index dimen-
sion. We propose a D-1 tensor factorization approach that
not only reduce the data dimensionality, but also work well
for classification and clustering. Standard methods such as
HOSVD compress data in all index dimensions and thus can
not perform the classification and pattern recognition tasks.
If people ignore the compression along data index dimen-
sion, HOSVD can be used for D-1 reduction, but with basis
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not optimized for this purpose. The contributions this paper
are summarized as follows:
1) We provide the first error bound analysis of tensor fac-
torization methods with theoretical proof.
2) A novel D-1 tensor factorization method is proposed
for spatio-temporal data dimensionality reduction without
compression on data index dimension.
3) Experiments on video sequences demonstrate our ap-
proach outperforms the previous dimensionality reduction
methods on spatio-temporal data classification, retrieval,
and recognition.

2. Error analysis of tensor factorization

Although several studies on tensor factorization ap-
peared, to our knowledge, there exist no known error anal-
ysis on tensor reduction. In this proposal, we propose to
develop a systematic framework for tensor error analysis.

2.1. 2D tensor: PCA

Consider a set of input data vectors X = (x1, · · · ,xn)
which can be also viewed as a 2D tensor X =
{Xij}m

i=1
n
j=1. PCA is the most widely used dimension re-

duction method by finding the optimal subspace defined
(spanned) by the principal directions U = (u1, · · · ,uk) ∈
�m×k. The projected data point in the new subspace are
V = (v1, · · · ,vn) ∈ �k×n. PCA finds U and V by mini-
mizing

min
U,V

JPCA = ||X − UV ||2
F

(1)

In PCA or SVD, the Eckart-Young Theorem plays a funda-
mental role. Eckart-Young Theorem [4] states the optimiza-
tion problem has PCA/SVD as its global solution and and
the optimal (minimum) value is the sum of eigenvalues.

J opt

PCA =
min(p,n)∑
m=k+1

λm. (2)

where λm are eigenvalues of the covariance matrix XXT .
Our main results of this paper is to extend this theorem to
tensor factorizations.

2.2. 3D tensor

The input data is a 3D tensor: X = {Xijk}n1
i=1

n2
j=1

n3

k=1
.

The rank-1 and HOSVD factorizations, treating every index
uniformly, is

min
U,V,W,M

J1 = ||X − U ⊗1 V ⊗2 W ⊗3 M ||2 (3)

where U, V, W are 2d matrices and M is a 3D ten-

sor. Using explicit index, J1 =
∑

ijk

(
Xijk −

∑
pqr UipVjqWkrMpqr

)2

For HOSVD, M ∈ �k1×k2×k3 .

For rank-1 decomposition, M is diagonal: Mpqr = mp if
p = q = r, Mpqr = 0 otherwise. In many cases, we
require that W, U, V are orthogonal: UT U = I, V T V =
I, WT W = I .

We present main results of this paper on extending
Eckart-Young type theorems to J1 in Eq.(3),

Theorem 1 The factorization of J1 in Eq.(3), has the upper
and lower error bounds

n1∑
m=k1+1

λF
m ≤ J opt

1 ≤
n1∑

m=k1+1

λF
m+

n2∑
m=k2+1

λG
m+

n3∑
m=k3+1

λH
m.

where (λF
1 , · · · , λF

n1
) are eigenvalues of matrix F ,

(λG
1 , · · · , λG

n2
) are eigenvalues of matrix G, (λH

1 , · · · , λH
n3

)
are eigenvalues of matrix H . F, G, H are appropriate co-
variance matrices defined below in Eqs.(14,15,16).

Remark 1 In the Theorem for 3D tensor Xijk , F deals with
index i, G deals with index j, H deals with index k. The
theorem holds for any index correspondence. For example,
we can let F deals with j, G deals with k, H deals with i.

We outline the proof of this theorem.
A) 3-step up-bounding strategy.

Using the following inequality

|a − b| = |a − a1 + a1 − a2 + a2 − b|
≤ |a − a1| + |a1 − a2| + |a2 − b|,

we obtain

||Y − U ⊗1 V ⊗2 W ⊗3 M || (4)

≤ ||Y − U ⊗1 M̄ || (5)

+ ||U ⊗1 M̄ − U ⊗1 V ⊗2 M̃ || (6)

+ ||U ⊗1 V ⊗2 M̃ − U ⊗1 V ⊗2 W ⊗3 M || (7)

= ||Y − U ⊗1 M̄ || (8)

+ ||M̄ − V ⊗2 M̃ || (9)

+ ||M̃ − W ⊗3 M ||. (10)

From Eq.(6) to Eq.(9), U drops out because UT U =
I . From Eq.(7) to Eq.(10), U, V both drop out because
V T V = I .

The above inequality suggests a 3-step optimization pro-
cedure to obtain a good feasible solution for J1 of Eq.(3).
Step-1:

min
U ∈ �n1×k1

M̄ ∈ �k1×n2×n3

Ju = ||Y − U ⊗1 M̄ || (11)

Step-2: we fix M̄ to the values obtained Step-1 and mini-
mize

min
V ∈ �n2×k2

M̃ ∈ �k1×k2×n3

M̄fixed

||M̄ − V ⊗2 M̃ || (12)



Step-3: we fix M̄ to the values obtained in Step-2, and min-
imize

min
W ∈ �n3×k3

M ∈ �k1×k2×k3

M̃fixed

||M̃ − W ⊗3 M || (13)

The benefits of this 3-step approach is that the optimizations
in step-2 and step-3 can be solved in exactly the same way
as in step-1. In fact, we have

Theorem 2 The tensor reduction of Eq.(11) has the follow-
ing global solution.

M̄i1jk =
∑

i

(UT )i1iXijk, U = (u1, · · · ,uk),

where uk is the eigenvector of the matrix F ,

Fii′ =
∑
jk

XijkXi′jk (14)

Proof is skipped due to space limit.
Applying Theorem 2 to the Step-2 and Step-3 opti-

mizations, the solution are V = (v1, · · · ,vk), W =
(w1, · · · ,wk), as the eigenvectors of the covariance ma-
trices G, H :

Gjj′ =
∑
ii′k

Xijk(UUT )ii′Xi′j′k (15)

Hkk′ =
∑
ii′jj′

Xijk(UUT )ii′Xi′j′k′(V V T )jj′ , (16)

and
Mi1j1k1 =

∑
ijk

Uii1Vjj1Wkk1Xijk. (17)

B) Now we can prove rigorously (proof is skipped due to
space limit.)

Proposition 3 Using the solutions (U∗, V ∗, W ∗) provided
by the 3-step procedure, the objective function value

J1(U∗, V ∗, W ∗) =
n1∑

m=k1+1

λF
m+

n2∑
m=k2+1

λG
m+

n3∑
m=k3+1

λH
m.

(18)

C) Now we prove Theorem 1. By counting the degrees of
freedom, we have the following

Ju ≤ Jopt
1 ≤ J1(U∗, V ∗, W ∗) ≡ J3step (19)

where Ju from Eq.(11). The left inequality is due to the
fact that the Ju optimization is over a larger space than the
the J1 optimization The second inequality holds because
J1(U∗, V ∗, W ∗) is a specific feasible solution to the J1 op-
timization, thus provides a upper bound. From this inequal-
ity, we obtain the main inequality of Theorem 1. �–
Remark 2 (U∗, V ∗, W ∗) can be used as a good initial
(U, V, W ), since the upper bound is tight.

2.3. 4D Tensor

Suppose the input data is Y = {Yijk�}n1
i=1

n2
j=1

n3

k=1

n4

l=1
.

A symmetric factorization (such as HOSVD factorizations)
would factorize Y into Y � U ⊗1 V ⊗2 W ⊗3 S⊗4 M . i.e.,

min
U,V,W,S,M

J4 = ||Y −U ⊗1 V ⊗2 W ⊗3 S ⊗4 M ||2 (20)

Error analysis of Theorem 1 can generalize directly to 4D
tensors in a obvious way.

3. D-1 orthogonal tensor decomposition

We consider factorization of D-dimensional tensors us-
ing D-1 orthogonal subspaces. In this case, only D-1 index
dimensions are compressed, but the data dimension are not
compressed. This approach has been used before implic-
itly. Here we study this approach formally and systemati-
cally. We give computational algorithms and provide error
analysis.

3.1. 2D tensor

We first motivate this approach using PCA example. We
can write the PCA objective function as

JPCA = ||X − UV ||2
F

=
n∑

i=1

||xi − Uvi||2. (21)

See Eq.(1). Thus for 2D tensor, the reduction is to a D-1=1-
dimensional subspace U .

3.2. 3D tensor

The input data 3D tensor X = {Xijk}n1
i=1

n2
j=1

n3

k=1
can

be viewed as X = {X1, · · · , Xn3} where each Xi is a 2d
matrix (an image) of size n1 × n2. Therefore, instead of
treating every index equally as in J1 of Eq.(3), we leave the
data index uncompressed and optimize

min
U,V,M

J2 = ||X−U⊗1V ⊗2M ||2 =
n3∑
�=1

||X�−U⊗1V ⊗2M�||2

(22)
where we let M = {M1, · · · , Mn3}. By definition,

[U ⊗1 V ⊗2 M�]ij =
∑
p,q

UipVjqMpq�

=
∑
p,q

Uip(M�)pq(V T )qj = (UM�V
T )ij .

Thus we can write D-1 factorization for a 3D tensor as

min
U,V,M�

J3 =
n3∑
�=1

||X� − UM�V
T ||2 (23)

which is identical to GLRAM/2DSVD [3, 16].



Thus D-1 factorization reduces to known factorizations
for 2D and 3D tensors. The 2DPCA of Yang et al. [15] is
a special case of Eq.(23) by setting U = I (i.e. ignoring U
and increasing the size of M� from k1 × k2 to r × k2).

3.3. 4D tensors

The input data 4D tensor Y = {Yijk�}n1
i=1

n2
j=1

n3

k=1

n4

l=1
can

be viewed as Y = {Y1, · · · , Yn4} where each Yi is a 3D
tensor (a cube, or a video consisting a set of 2D images). In
contrast to J4 of Eq.(20), we here compress 3 dimensions
of each 3D tensor Yi, but not on the data index dimension:

min
U,V,W,M

J5 =
n4∑

�=1

||Y� − U ⊗1 V ⊗2 W ⊗3 M�||2 (24)

We have set M = {M1, · · · , Mn4}. Computational algo-
rithm will be presented in §3.7.

3.4. Robust D-1 tensor factorization

A robust version of D-1 tensor factorization also exists
[6] using R1 norm and robust covariance matrices.

3.5. Two reasons for D-1 tensor factorization

There are two main reasons why D-1 Tensor Factoriza-
tion is preferable: (1) classification, i.e., object recognition,
(2) clustering, i.e., automatic pattern discovery.
Classification

Consider 3D tensor with input data: X =
{X1, · · · , Xn} where each Xi is a 2d matrix (an im-
age). Suppose we obtained D-1 factorization solutions:
U, V, {M�}. In image retrieval, recognition, classification
tasks, we are given a query image, and wish to check the
database to find the image closest to the query image. This
involves the distance. Given two images Xi, Xj , their
distance in the tensor subspace can be efficiently computed
as

||Xi − Xj ||2 = ||LMiR
T − LMiR

T ||2 = ||Mi − Mj||2

Consider 4d tensor with input data: Y = {Y�}�=n
�=1 where

each Yi is a 3D tensor (a video of fixed number of frames).
Suppose we obtained D-1 factorization solutions: 2d ma-
trices U, V, W and the 3D tensor {M�}. The distances be-
tween two videos Yi, Yj are efficiently computed as

||Yi − Yj ||2 = ||UV W (Mi − Mj)||2 = ||Mi − Mj ||2

Tensor clustering
Given a set of 1d tensors (vectors) x1, x2, · · · , xn, we

can do K-means clustering

min
{ck}

n∑
�=1

min
1≤k≤K

||x� − ck||2 =
K∑

k=1

∑
i∈ck

||x� − ck||2 (25)

where ck is the centroid vector of cluster ck. This formal-
ism can be extended to generic tensors. Given an d dimen-
sional tensor, or, equivalently a set of (D-1)-dimensional
tensors X1, X2, · · · , Xn, the K-means tensor clustering
minimizes

min
{C(k)}

n∑
�=1

min
1≤k≤K

||X(�)−C(k)||2 =
K∑

k=1

∑
i∈Ck

||X(�)−C(k)||2

(26)
where Ck is the centroid tensor of cluster Ck. Now sup-
pose we carried out a D-1 tensor factorization on X into
U, V, W, · · · , and {M�}. Using the distance relationship,
the tensor clustering can be done entirely in {M�}:

min
{C(k)}

n∑
�=1

min
1≤k≤K

||M (�)−C(k)||2 =
K∑

k=1

∑
i∈Ck

||M (�)−C(k)||2

(27)
where Ck is the centroid tensor of cluster Ck. These clus-
tering formulations show the usefulness of D-1 tensor fac-
torization.

3.6. Error analysis of D-1 factorization

Error analysis in §2 can be directly extended to D-1 fac-
torization. We have

Theorem 4 The factorization of J5 in Eq.(24) has the up-
per and lower error bounds as shown in Theorem 1 with
F, G, H are appropriate covariance matrices defined below
in Eq.(28).

Fii′ =
∑

�

∑
jk

Y
(�)
ijk Y

(�)
i′jk, (28)

Gjj′ =
∑

�

∑
ii′k

X
(�)
ijk(UUT )ii′X

(�)
i′j′k, (29)

Hkk′ =
∑

�

∑
ii′jj′

X
(�)
ijk(UUT )ii′X

(�)
i′j′k′(V V T )jj′ . (30)

Theorems 1 and 4 holds for arbitrary number of factors
(e.g. GLRAM/2DSVD for 2D tensors). They are the gener-
alization of Eckart-Young theorem to tensors.

3.7. Using error bounds to determine reduction pa-
rameters

Suppose in Theorem 1, with initial k0
1 , k

0
2 , k

0
3 , matrix

F, G, H are formed and eigenvalues are computed. We can
used the upper bound to estimate compression error at any
k1, k2, k3:

J(k1, k2, k3) =
n1∑

m=k1+1

λF
m +

n2∑
m=k2+1

λG
m +

n3∑
m=k3+1

λH
m.



This relation is exact when k1 = k0
1 , k2 = k0

2 , k3 = k0
3 ,

For other k1, k2, k3 values: this is a good approximation.
We can use this for choosing parameters k1, k2, k3. Given
a pre-specified error tolerance on reconstruction error: δ.
Simply choose k1, k2, k3 such that J(k1, k2, k3) ≤ δ.

3.8. Algorithm for D-1 factorizations

We derive the algorithm for 4D tensor D-1 Factorization
J5 in Eq.(24).

First, we initialize U,V, W using Theorem 4, where U0

is given by the eigenvectors of Eq.(28) and V 0 is given by
the eigenvectors of Eq.(29). Second, we iterate to compute
newer W, U, V as eigenvectors of H, F, G as

Hkk′ =
∑

�

∑
ii′jj′

X
(�)
ijkX

(�)
i′j′k′(UUT )ii′ (V V T )jj′

Fii′ =
∑

�

∑
jj′kk′

X
(�)
ijkX

(�)
i′j′k′(V V T )jj′ (WWT )kk′

Gjj′ =
∑

�

∑
ii′kk′

X
(�)
ijkX

(�)
i′j′k′(UUT )ii′ (WWT )kk′

3.9. Time and space complexities

In Table 1, we summarize the storage and matrix sizes
for which we need to compute D-1 tensor factorization. For
Nl image sequences which include N1 images of size N2×
N3, the number of principle components is selected on three
directions as K1, K2, K3, respectively. K is the number of
principle components in PCA.

method storage
PCA N1N2N3K + NlK
D-1

factorization N1K1 + N2K2 + N3K3 + NlK1K2K3

Table 1. Storage comparison for Nl×N1 images of size N2×N3.

3.10. Relation to HOSVD

In principle, we can compute HOSVD and use U, V (ig-
noring W ) for clustering and classification tasks. But this
is non-optimal, due to the compression of data dimension.
Although Tucker-2 decompositions [13] mentioned 3 possi-
ble 2-index decompositions for 3D tensor, the significance
leaving data dimension uncompressed is first recognized in
[3, 16].

4. Experimental results

In this section, we experimentally evaluate the perfor-
mance of our proposed algorithm with respect to the qual-
ity of video classification, information retrieval, and face
recognition. The images from ORL face database [1] are

used to demonstrate how the error bounds can be used to
determinate the subspace size. One public video dataset
TRECVID 2005 is used for experiments on video classifi-
cation and information retrieval. The other well known face
database (CMU PIE) [11] are used validate to the perfor-
mance of D-1 tensor factorization method. In this section,
Ki = K1, Kj = K2, Kk = K3, and K1, K2, K3, Ni, Nj ,
Nk are the same parameters in Table 1.

4.1. Upper bound experiment

The upper bound in our theorem 1 is astonishing tight.
We reconstruct 4D tensor images from AT&T face database
[1], YALE face database B [5], and PIE face database [11]
with k1 = k2 = 20, k3 =the length of image sequence. The
error ratio is defined as (Jupperbound − Jopt

1 )/||X ||2F . The
error ratios of all three datasets are less than 10−6.

4.2. Demonstration of subspace size selection using
error bounds

In the ORL database (current AT&T), there are 40 dif-
ferent people and each has ten different images. For some
people, the images were taken at different times, varying
the lighting, facial expression (open/close eyes, smiling/no-
smiling) and facial details (glasses/no glasses). We treat all
images as 40 image sequences and each subject has one
sequence which has ten different images. Since we only
demonstrate how to decide the subspace size using error
bounds, the size of dataset is not an issue.

The D-1 tensor factorization is applied into these ten
image sequences and the error bounds are calculated using
Theorem 1: BF =

∑Ni

m=K1+1 λF
m, BG =

∑Nj

m=K2+1 λG
m,

and BH =
∑Nk

m=K3+1 λH
m. The error bound values of BF ,

BG, and BH are plotted in Fig. 1. When the number of K1,
K2, and K3 increase, the error bounds decrease. Since K1

only can change from 1 to 10, we plot all of them. Because
ten images of each sequence are different and have few cor-
relation between each other (e.g. continuous movement).
The curve in Fig. 1(a) doesn’t decrease fast in the first sev-
eral K1 values. The image size of ORL face data is 92×112.
We show the error bound values of BG and BH at K2 and
K3 ranging from 1 to 50 in Fig. 1(b) and Fig. 1(c). Since
the correlations of row-row and column-column in images
are very high, these two curves decrease fast during the first
several K2 or K3 values.

For different datasets, people can easily plot such three
figures for error bounds. Using them, the cutoff values of
K1, K2, and K3 can be determined. From Theorem 1, we
know the sum of error bounds of K1, K2, and K3 is the
upper bound of image reconstruction error. Please pay at-
tention to the Remark 1 for Theorem 1. Each index i, j, and
k can be used to compute the low bound of reconstruction
error.
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Figure 1. Error bound values of BF =
∑Ni

m=K1+1 λF
m, BG =∑Nj

m=K2+1 λG
m, and BH =

∑Nk
m=K3+1 λH

m using ORL face
database.

4.3. Experiments on TRECVID 2005

Using the dataset of TRECVID 2005 [12], the video se-
quences are constructed as the following steps. We choose
the shots in which there are at least 5 sub-shot key frames
and select the first 5 key frames to form the sequence. In
order for the convenience of evaluation, we ignore the shots
which are not labeled in the ground-truth data. Finally we
generate 347 video sequences for 10 topics. To evaluate
the performance, K-NN classifiers with K=1 are employed
both in D-1 tensor factorization method and standard PCA.
In PCA, we construct the vector for one video sequence us-
ing all the pixels of all the images in the sequence. Since
the videos in TRECVID 2005 are multi-labeled, we com-
pare the leave-one-out overall classification precision and
recall (commonly also called as sensitivity) with respect to
the storage size that can be calculated from Table 1.

The comparison results are shown in Fig. 2 and Fig. 3.
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Figure 2. Video classification overall precision comparison be-
tween D-1 tensor factorization (Ki from 1 to 4) and PCA.
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Figure 3. Video classification overall recall comparison between
D-1 tensor factorization (Ki from 1 to 4) and PCA.

The values on x-axis are the storage size of both D-1 ten-
sor factorization method and PCA. The values on y-axis in
Fig. 2 are classification accuracy and in Fig. 3 are sensitiv-
ity. We have the following observations: a) for all Ki from 1
to 4, the D-1 tensor factorization method outperforms PCA
on both classification precision and recall; b) because both
D-1 tensor factorization and PCA use global features for
classification, the classification accuracy is lower than 70%
(if more local features are incorporated into global features,
the classification can be improved more); c) because the en-
vironmental background during these 347 video sequences
has a large variation and Ki = 1 can filter out most re-
dundant and irrelevant information between images in the
sequence, the D-1 tensor factorization method has the best
performance under Ki = 1.

Using these 347 video sequences, we also perform our
method on image retrieval experiment. Fig. 4 plots a case of
the retrieval results using both D-1 tensor factorization and
PCA. An Euclidean distance is deployed on the compressed
feature space as the ranking metric. In Fig. 4, two top rows
are retrieval results of PCA and two bottom rows are results
of D-1 tensor factorization. In each method, the first image
(they are the same query image) is the key frame of query



video which belongs to topic 10 (cars related video), the
others are the top-9 ranked retrieval videos. PCA retrieves
the wrong images from topic 4 and topic 1 at rank 7 and 8.
Our D-1 tensor factorization method only gets one error at
rank 8. During the retrieval results of our method, two im-
ages at rank 6 and 9 are pretty interesting. They don’t have
car in query video, but they really include different cars and
driver inside. Since D-1 tensor factorization method extract
the correlation from images in sequence, it is a promising
approach for video classification and retrieval.

4.4. PIE database

The CMU Pose, Illumination, and Expression (PIE)
database [11] contains 41,368 images of 68 people, each
person under 13 different poses, 43 different illumination
conditions. We collect the first 30 people with all 13 differ-
ent poses under 10 randomly selected illumination condi-
tions. We treat the 13 different poses under the same person
and illumination condition as a sequence. Thus, every peo-
ple has 10 image sequences under 10 different illumination
conditions. The order of pose in each sequence is fixed. To-
tally 300 sequences are selected and 10 for each person. We
choose Nj = 40, Nk = 30 in the face recognition experi-
ment.

For each people, we use 9 image sequences as training
data and the other one as testing data. K-NN classifiers
with K=1 are employed with 10-fold cross validation. Since
each sequence has only one label, we compare the overall
face recognition accuracy. Fig. 5 presents the face recogni-
tion results. The values on x-axis are storage numbers and
on y-axis are classification accuracy. Our D-1 tensor fac-
torization method overwhelmingly outperforms PCA for all
Ki from 1 to 4. When PCA uses 2 principle components,
the face recognition accuracy of D-1 tensor factorization
method is above 80% for all Ki from 1 to 4. As we dis-
cussed above, because the environmental background has a
large variation, Ki = 1 has a better face recognition accu-
racy.

In the real world case, people’s poses are more unpre-
dictable and we are not able to control the capture process
of the face video. Thus, we are also interested in the video
sequences that are disordered in pose. Based on this truth,
we conduct another experiment using the above settings on
illustration, but the order of poses in different sequences are
random.

We use the same face recognition experimental settings
(K-NN classifiers with K=1 plus 10-fold cross validation).
Fig. 6 compares the face recognition accuracy between D-
1 tensor factorization and PCA. Since the order of poses is
random, the distances between sequences within the class
is increased and the face recognition accuracy definitely is
decreased. PCA has a very low recognition rate. D-1 ten-
sor factorization method still can keep a better face recog-
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Figure 5. Face recognition accuracy comparison between D-1 ten-
sor factorization (Ki from 1 to 4) and PCA.
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Figure 6. Face recognition accuracy comparison between D-1 ten-
sor factorization (Ki from 1 to 4) and PCA when the order of poses
is random.

nition performance through the correlations within image
sequence. Our method is more robust to the real world ap-
plications compared to PCA.

5. Conclusion

In this paper, we first provide error bounds for various
tensor factorizations. This error bound can help users to de-
termine subspace dimensions. The theorems also suggest
a way to initialize subspaces. Furthermore, motivated by
video classification and recognition, we generalize exist-
ing approaches into a D-1 tensor factorization framework
and formally analyze its properties. D-1 factorizations are
natural for clustering, recognition, and classification. Us-
ing the dataset from TRECVID and PIE face databases, we
demonstrate our approach has a much better performance
than standard PCA on video classification, information re-
trieval, and face recognition from image sequences.
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Figure 4. One retrieval case using both PCA and D-1 tensor factorization. The top two rows are retrieval results of PCA and two bottom
rows are results of D-1 tensor factorization. In each method, the first image is the key frame of query video (the first left images on row 1
and 3), the others are the top-9 ranked retrieval videos (starting from the second left images on row 1 and 3).
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