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Mass Spectrometry (MS) is increasingly being used to discover diseases related pro-
teomic patterns. The peak detection step is one of most important steps in the typical
analysis of MS data. Recently, many new algorithms have been proposed to increase
true position rate with low false discovery rate in peak detection. Most of them follow
two approaches: one is the denoising approach and the other one is the decomposing
approach. In the previous studies, the decomposition of MS data method shows more
potential than the first one. In this paper, we propose two novel methods named Gabor-
Local and GaborEnvelop, both of which can detect more true peaks with a lower false
discovery rate than previous methods. We employ the Gaussian local maxima to detect
peaks, because it is robust to noise in signals. A new approach, peak rank, is defined at
the first time to identify peaks instead of using the signal-to-noise ratio. Meantime the
Gabor filter is used to amplify important information and compress noise in the raw MS
signal. Moreover, we also propose the envelope analysis to improve the quantification
of peaks and remove more false peaks. The proposed methods have been performed on
the real SELDI-TOF spectrum with known polypeptide positions. The experimental re-
sults demonstrate our methods outperform other common used methods in the Receiver
Operating Characteristic (ROC) curve.

Keywords: Mass Spectrometry; Peak Detection; Peak Rank; Gabor Filter; Gaussian Lo-
cal Maxima; Envelope Analysis.

1. INTRODUCTION

Mass Spectrometry (MS) is an analytical technique that has been widely used to
discover diseases related proteomic patterns. From these proteomic patterns, re-
searchers can identify bio-markers, make a early diagnosis, observe disease progres-
sion, response to treatment and so on. Peak detection is one of most important
steps in the analysis of mass spectrum because its performance directly affects the
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other processing steps and final results such as profile alignment 1, bio-marker iden-
tification 2, and protein identification 3.

There are two types of peak detection approaches: denoising 4,5 and non-
denoising (or decomposing) 6,7 methods. There are several similar steps between
these two approaches such as baseline correction, alignment of spectrograms, and
normalization. They also use local maxima to detect peak positions and use some
rules to quantify peaks. Specially, both approaches use the signal to noise ratio
(SNR) to remove the small energy peaks whose SNR values are less than a thresh-
old. However, in the denoising approach, before detecting peaks, a denoising step is
added to reduce the noise of mass spectrum data. In the non-denoising approach,
a decomposition step is used to analyze mass spectrum into different scales before
the peak detection by local maxima. When the smoothing step is applied into the
denoising approach, it possibly removes both noise and signal. If the real peaks are
removed by smoothing step, they can never be recovered in the other processing
steps. As a result, we lose some important information and introduce error into MS
data analysis. Thus, the way we will introduce to decompose a signal into many
scales without denoising is a really better approach with great potentials.

The SNR is used to identify peaks in both denoising and non-denoising methods.
Du et al 6 estimated the SNR in the wavelet space and got much better results
than the previous work. However, they still failed to detect some peaks with small
SNRs 6. This problem came from the SNR value estimation and all previous methods
estimated the SNR value by using the relationship between the peak amplitude
and the surrounding noise levels. Since some sources of noise can also have high
amplitudes, the high amplitude peak does not always guarantee to be real peak. On
the other hand, some low amplitude peaks can also be real peaks. It is clear that
the way using SNR to quantify peaks is not efficient and not accurate.

In this paper, we propose two novel robust MS peak detection approaches:
GaborLocal and GaborEnvelop. First we use the Gabor filters to create many scales
from original signal without smoothing. The Gaussian local maxima is exploited to
detect peaks in the GaborLocal method instead of the local maxima that is less
robust to the noise of mass spectrum. Furthermore, the envelope analysis is also
proposed and applied to detect peaks in the GaborEnvelop method. Finally, we
use the peak rank (PR) to remove some false peaks instead of the SNR. The real
SELDI-TOF spectrum with known polypeptide composition and position is used to
evaluate our method. The experimental results show that our new approaches can
detect both high amplitude and small amplitude peaks with a low false discovery
rate and are much better than the previous methods. We also compare two proposed
methods in section 3.3.

2. METHODS

Our proposed methods are integrations of Gabor filters and Gaussian local maxima
or envelope analysis. In this section, we first introduce the basic knowledge of Gabor
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Fig. 1. The uniform Gabor filters (a) The real parts, (b) The frequency supports.

filters and envelope analysis. After that, our proposed methods will be detailed. At
last, we will use some examples to demonstrate how our methods work.

2.1. Gabor Filters

The Gabor filters 8 were developed to create Gaussian transfer functions in the
frequency domain. Thus, taking the inverse Fourier transform of this transfer func-
tion, we get a filter closely resembling to the Gabor filters. The Gabor filters have
been shown to have optimal combined localization in both the spatial and spatial-
frequency domains 9,10. In certain applications, this filtering technique has been
demonstrated to be robust and fast 11 and the recursive implementation of 1D Ga-
bor filtering has been shown in paper 12. This recursive algorithm for the Gabor
filter possibly achieves the fastest implementation. For a signal consisting of N sam-
ples, this implementation requires O(N) multiply-and-add (MADD) operations. A
generic one-dimensional Gabor function and its Fourier transform are given by:

h(t) =
1√
2πσ

exp(− t2

2σ2
) exp(j2πFit), (1)

H(f) = exp(− (f − Fi)2

2σ2
f

), (2)

where σf = 1/(2πσ) represents the bandwidth of the filter and Fi is the central
frequency.

The Gabor filter can be viewed as a Gaussian modulated by a complex sinusoid
(with center frequencies Fi). This filter responds to some frequency, but only in a
localized part of the signal. The coefficients of Gabor filters are complex. Therefore,
the Gabor filters have one-side frequency support as shown in Fig. 1 and Fig. 2. We
also illustrate the real parts of the Gabor filters in Fig. 1 and Fig. 2.

Given a certain number of sub-bands, in order to obtain a Gabor filter bank,
the central frequencies Fi and bandwidths σf of these filters are chosen to ensure
that the half-peak magnitude supports of the frequency responses touch each other
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Fig. 2. The non-uniform Gabor filters (a) The real parts, (b) The frequency supports.

as shown in Fig. 1 and Fig. 2. The Gabor filter bank can be designed to be uniform
(in Fig. 1) or non-uniform (in Fig. 2). In our experiments, we use the Gabor filter
bank with nine non-uniform sub-bands.

After decomposing a MS signal, nine sub-bands are created as follows:

yi(t) = hi(t) ∗ x(t), (3)

where x(t) is the input signal, i = 1,2,...,9, and ∗ is the 1D convolution. This is an
over-complete representation with the redundant ratio of 9.

2.2. Envelope Analysis

Envelope analysis and its theory will be described in this section. We first introduce
Gaussian local maxima, minima and interpolation before studying envelope analysis.

Gaussian local maxima and minima: We assume that we want to find local
maxima and local minima of y(t). We should follow two steps: computing derivative
of y(t) and finding zero crossing. The derivative of y(t) is approximated by the finite
difference as follows:

d(y(t))
dt

= lim
h−>0

y(t + h)− y(t)
h

≈ y(t + 1)− y(t). (4)

At t = t0, if the derivative of y(t) equals to zero and has a change from positive to
negative or from negative to positive, we have zero-crossing. If the derivative of y(t)
changes from positive to negative at t0, we have local maxima at t0. Otherwise, if
the derivative of y(t) changes from negative to positive at t0, we have local minima
at t0. With discrete signal, Eq. 4 can be rewritten as follows

d(y(n))
dn

= y(n + 1)− y(n) = y(n) ∗ [1 − 1]. (5)

Unfortunately, MS data always have noise. Thus, we use Gaussian filter g(t, σ) to
make our methods more robust to noise in MS data. This is not a denoising step
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Table 1. The value of vector v(n) with different lengths.

length n = 1 2 3 4 5 6 7 8 9

5 0.0007 0.2824 0 -0.2824 -0.0007
6 0.0007 0.1259 0.7478 -0.7478 -0.1259 -0.0007
7 0.0007 0.0654 0.6572 0 -0.6572 -0.0654 -0.0007
8 0.0007 0.0388 0.4398 0.6372 -0.6372 -0.4398 -0.0388 -0.0007
9 0.0007 0.0254 0.2824 0.7634 0 -0.7634 -0.2824 -0.0254 -0.0007

because the noise is not removed. Finally, derivative of y(t) ∗ g(t, σ) will replace the
derivative of y(t) as follows

d(y(t) ∗ g(t, σ))
dt

=
d(

∫
(y(τ).g(t− τ, σ)dτ))

dt
(6)

=
∫

(y(τ).
d(g(t− τ, σ))

dt
dτ) = y(t) ∗ d(g(t, σ))

dt
, (7)

where

g(t, σ) = exp(− t2

2σ2
). (8)

Taking the derivative of g(t, σ) in Eq. 8, we have

d(g(t, σ))
dt

=
−t

σ2
exp(− t2

2σ2
). (9)

From Eq. 6 and Eq. 9, we have

d(y(t) ∗ g(t, σ))
dt

= y(t) ∗ (
−t

σ2
exp(− t2

2.σ2
)). (10)

Instead of finding zero crossing of d(y(t))
dt , we find zero-crossing of d(y(t)∗g(t,σ))

dt by
Eq. 10. With discrete signal, Eq. 10 can be rewritten as follows

d(y(n) ∗ g(n, σ))
dn

= y(n) ∗ v(n), (11)

where v(n) is listed in the table 1. Using Gaussian filters makes the Gaussian local
maxima and minima method more robust with noise.

Interpolation: Interpolation is a process to estimate new data points that lie
between known data points. Polynomial interpolation and FFT-based interpolation
are two basic one-dimensional interpolation techniques which can balance speed
of execution and memory usage. In this paper, we use the simplest method of
polynomial interpolation which is linear interpolation. This method fits a different
linear function between each pair of existing data points (xa, ya) and (xb, yb) and
returns the value of the relevant function at the points specified by xi as follows

yi = ya +
(xi − xa)(yb − ya)

xb − xa
. (12)
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Fig. 3. Flowchart of envelope Analysis. Data can be decomposed into three envelope signals:
Maximum envelope (MAX), Median envelope (MED), Minimum envelope (MIN).

Linear interpolation uses less memory and execution time than cubic interpolation
and the interpolated data are continuous.

Before going to detail of envelope analysis, we should consider three following
definitions (1, 2, 3).

Definition 1. Maximum envelope (MAX) of a signal y(t) is a signal which is
created from y(t) by two steps.
Step 1: finding Gaussian local maxima of y(t) and their indices: Max(y(t)).
Step 2: taking interpolation of signal obtained from step 1 so that MAX will have
the same length as y(t) as follows: MAX = Interp(Max(y(t))).

Definition 2. Minimum envelope (MIN) of a signal y(t) is a signal which is created
from y(t) by two steps.
Step 1: finding Gaussian local minima of y(t) and their indices: Min(y(t)).
Step 2: taking interpolation of signal obtained from step 1 so that MIN will have
the same length as y(t) as follows: MIN= Interp(Min(y(t))).

Definition 3. Median envelope (MED) of a signal y(t) is a signal which is created
from y(t) by two steps.
Step 1: finding non Gaussian local maxima and non Gaussian local minima of y(t)
and their indices: Med(y(t))
Step 2: taking interpolation of signal obtained from step 1 so that MED will have
the same length as y(t) as follows: MED = Interp(Med(y(t))).

Envelope Analysis: For many signals, the important property is energy. If we
analyze these signals using Fourier or Wavelet Transforms, we just use the frequency
property. It is really difficult for some applications which need using energy property
to classify or to detect some important information.

Any finite energy signal y(t) can be analyzed into three envelope signals (Fig. 3)
including MAX (M11), MED (M12), and MIN (M13) at the first level. Each of three
above envelope signals will be decomposed into three envelope signals at the second
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Fig. 4. One example of finding local maxima, local median and local minima of Raw MS data
which is the 6th MS signal of CAMDA 2006. Only a part of signal is shown. Circle, point and plus
signs represent for maxima, median and minima positions

level and we get 32 = 9 envelope signals totally. This process is iterated and at the
ith level, y(t) is decomposed into 3i envelope signals from Mi1 to Mi3i . So, we can
formulate the envelope analysis as follows

Level1 = [Env(y(t))] = [M11; M12;M13]
Level2 = [Env(M11); Env(M12); Env(M13)] = [M21; M22; ...;M29]
Leveli = [Env(M(i−1)1); Env(M(i−1)2); Env(M(i−1)3); ......Env(M(i−1)3i−1)]

= [Mi1; Mi2; ...; Mi3i ],

(13)

where Env(y(t))=[M11=Interp(Max(y(t))); M12=Interp(Med(y(t)));
M13=Interp(Min(y(t)))].

In this paper, we just use MAX and MED of envelope analysis to detect peaks
because MIN does’t contain any peaks. Eq. 14 describes the structure of envelope
analysis which we use in our proposed method.

Level1 = [MAX1; MED1],
Level2 = [MAX2; MED2],
Leveli = [MAXi; MEDi].

(14)

Illustration: Fig. 4 and Fig. 5 show the envelope analysis of an example. First,
at the Fig. 4, the Gaussian local maxima, median, and minima are detected from
the 6th MS signal of CAMDA 2006. At level 1, after interpolating from the above
maxima, median and minima positions, we can get three envelope signals (MAX,
MED and MIN) as in Fig. 5. If we continue using these above envelope signals as
the input signal of envelope analysis, we will get the next level, level 2.
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Fig. 5. One example of maximum envelope (MAX), median envelope (MED) and minimum enve-
lope (MIN) at the first level. The input data is the 6th MS signal of CAMDA 2006.

2.3. GaborLocal and GaborEnvelop Methods

Our main idea is to amplify the true signal and compress the noise of mass spectrum
by using the Gabor filter bank. After that, we use the Gaussian local maxima to
detect peaks and the peak rank which will be defined later to quantify peaks. This
method is named as Gabor filter - Gaussian local maxima (GaborLocal). We can
also use envelope analysis to detect and quantify peaks and we call this method as
Gabor filter - envelope analysis (GaborEnvelop). Fig. 6(a) and (b) are the flowchart
of our GaborLocal and GaborEnvelop methods. Each method can be detailed into
the four steps including the full frequency MS signal generation, the peak detection,
the peak quantification, and the intersection. Both methods have the same first step
(full frequency MS signal generation) and the same last step (intersection). They
are different at the peak detection and the peak quantification steps.

2.3.1. Full frequency MS signal generation

Mass spectrum is decomposed to many scales by using the Gabor filters after the
baseline correction. Our purpose is to emphasize some hidden peaks buried by noise.
When we analyze 60 MS signals of the CAMDA 2006 in the frequency domain, we
notice that the valuable information of these signals locate from zero to around 0.06
(rad/s) and the noises locate from 0.06 to π (rad/s).

Therefore, the bandwidth σf of the Gabor filters which enhances peaks must be
less than 0.06. In our experiments, we use σf = 0.01. If the uniform Gabor filter is
used, the number of scales must be

N =
π

0.01
≈ 314 scales. (15)
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Fig. 6. Flowchart of our two peak detection methods in the MS data. (a) GaborLocal, (b) Ga-
borEnvelop.

With 314 scales in Eq. 15, we know that the uniform Gabor filter is not efficient.
If the non-uniform Gabor filter is used, the number of scales should be calculated
as follows:

σf =
π

2N
, (16)

N = log2(
π

σf
), (17)

N ≈ 8.3 scales with σf = 0.01. (18)

Based on the Eq. 18, we use the non-uniform Gabor filters with 9 scales to
decompose the MS data (we use CAMDA 2006 data 13 for experiments). If we
transform yi(t), hi(t) and x(t) in Eq. 3 into the frequency domain, we get

Yi(f) = X(f) ·Hi(f), (19)

where X(f) is the frequency response of the raw MS signal, Hi(f) is the frequency
response of the ith Gabor filter, and Yi(f) is the frequency response of the ith scale.
After getting 9 signals according to 9 frequency sub-bands in complex values, the
full frequency signal A will be created by summing above signals in complex values
first and taking their absolute values at the final. To create the full frequency signal
B, we take the absolute values for each sub-band and then sum all these sub-bands.
After this step, we have two full frequency signals A and B. Let’s denote y(t) and
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Y (f) as the full frequency signal in time domain and frequency domain, respectively.

Y (f) =
∑

i=Ni

Yi(f), (20)

where Ni are the scales which are used to create the full frequency signal. From
Eq. 19 and 20, we get

Y (f) =
∑

i=Ni

X(f)Hi(f) (21)

= X(f)
∑

i=Ni

Hi(f) = X(f)Hs(f), (22)

where Hs(f) =
∑

i=Ni
Hi(f) is called the summary filter. From Eq. 2, the summary

filter can formulated as follows

Hs(f) =
∑

i=Ni

exp(− (f − Fi)2

2σ2
f

). (23)

Illustration: Intuition using Gabor filters Our purpose in this step is to am-
plify the true signal and to compress the noise. The black line in the Fig. 7(a) is
Hs(w) which can amplify the true signal from 0 to 0.06 rad

s and compress noise
from 0.06 to π. In this case, if we use Ni = [1 2 ... 9] we can get the summarized
filter represented by the blue line in Fig. 7(a). The Fig. 7(b) shows the frequency
response of the 19th raw MS signal (blue line) and that of full frequency signal (red
line). We can see that the signal from 0 to 0.06 is amplified and the noise from 0.06
to π is compressed. In Fig. 7(c), after using Gabor filters, the intensity values of true
peaks have increased and the standard deviations of noise have decreased in time
domain. Therefore, in both full frequency MS signal A and B, all peaks have been
emphasized to help the next peak detection step. In this step, baseline correction
is also used before applying Gabor filters and is detailed as follows

Baseline correction: The chemical noise or the ion overloading is the main
reason causing a varying baseline in mass spectrometry data. Baseline correction is
an important step before using Gabor filter to get the full frequency MS signals.
The raw MS signal xraw includes some real peaks xp, the baseline xb, and the noise
xn.

xraw = xp + xb + xn. (24)

The baseline correction is used to remove the artifact xb. In this paper, we use
‘msbackadj’ function of MATLAB to remove baseline. The msbackadj function es-
timates a low-frequency baseline first which is hidden among the high-frequency
noise and the signal peaks and then subtracts the baseline from the spectrogram.
This function follows the algorithms in Andrade et al.’s paper 14.

Illustration: In order to understand this step easier, one example of the way
to create full frequency MS signal is shown in Fig. 7(d). In this example, the 19th

MS signal of CAMDA 2006 is chosen as raw MS data. After the baseline correction,
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Fig. 7. (a) The frequency response of the summary filter. (b) The frequency response of one MS
data before and after using the summary filter. In amplification area, amplitude of full frequency
MS signal is higher than raw MS signal. In compression area, amplitude of full frequency MS
signal is smaller than raw MS signal.(c) One example is used to show how Gabor filters to affect
MS signal in time domain. The intensity values of peaks are gained and noise is compressed after
using Gabor filters. (d) One example of the step named full frequency MS signal generation. Raw
MS data which is used in (b), (c) and (d) is the 19th MS signal of CAMDA 2006.
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Table 2. Definition of peak rank in GaborLocal. Y means that the peak can be
detected at that loop. N means that the peak can not be detected at that loop.
The peak with the peak rank equaling to 1 is able to be detected at all of the
loops. The peak with the peak rank equaling to n only appeared at the first loop.

Peak Rank Loop 1 Loop 2 Loop 3 Loop 4 ... Loop (n− 1) Loop n

1 Y Y Y Y ... Y Y
2 Y Y Y Y ...Y N
... ... ... ... ... ... ...
n Y N N N ...N N

MS signal is used as the input of the Gabor filters. A Gabor filter bank with 9 non-
uniform sub-bands is employed to create 9 MS signals with 9 different frequency
sub-bands. In Fig. 7(d), the signals of scale 1, 4, 8 and 9 are visualized. Some noises
in high frequency are separated from the MS signal of the scale 1, 2, ..., 5. In the
MS signal under the scales 6, ..., 9, all high intensity peaks are still kept. After
combining the MS signals of all scales in two ways, the full frequency MS signal A
and B are created. The comparison between the raw MS and full frequency signal
in frequency and time domain is shown in Fig. 7(a)(b)(c). These figures show our
purpose which amplifies the important signal and compresses the noise has been
achieved. We should remember that this is just a compression of noise instead of
removing noise. As the outputs, two full frequency MS signal A and B will be used
to detect peaks in the next step instead of raw MS data.

2.3.2. Peak detection and peak quantification in GaborLocal

All peaks are detected as many as possible by using Gaussian local maxima with the
full frequency MS signal A as well as the full frequency MS signal B. The Gaussian
local maxima is used instead of local maxima because Gaussian local maxima is
robust with noise in peak detection. Before detecting peaks, pre-processing step is
also applied such as peak elimination in the low-mass region.

After detecting many peaks in full frequency MS signals, a new signal is obtained
from these peaks. This new signal will be the input of the next peak detection loop
where the Gaussian local maxima method is also applied. Then, many loops are
repeated until the number of peaks obtained is less than a threshold. Now, we
define the peak rank of peaks as follows:

Peak rank in GaborLocal: We assume n loops are used and get m1 peaks at
the loop 1, m2 peaks at loop 2,...and mn peaks at the loop n. We have m1 > m2 >

... > mn. Peak rank (PR) is defined as the table 2.
We have mn peaks with PR = 1, mn−1−mn peaks with PR = 2,...and m1−m2

peaks with PR = n. In our algorithm, the probability of the true peaks with PR = i

is higher than with PR > i.
Demonstration: Fig. 8(a) shows an example of the step named the peak quan-

tification by using the peak rank. First, the full frequency MS signal A is used
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Table 3. Definition of peak rank (PR) in GaborEnvelop. MAXi column means that we just use
peaks of MAX envelope at level i. If we use peaks in both of MAX and MED envelope at level
i, that column is named as MAXi, MEDi. ”Y” is the peak can be detected. N means that the
peak can not be detected. The peak with the peak rank equaling to 1 is able to be detected at
all of envelopes. The peak with the peak rank equaling to n only appeared at the envelope of
level 1.

PR MAX1 MAX2, MED2 MAX2 MAX3, MED3 ... MAXn, MEDn MAXn

1 Y Y Y Y ... Y Y
2 Y Y Y Y ...Y N
... ... ... ... ... ... ...
n Y N N N ...N N

to detect peaks by using Gaussian local maxima. At the loop 1, we can detect
1789 peaks. From these 1789 peaks, we create a new signal with 1789 positions.
At the next loops 2, 3, 4, we can detect 509, 143, 39 peaks, respectively. At
the loop 5, 15 peaks can be detected. Because we choose a threshold of 16 and
number of peaks = 15 < 16, we stop at the loop 5. Actually, we can select the
threshold from 38 to 16 and also get 15 peaks at the final loop. Now, we get 15
peaks with PR = 1, 39 − 15 = 24 peaks with PR = 2, 143 − 39 = 104 peaks with
PR = 3, 509 − 143 = 366 peaks with PR = 4 and 1789 − 509 = 1280 peaks with
PR = 5. In this case, we only keep 15 peaks with PR = 1. We also do the same on
the full frequency MS signal B and can get 12 peaks with PR = 1 at the last loop.

2.3.3. Peak detection and peak quantification in GaborEnvelop

After using Gabor filter, we get visible peaks in the full frequency MS signal A
and the full frequency MS signal B. Instead of using Gaussian local maxima to
detect peaks, we take envelope analysis of both signal A and signal B and use MAX
and MED at the final level to find peaks. Fig. 6(b) shows that we only use MAX
and MED instead of MAX, MED, and MIN because peaks of data don’t appear at
MIN envelope. Of course, before taking envelope analysis of signal A and B, peak
elimination in low-mass region is also applied.

Peak rank in GaborEnvelop: We take envelope analysis of data at the level
n. Because only MAX is used at the first level, we have 2n − 1 groups of peaks
corresponding 2n − 1 thresholds of peak. Let’s assume we get m1 peaks at the
MAX1, m2 peaks at group of MAX2 and MED2,...and mn peaks at the MAXn. We
have m1 > m2 > ... > mn. Peak rank (PR) is defined in table 3.

We have mn peaks with PR = 1, mn−1−mn peaks with PR = 2,...and m1−m2

peaks with PR = n. In our algorithm, the probability of the true peaks with PR = i

is higher than with PR > i.
Demonstration: Fig. 9 shows an example of envelope analysis of the 39th MS

signal at level 6 and 7. Only MAX and MED are used in this case. The input signal
of envelope analysis is full frequency MS signal A without pre-processing. At the
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Fig. 8. One example of GaborLocal in peak detection (a) peak detection and quantification step,
(b) intersection step.
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Fig. 9. One example of envelope analysis. Maximum envelope, median envelope, and minimum
envelope of a MS data at the level 6 and the level 7. The input MS data is the 39th MS signal of
CAMDA 2006. The circle sign represents peaks which are from the MAX1 (peaks of the input MS
signal) and are identified peaks
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Fig. 10. One example of GaborEnvelop at intersection step. Raw MS data is the 39th MS signal
of CAMDA 2006.
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MAX scale of level 6, we detect 14 peaks. If continuing level 7, we get 4 peaks at
the MAX scale and 6 peaks at the MED scale. If pre-processing is applied to full
frequency MS signal A, we just get 5 peaks at the MED scale of level 7. Finally, we
get 4 + 5 = 9 peaks from signal A and 19 peaks from signal B.

2.3.4. Intersection

Now, we have two results of peak detection from two full frequency MS signals.
The intersection of two above results will be the final result. For example, Fig. 8(b)
shows how to do the intersection of two results. We have 15 peaks in the signal
A and 12 peaks in the signal B, but we only get 9 peaks as the final result. With
this result, we get 7 true peaks and 2 false peaks. With example in Fig. 10, after
intersection, we get 9 peaks. We also get 7 true peaks and 2 false peaks. These
results show that the true position rate (or sensitivity) equals to 7

7 = 1 and the
false discovery rate equals to 2

9 ≈ 0.22.
In general, the GaborEnvelop includes the GaborLocal. In envelope analysis, if

we just use MAX envelope signals, the GaborEnvelop will become the GaborLocal
method which uses many loops to quantify peaks. The GaborEnvelop uses both
MAX and MED envelopes to keep the number of true peaks (TPR) and decrease
the number of false peaks (FDR).

3. EXPERIMENTAL RESULTS AND DISCUSSIONS

In this section, our GaborLocal and GaborEnvelop methods will be compared to
two other most commonly used methods: the Cromwell 4,5 and the CWT 6. We
will evaluate the performance of those methods by using the ROC curve that is the
standard criterion in this area.

3.1. Cromwell and CWT Methods

Cromwell method is implemented as a set of MATLAB scripts which can be down-
loaded from 15. The algorithms and the performance of the Cromwell were de-
scribed in 5,4. The algorithm of CWT method has been implemented in R (called
as ‘MassSpecWavelet’) and the Version 1.4 can be downloaded from 16. This method
was proposed by Pan Du et al. 6 in 2006.

3.2. Evaluation Using ROC Curve

The CAMDA 2006 dataset 13 of all-in-1 Protein Standard II (Ciphergen Cat.
# C100 − 007) is used to evaluate four algorithms: the Cromwell, the CWT, and
our two methods. Because we know polypeptide composition and position, we can
estimate the true position rate (TPR or sensitivity) and the false discovery rate
(FDR). Another advantage of this dataset is that it is real data and better than the
simulated data in evaluation.
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Fig. 11. Detailed ROC curves obtained from 60 MS signals using Cromwell, CWT, and our Gabor-
Local and GaborEnvelop methods. The sensitivity is the true position rate.
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Fig. 12. Average receiver operating characteristic (ROC) curves obtained from 60 MS signals
using Cromwell, CWT, and our GaborLocal and GaborEnvelop methods. The sensitivity is the
true position rate.

The TPR is defined as the number of identified true peaks divided by the to-
tal number of true peaks. The FDR is defined as the number of falsely identi-
fied peaks divided by the total number of identified peaks. We call an identified
peak as true peak if it is located within the error range of 1% of the known m/z
value of true peaks. There are seven polypeptides which create seven true peaks at
7034, 12230, 16951, 29023, 46671, 66433 and 147300 of the m/z values. Fig. 11
shows the TPR and the FDR of four above methods with an assumption that there
is only one charge. To calculate the ROC curve of Cromwell and CWT methods,
the SNR thresholding values are changed. The SNR thresholding values are chosen
from 0 to 20 for Cromwell method, from 0 to 65 for CWT method. In GaborLocal
method, the threshold for the number of peaks is changed from 2000 to 10 to create
the ROC curve. In GaborEnvelop method, the level is changed from seven to one
to build the ROC curve. In Fig. 11, the performance of Cromwell method is much
worse than CWT and our GaborLocal and GaborEnvelop methods. Most of ROC
points of Cromwell method locate at the bottom of right corner and most of ROC
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points of CWT, GaborLocal, and GaborEnvelop methods are well placed on the top
regions. In our methods, some ROC points appear at the top line with TPR = 1
and some ROC points go with TPR = 1 and FDR = 0. However, it does not hap-
pen to the CWT. Therefore, GaborLocal and GaborEnvelop are better than CWT
and Cromwell in peak detection.

If we take the average of those detailed ROC results in Fig. 11, we get the
average ROC curve as the Fig. 12. We should notice that we take average of all
ROC points with the same SNR threshold (for Cromwell and CWT) and with the
same peak threshold and the same level (for our methods). From Fig. 12, the results
of our methods and CWT are much better than the Cromwell’s one. Therefore, the
decomposing approach without smoothing (SWT, GaborLocal and GaborEnvelop)
is more efficient than the denoising approach (like Cromwell). At the same FDR, the
TPRs of our methods are consistently higher than the TPRs of CWT. Because the
peak rank was used to identify peaks in the GaborLocal and GaborEnvelop methods
instead of the SNR. It is clear that the utilizing peak rank to identify peak gives out
valuable results. These methods have a significant contribution to detect both high
energy and small energy peaks. The other advantage of these methods is that the
threshold for the number of peaks can be created easier than the SNR. Therefore,
the GaborLocal and GaborEnvelop method are more efficient and accurate methods
for real MS data peak detection.

As shown in Fig. 12, GaborEnvelop is slightly better than GaborLocal in ROC
curve. With the same TPR, GaborEnvelop gives out smaller FDR than Gabor-
Local. However, peak quantification step using many loops in GaborLocal method
is simpler than using envelope analysis in GaborEnvelop one. If we need a simple
method which also can detect most true peaks, GaborLocal is a good option. During
more complicated analysis, GaborEnvelop can be employed to improve the results
of peak detection in MS signal. Since the number of detected peaks increase grad-
ually when the peak rank increases, GaborEnvelop is useful for many applications,
e.g. protein identification. These are also the reasons that we propose two methods
in this paper.

4. CONCLUSION

In this paper, we proposed two new approaches including GaborLocal and Ga-
borEnvelop to solve peak detection problem in MS data with promising results.
Our GaborLocal method is a combination of the Gabor filter and Gaussian local
maxima approach. The integration of Gabor filter and envelope analysis is further
developed as GaborEnvelop method. The peak rank method is presented and used
at the first time to replace the previous SNR method to identify true peaks. With
real MS dataset, our method gave out a much better performance in the ROC
curve comparison with two other most common used peak detection methods. In
our future work, we will develop new protein identification method based on our
GaborLocal and GaborEnvelop methods.
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