
Stationary Wavelet Packet Transform and Dependent

Laplacian Bivariate Shrinkage Estimator For

Array-CGH Data Smoothing

Nha Nguyen1,2, Heng Huang1∗, Soontorn Oraintara2 and An Vo3

August 24, 2009

Abstract

Array based comparative genomic hybridization (aCGH) has merged as a highly ef-

ficient technique for the detection of chromosomal imbalances. Characteristics of these

DNA copy number aberrations provide the insights into cancer, and they are useful for

the diagnostic and therapy strategies. In this paper, we propose a statistical bivariate

model for aCGH data in the stationary wavelet packet transform (SWPT) and apply

this bivariate shrinkage estimator into the aCGH smoothing study. Because our new de-

pendent Laplacian bivariate shrinkage estimator covers the dependency between wavelet

coefficients and the shift invariant SWPT results include both low and high frequency in-

formation, our dependent Laplacian bivariate shrinkage estimator based SWPT method
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(named as SWPT-LaBi) has fundamental advantages to solve aCGH data smoothing

problem compared to other methods. In our experiments, two standard evaluation meth-

ods, the Root Mean Squared Error (RMSE) and the Receiver Operating Characteristic

(ROC) curve, are calculated to demonstrate the performance of our method. In all exper-

imental results, our SWPT-LaBi method outperforms the previous most common used

aCGH smoothing algorithms on both synthetic data and real data. Meantime, we also

propose a new synthetic data generation method for aCGH smoothing algorithms eval-

uation. In our new data model, the noise from real aCGH data is extracted and used

to improve synthetic data generation. Implementation and data will be available under

software tab at: http://ranger.uta.edu/∼heng/aCGH and http://naaan.org/nhanguyen/

Keywords: DNA Copy Number, Array Comparative Genomic Hybridization, Smooth-

ing, Stationary Wavelet Packet Transform

1 INTRODUCTION

Gene amplifications or deletions frequently contribute to tumorigenesis. When part or all

of a chromosome is amplified or deleted, there are changes in DNA copy number results.

Characterization of these DNA copy number changes is important for both fundamental un-

derstanding of cancers and their diagnosis. For cancers study, researchers currently use array

Comparative Genomic Hybridization (aCGH) to identify sets of copy number changes as-

sociated with the particular cancer or its congenital and developmental disorders. In aCGH

data, because the clones contain sequences information directly connecting with the genome

database, aCGH offers rapid genome-wide analysis in high resolution and those information

is directly linked to the physical and genetic maps of the human genome. Bacterial Artifi-
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cial Chromosomes (BAC) based aCGH arrays were amongst the first genomic arrays to be

introduced (Pinkel et al., 1998) and are routinely used to detect single copy changes in the

genome, owing to their high resolution in the order of 1 Mb (Pinkel et al., 1998; Snijders

et al., 2001). More recently Oligonucleotide aCGH (Brennan et al., 2004; Pollack et al.,

1999) was also developed to allow flexibility in probe design, greater coverage, and much

higher resolution in the order of 35-100 Kb (Wang et al., 2007).

Because aCGH is very noisy, many diseases related chromosomal aberrations are buried

by noise. For example, in cDNA array CGH data, the signal to noise ratio is often approxi-

mately 1 (0 dB) (Bilke et al., 2005). In order to develop effective methods to identify aberra-

tion regions from array CGH data, many research works focus on both smoothing/denosing-

based and segmentation-based data processing. Segmentation-based methods target to model

data as a series of discrete segments with unknown boundaries and unknown heights. Since

the boundary points are highly possible to be identified as aberration region, the false posi-

tives are introduced. Smoothing-based methods reduce noise by comparing each data point

to its adjacent ones and reduce the number of identified false aberration regions.

Beheshti et al. proposed to use the robust locally weighted regression and smoothing

scatterplots (lowess) method in paper (Beheshti et al., 2003). Eilers and Menezes (Eilers

et al., 2005) performed a quantile smoothing method based on the minimization of the sum

of absolute errors to create sharper boundaries between segments. Hsu et al. (L.Hsu et al.,

2005) investigated the usage of maximal overlap discrete wavelet transform (MODWT) in

the analysis of array CGH data. In 2005, Lai (Lai et al., 2005) compared 11 different al-

gorithms for analyzing array CGH data. Many smoothing and estimation methods were

included in(Lai et al., 2005) such as CGHseg (2005) (Picard & et al., 2005), Quantreg
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(2005) (Eilers et al., 2005), CLAC (2005) (Wang et al., 2005), GLAD (2004) (Hupe et al.,

2004), CBS (2004) (Olshen et al., 2004), HMM (2004) (Fridkyand et al., 2004), MODWT

(2005) (L.Hsu et al., 2005), Lowess (Beheshti et al., 2003), ChARM (2004) (Myers et al.,

2004), GA (2004) (Jong et al., 2004), and ACE (2005) (Lingjaerde et al., 2005). Based on

empirical experiments, Lai (Lai et al., 2005) concluded that MODWT, Quantreg and Lowess

methods gave better detection results (higher true position rate and lower false position rate)

than other methods. Meantime, the wavelet (MODWT) based smoothing method was con-

sidered as the most promising approach. More recently Y. Wang and S. Wang (Wang et al.,

2007) extended the stationary wavelet (SWT or MODWT) denoising for nonequal spaced

data, because the physical distances between adjacent probes along a chromosome are not

uniform, even vary drastically. In paper (Nguyen et al., 2007), Nguyen et al. developed

another wavelet based method using DTCWTi-bi (Dual tree complex wavelet transform -

interpolation - bivariate shrinkage function) technique with better performance. However,

if a signal is decomposed by using SWT (MODWT) or DTCWT, we get nonuniform sub-

bands and a wide sub-band in high frequency. Because true aCGH signals include many step

functions, they contain important information in high frequency. The above wavelet based

methods do not offer enough sub-bands in high frequency for smoothing operation.

In this paper, we propose to use shift invariant SWPT with dependent Laplacian bivariate

shrinkage estimator (named as SWPT-LaBi) for aCGH data smoothing. In the SWPT, all

sub-bands are shift invariant and each sub-band provides a shiftable description of signal in

a specific scale as the same as the SWT or the MODWT. Such shift invariant property is

crucial to apply wavelet based method into aCGH data smoothing. Although the Discrete

Wavelet Transform (DWT) with the redundant ratio of 1 : 1 is efficient for computation, it
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is not suitable for aCGH smoothing application. Because DWT creates artifacts around the

discontinuities of the input signal (Coifman et al., 1995) and is shift-variant. Because the

SWPT also decomposes signal to many uniform frequency sub-bands, information in both

of low and high frequency sub-bands are captured. However the previous wavelet based

methods lose the information in high frequency (L.Hsu et al., 2005; Wang et al., 2007;

Nguyen et al., 2007).

Moreover, we propose dependent Laplacian bivariate shrinkage function to exploit the

dependency between wavelet coefficients and its cousin in SWPT to improve the perfor-

mance. We demonstrate the effectiveness of our approach through theoretical and experi-

mental explorations of a set of aCGH data, including real data and synthetic data with both

gaussian and real noise. It is the first time to create synthetic aCGH data using real noise.

Our new synthetic data generation model provides a more accurate validation way to eval-

uate aCGH smoothing algorithms. We compare the performance between our method and

previous methods by root mean squared error (RMSE) and receiver operating characteristic

(ROC) curve that are the standard performance comparison criterions. The experimental re-

sults show that our method outperforms the previous approaches about 5%− 59.3% under

gaussian noise and 7.9%−51.8% under real noise.
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2 METHODOLOGY

2.1 Stationary Wavelet Packet Transform
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Figure 1: The 3 level SWPT filter bank structure.

Stationary Wavelet Packet Transform (SWPT), shown in Fig. 1, is a generalization of Station-

ary Wavelet Transform (SWT). First, a signal is decomposed into a low frequency sub-band

and a high frequency sub-band by using two channels filter bank. Similar to the SWT, the

SWPT does not employ a decimator after filtering. Then the low frequency sub-band as well

as the high frequency sub-band can be decomposed into a second-level low and high fre-

quency sub-band, and the process is repeated as in Fig. 1. Each level’s filter are upsampled

versions of the previous ones. The absence of a decimator leads to a full rate decomposition.

Each sub-band contains the same number of samples as the input. So for a decomposition

of L levels, there is a redundant ratio of 2L : 1. However, the absence of a decimator makes

the SWPT shift invariant. This shift invariant property makes the SWPT preferable for the

usage in various signal processing applications such as denoising and classification because

it relies heavily on spatial information. It has been shown that many of the artifacts could be

suppressed by a redundant representation of the signal (Coifman et al., 1995). In the SWT,
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the low frequency subband is itself decomposed into two second-level sub-bands. Therefore,

the the SWT has nonuniform frequency supports, while the SWPT has uniform frequency

supports. As a result, the SWPT offers a richer range of possibilities for signal analysis.

With the uniform shift-invariant sub-bands, the SWPT can capture more information from

the aCGH data. Thus, we propose to use the SWPT to smooth the aCGH data.

2.2 Dependent Laplacian Bivariate Shrinkage

A general wavelet based denoising algorithm consists of three steps: decompose the noisy

signal by wavelet transform, denoise the noisy wavelet coefficients according to specific

rules, and take the inverse wavelet transform from the denoised coefficients. The second step

is crucial to the whole algorithm. To estimate wavelet coefficients, the most well-known rules

are universal thresholding, soft thresholding (Donoho et al., 1994; Donoho, 1995; Johnstone

et al., 1997), and BayesShrink (Chang et al., 2000). In these algorithms, the authors as-

sumed that wavelet coefficients are independent. Sendur and Selesnick (Sendur et al., 2002)

have recently exploited the dependency between coefficients and proposed a non-Gaussian

bivariate function for the child coefficient wc and its parent wp in the complex wavelet trans-

form domain. Nguyen et al. (Nguyen et al., 2007) successfully applied that function into the

complex wavelet transform domain to recover aCGH data and got promising results.

Because the SWPT offers a richer range of shift-invariant sub-bands than the complex

wavelet transform and SWT, it is natural to use SWPT to denoise aCGH data. However, the

SWPT, which decomposes a signal into many uniform sub-bands at the same scale, only has

child and cousin coefficients as in Fig. 1 and a new method is required to capture the relation-

ship between them. In order to solve this problem, we develop a bivariate shrinkage function
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which models the relationship of child and cousin coefficients in the SWPT operation of

aCGH data.

For any DNA copy number data Y , we can assume it includes the deterministic signal D

and the independent and identically distributed (IID) Gaussian noise n. This Gaussian noise

has zero mean and variance σ2
n.

Y = D+n. (1)

After decomposing the data Y by the SWPT, we get the wavelet coefficients and those coef-

ficients can be formulated as

y1 = w1 +n1,

y2 = w2 +n2,

(2)

where y1 and y2 are noisy wavelet coefficients, w1 and w2 are true coefficients, w2 represents

the cousin of w1 (child), n1 and n2 are independent Gaussian noise coefficients. If the cousin

scale y2 is decomposed, we will get detail and approximation coefficients. Let’s call y3 as

approximation coefficients of y2. We can calculate y3 from y2 by the follow equation:

y3 = w3 +n3,

y3[n] = h[n]∗ y2[n] = ∑N
k=1(h[n− k].y2[k]),

(3)

where h[n] is the scale filter and N is the length of signal y2. In general, we can write

y = w+n, (4)

where y = (y1,y3), w = (w1,w3) and n = (n1,n3). The noise pdf should be followed as

pn(n) =
1

2πσn2 exp(−n2
1 +n2

3
2σ2

n
). (5)

The standard MAP estimator of w from y (Sendur et al., 2002) is followed as

ŵ(y) = argmax
w

[log(pn(y−w))+ log(pw(w))]. (6)
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Figure 2: The histograms computed from true CGH signal. (a) Histogram of w1 , (b) His-

togram of w3, (c) Joint distribution of w1 and w3 created from decomposition of true CGH

signal.

The Fig. 2 (a) and (b) illustrate the histograms of the wavelet coefficient w1 (child) and

the approximation coefficient w3 of w2(cousin). The w1 and w2 are computed from CGH

data by using the SWPT. The Fig. 2 (c) shows the joint distribution of w1 and w3. We try

to find a model for the empirical histogram in Fig. 2 (c). First, we assume that this joint

distribution is an independent Laplacian as follows

pw(w) =
1

2σ2 exp(−
√

2
σ
|w1|+ |w3|). (7)

It is clear that the independent Laplacian distribution in Fig. 3 (a) does not fit well the em-

pirical histogram in Fig. 2 (c). So, it is not possible to model the empirical histogram with

the independent Laplacian distribution. In (Sendur et al., 2002), a general joint pdf which

is combined by the independent Laplacian pdf and the dependent component are proposed

for image in complex wavelet transform. However, the parameters of the model is tunable.
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Figure 3: (a) The Laplacian pdf with two variables: w1 and w3, (b) The proposed pdf with

two variables: w1 and w3.

So, in the case of the SWPT coefficients of the aCGH data, we propose using this bivariate

model with two specific parameters as follows

pw(w) =
1

2πσ2 exp(−
√

3
σ

√
|w1|2 + |w3|2−

√
2

σ
(|w1|+ |w3|)). (8)

We can see that the proposed bivariate pdf in Fig. 3 (b) fits well the empirical histogram in

Fig. 2 (c). With this pdf, two variables w1 and w3 are really dependent and the Eq.(8) is

named as dependent Laplacian bivariate model. Let us define

f (w) = log(Pw(w)) = log(
1

2πσ2 )−
√

3
σ

√
|w1|2 + |w3|2−

√
2

σ
(|w1|+ |w3|). (9)

By using Eq.(5), Eq.(6) becomes:

ŵ(y) = argmax
w

[log(
1

2πσn2 )− (y1−w1)2 +(y3−w3)2

2σ2
n

+ f (w)]. (10)

Solving (10) is the same as solving the two following equations:

(y1−w1)
σ2

n
+ fw1(ŵ) = 0, (11)
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(y3−w3)
σ2

n
+ fw3(ŵ) = 0, (12)

where fw1 and fw3 represent the derivative of f (w) with respect to w1 and w3, respectively.

We can get fw1 and fw3 from (9) as

fw1(ŵ) =−(
√

3w1

σ
√
|w1|2 + |w3|2

+
√

2
σ

sign(w1)), (13)

fw3(ŵ) =−(
√

3w3

σ
√
|w1|2 + |w3|2

+
√

2
σ

sign(w3)), (14)

where sign(w) is defined as follow:

sign(w) =





0 if w = 0,

w
|w| otherwise.

(15)

Substituting (13) and (14) into (11) and (12) gives

ŵ1 · (1+
√

3σ2
n

σr ) = (|y1|−
√

2σ2
n

σ )+ · sign(y1) = so f t(y1,
√

2σ2
n

σ ),

ŵ3 · (1+
√

3σ2
n

σr ) = (|y2|−
√

2σ2
n

σ )+ · sign(y2) = so f t(y2,
√

2σ2
n

σ ),
(16)

where r =
√
|ŵ1|2 + |ŵ3|2 and (u)+ is defined by

(u)+ =





0 if u < 0,

u otherwise.
(17)

Drawing r from (16)

r2 =
so f t(y1,

√
2σ2

n
σ )

(1+
√

3σ2
n

σr )
+

so f t(y2,
√

2σ2
n

σ )

(1+
√

3σ2
n

σr )
,

(r +
√

3σ2
n

σ
)2 = so f t(y1,

√
2σ2

n
σ

)+ so f t(y2,

√
2σ2

n
σ

),

r = (
√

so f t(y1,
√

2σ2
n

σ )+ so f t(y2,
√

2σ2
n

σ )−
√

3σ2
n

σ )+

= (R−
√

3σn
2

σ )+ .

(18)
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If replacing r by (18) into (16), the MAP estimator can be written as

ŵ1 =
(R−

√
3σn

2

σ )+
R

· so f t(y1,

√
2σ2

n
σ

), (19)

where R is as follows

R =

√
so f t(y1,

√
2σ2

n
σ

)2 + so f t(y3,

√
2σ2

n
σ

)2. (20)

The (19) is called as dependent Laplacian bivariate shrinkage function. In (19) and (20), σ

can be estimated by

σ̂ =
√

(σ̂2
y − σ̂2

n)+, (21)

where σ̂n is the noise deviation which is estimated from the finest scale wavelet coefficients

by using a robust median estimator (Donoho, 1995) as follows

σ̂2
n =

median(|yi|)
0.6745

. (22)

σ̂y is the deviation of observation signal estimated by

σ̂2
y =

1
M ∑

yi∈N(k)
|yi|2, (23)

where M is the size of the neighborhood N(k). In the packet wavelet transform, the cousin

scales have not any parent scales. In this case, we can use hard thresholding estimator

(Donoho et al., 1994) to recover cousin coefficients ŵcs:

ŵcs = (ycs−σn
√

2logN)+. (24)
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2.3 SWPT-LaBi Algorithm

aCGH Data

Extension

Decomposition

Coefficient

Estimation

Reconstruction

Smoothed

aCGH data

Figure 4: The flowchart of SWPT-LaBi method.

The aCGH data is a finite signal. If we apply wavelet smoothing method directly, the errors

will exist at the border of denoised signal. Thus, extension step is a very important prepro-

cessing step before denoising. There are three main extension methods. According to the

book (Strang et al., 1996) (chapter 8), symmetric extension is the best one to be applied

to a filtered image because it can save information at the border better. With aCGH data,
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we also need save the information at the border. Therefore, we adopt the symmetric exten-

sion method as the preprocessing step before denoising. Let’s assume that the length of the

aCGH signal is N. In order to get the best performance in the wavelet denoising algorithm,

the length of the input signal is required to be a power of two (Coifman et al., 1992). If N is

not a power of two, we can extend our signal to make sure N = 2 j using symmetric extension

method. Fig. 4 is the flowchart of our SWPT-LaBi algorithm which can be summarized as

follows:

Step 1 : Extend aCGH data Y using symmetric extension method and decompose new data

Y
′

by the SWPT to L levels as Eq.(25). The numbers of decomposition levels (Bruce

et al., 1996) (at the remark 11) can be computed by

L = log2(N)− J, (25)

where J = 3,4,5,6. This is a perfect number of levels (Bruce et al., 1996) which yields

the best denoising result. In this paper, we use J = 4 as the same as (L.Hsu et al.,

2005) and (Wang et al., 2007).

Step 2 : Calculate the noise variance σ̂2
n and the marginal variance σ̂2 for wavelet coeffi-

cient yk by using Eq.(22), Eq.(23) and Eq.(21).

Step 3 : Estimate the child coefficients ŵc = ŵ1 as in Eq.(19) and estimate the counsin

coefficients ŵcs as in Eq.(24).

Step 4 : Reconstruct data D̂ from the denoised coefficients ŵc and ŵcs by taking the inverse

SWPT.
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The error of smoothing result could be measured by the root mean squared error (RMSE)

that is defined as:

RMSE =

√
1
N

N

∑
i
(D̂i−Di)2, (26)

where N is the number of input samples, D = {Di} and D̂ = {D̂i} are the values of data

points before and after smoothing.

3 EXPERIMENTAL RESULTS AND DISCUSSION

We conducted both standard simulation study (all previous aCGH smoothing studies used the

same experimental setup) and real data analysis to evaluate the performance of our method

in identifying regions of genomic alterations. The experimental results of our method are

compared with several other most common used aCGH smoothing methods in literature:

Lowess (Beheshti et al., 2003), Quantreg (Eilers et al., 2005; Li et al., 2007), Smooth-

seg (Huang et al., 2007), SWTi (Wang et al., 2007) (the same as MODWT (L.Hsu et al.,

2005)), and DTCWTi-bi (Nguyen et al., 2007). The standard Root Mean Squared Error

(RMSE) defined in Eq.(26) and Receiver Operating Characteristic (ROC) curve are used to

evaluate the performance of the above six methods.

Willenbrock and Fridlyand (Willenbrock et al., 2005) proposed a standard simulation

model to create the synthetic array aCGH data. This model has been widely used to evaluate

aCGH data smoothing algorithms. Y. Wang and S. Wang (Wang et al., 2007) improve this

model with unequally spaced probes. In our experiments, we first create the synthetic data

using the combination of two above methods. After that, we propose a new synthetic data

model using real aCGH noise. Although most papers related to aCGH data study assumed

the Gaussian noise existing in dataset, some researchers doubted on this noise estimation
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(Huang et al., 2007). Thus, we improve the synthetic data generation by adding real noise

into ground truth copy numbers. Both synthetics aCGH datasets are used in our validation.

3.1 Standard Synthetic Data Generation

In Willenbrock and Fridlyand (Willenbrock et al., 2005) model, a primary tumor dataset of

145 samples is segmented and the probes are equally spaced along the chromosome. But

the real aCGH data has randomly space between two probes. More recently Y. Wang and

S. Wang (Wang et al., 2007) extended this model by placing unequally spaced probes along

chromosome.

The primary tumor data set is segmented using DNA copy number levels from the em-

pirical distribution of segment mean values smv as

c =





0 (0 copies) : smv <−0.4,

1 (one copy) : −0.4 < smv <−0.2,

2 (two copies) : −0.2 < smv < 0.2,

3 (three copies) : 0.2 < smv < 0.4,

4 (four copies) : 0.4 < smv < 0.6,

5 (five copies) : smv > 0.6.

The synthetic DNA copy number data on a chromosome is generated with Gaussian noise as

follows:

1. Determine copy number probability and the distribution of segment length. As sug-

gested in (Willenbrock et al., 2005) and (Wang et al., 2007), the chromosomal seg-

ments with DNA copy number c = 0,1,2,3,4 and 5 are generated with probability

0.01,0.08,0.81,0.07,0.02 and 0.01. The lengths for segments are picked up ran-
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domly from the corresponding empirical length distribution given in (Willenbrock et

al., 2005).

2. Compute log2ratio. Each sample is a mixture of tumor cells and normal cells. A propor-

tion of tumor cells is Pt , whose value is from a uniform distribution between 0.3 and

0.7. As in paper (Willenbrock et al., 2005), the log2ratio is calculated by

log2ratio = log2

(
cPt +2(1−Pt)

2

)
, (27)

where c is the assigned copy number. The expected log2ratio value is then the latent

true signal.

3. Add Gaussian noises. Gaussian noises with zero mean and variance σ2
n are added to the

latent true signal. Till now, we get the equally spaced CGH signal.

4. Create unequally spaced probes. Because the distances between probe k and probe k +1

are randomly, the best way to get these distances is from the UCSF HumArray2 BAC

array. Thus, we create a real CGH signal from the equally spaced CGH signal when

the unequally spaced probes are placed on the chromosome. Now, we have many

artificial chromosomes of length 200 Mbase which are created by many noise levels

σn = 0.1,0.125,0.15,0.175, 0.2, 0.225 and 0.25.

3.2 New Synthetic Data Model

In our new synthetic data model, we still follow the four above steps but in the third step, the

real noise should be added instead of Gaussian noise. There are many aCGH data source such

as (Stanford, 2001), (GBM, 2005), (NCBI, 2008), but only data from (NCBI, 2008) can be

used to get real noise. Because the number of probes in (Stanford, 2001) and (GBM, 2005)
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are not enough. Data from (Stanford, 2001) has hundreds of probes and data from (GBM,

2005) has about several thousand probes. Both of them have not enough probes to estimate

the correct distribution of noise. However, the length of data from (NCBI, 2008) is long

enough (more than ten thousands of probes). For example, from (NCBI, 2008), chromosome

13 of GSM232967 has 18323 probes. If we use 64 bins, the distributions of noise from the

above chromosomes are shown in Fig. 5. Now, it is easy to create arrays with random values

under the above distributions. These arrays are added into true signal to create simulated

data with real noise. During this step, we have to randomly choose chromosomes that only

have the copy two (zero means). There are many chromosomes which can be used to extract

real noise model, e.g. chromosome 1,3,4,6,8,9,10,12,13,14,17,18,19,20 of GSM232967

and chromosome 18 of GSM232968.
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Figure 5: Normalized distribution of real noise from chromosome 13 of GSM232967.

3.3 Performance Evaluation by RMSE

In this section, we will compare the experimental results of Lowess (Lai et al., 2005),

Quantreg (Eilers et al., 2005; Li et al., 2007), Smoothseg (Huang et al., 2007), SWTi (Wang

et al., 2007), DTCWTi-bi (Nguyen et al., 2007), and our SWPT-LaBi methods. One thou-
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sand artificial chromosomes with Gaussian noise in seven different levels σn = 0.1, 0.125, 0.15,

0.175, 0.2, 0.25 and 0.275 are denoised. Meantime, simulated chromosomes with real noise

is also used to test above six methods. Five methods compared to our method are summarized

as follows:

• Lowess: This is the locally weighted scatter plot smooth using least squares linear

polynomial fitting. It uses a first-degree polynomial instead of second-degree polyno-

mial in Loess. This method is used to compare in (Lai et al., 2005).

• Smoothseg: A smooth segmentation method (Huang et al., 2007) for array CGH data

analysis is based on a doubly heavy-tail-random-effect model. This heavy-tailed model

on error term deals with outliers in observations. To deal with possible jumps in

the copy-number pattern, the i.i.d Cauchy distribution is proposed for modeling the

second-order differences of original data. The denoised data is estimated by the itera-

tive weighted least-squares algorithm.

• Quantreg: This is a quantile regression method which has been used by Eilers in (Eil-

ers et al., 2005). The total variation was used as the roughness penalty. In 2007, Li (Li

et al., 2007) modified this method by incorporating the physical distance between ad-

jacent clones.

• SWTi: SWTi method comes from paper (Wang et al., 2007). Compared with SWPT-bi,

SWTi method has two different steps: 1) the aCGH data which has the unequal dis-

tances between two samples is interpolated to reduce the difference of those distances;

2) the array CGH signal is decomposed by the SWT; 3) the term by term thresholding

is applied to estimate the SWT coefficients (Wang et al., 2007).
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• DTCWTi-bi: This method comes from (Nguyen et al., 2007). It follows five steps: 1)

Interpolate the DNA copy number data; 2) Use zero-padding and decompose new data

by DTCWT; 3) Calculate the noise variance and the marginal variance; 4) Estimate

the coefficients by using a bivariate estimator which shows a relationship of child

and parent coefficients; 5) Reconstruct data from the denoised coefficients by taking

inverse DTCWT.

The denoising results of all methods are shown in the Fig. 6. The proposed SWPT-LaBi

method has a better performance than the others. The SWPT-LaBi outperforms the Lowess

by 49.7%− 52.7%, the Quantreg by 47.3%− 57.4%, the Smoothseg by 49.4%− 59.3%,

the SWTi by 26.3%− 35% and the DTCWTi-bi by 5%− 13.9% in terms of the root mean

squared errors. For all noise levels, the SWPT-LaBi consistently achieves much better results

than others.

In the experiments using real noise synthetic data, 15 chromosomes are used to create

real noise for synthetic data as description in section 3.1. We also run 1000 chromosomes

with six above methods. The Fig. 7 shows that the RMSE of the SWPT-LaBi is 0.0453

and is the smallest one if compared to the Lowess (0.0771), the Smoothseg (0.0813), the

Quantreg (0.0940), the SWTi (0.0700), and the DTCWTi-bi (0.0492). Our proposed method

outperforms all previous methods between 7.9% and 51.8% on the synthetic data with real

noise.
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3.4 Performance Evaluation by ROC Curve

Paper (Lai et al., 2005) introduced another method to evaluate aCGH smoothing algorithms

by ROC curve. Several hundred artificial chromosomes, consisting of 100 probes and with

the square-wave signal in the center of the chromosome, are created from four templates. In

2007, Huang et al. (Huang et al., 2007) modified this setting to make the problem harder.

The modification decreased the width of the center square-wave and increased the noise level.

However people usually want to test the performance of methods not only at the middle of

signal but also the border of signal. Therefore, we keep four templates with the aberration

widths of 5, 20, 30 and 40. We add three more templates (one or two aberrations) with the

aberration widths of 20, 10 and 5 on the border.

From seven genomic templates with one or two aberrations, 270 samples are generated

with unequal space probes. The ROC profiles of SWTi, DTCWTi-bi, Lowess, Quantreg,

Smoothseg, and our SWPT-LaBi methods are calculated. Fig. 8 illustrates the ROC curves

with different noise levels: σ = 0.125,0.175,0.2. The TPR is defined as the number of

probes inside the aberration whose absolute values are above the threshold level divides by

the number of probes in the aberration. The FPR is defined as the number of probes outside

the aberration or the number of probes inside the copy two region whose absolute value are

above the threshold level divides by the total number of probes outside the aberration. The

threshold level is changed from 0 to 1.

In Fig 8 (a,b,c), our SWPT-LaBi method clearly performs better than other methods. If

we just compare some methods in time domain such as Lowess and Quantreg , the Lowess

looks better. This result also agrees with the experimental results in paper (Lai et al., 2005).

In low noise level (σ = 0.125), in Fig 8 (a), most methods operate well except Smoothseg.
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If we increase noise, the Quantreg gets worse in Fig 8 (b,c). Of course, with Gaussian noise,

the Smoothseg always gets worse than the others because it is designed to operate with the

student’t noise. From three above figures, our method always give out the best results.

We also get real noise from the chromosome 13 of GSM232967 and create 270 sim-

ulated aCGHs with real noise from seven genomic templates with one or two aberrations.

Fig 8 (d) shows the ROC curve results of 270 above simulated aCGHs with real noise. The

performance of Smoothseg becomes better but still gets worse than our method. In this case,

the SWPT-LaBi is the best in the low FDR area that is more meaningful in practical aCGH

applications. In summary, our proposed method is the best one in ROC curve comparison.

3.5 Demonstration Using Real Data

We discuss two more examples of smoothing results with simulated data (Gaussian noise)

and real aCGH data in Fig. 9 and Fig. 10. In these figures, Lowess, Quantreg, Smoothseg,

SWTi, DTCWTi-bi, and SWPT-LaBi are still used to smooth aCGH signal. The black solid

lines represent the latent true signals, the blue points stand for the noisy DNA copy data

(log2 ratio) at the probe loci and the red lines correspond to the denoised data. We should

note that the line connecting the denoised data points is only for visualization purpose.

Fig. 9 shows the smoothing result of synthetic data with Gaussian noise. The signal of

that figure is separated to four segments. To easily recognize these segments, we name them

as A, B, C, and D shown in Fig. 9 (f). The log2 ratio values of the latent true signal are

0.3598 at the segment A (the copy three c = 3), zero at the segments B and D (the copy

two c = 2), −0.4624 at the segment C (the copy zero c = 0). If the RMSE values are cal-

culated for six denoised signals, the SWPT-LaBi has the smallest RMSE value (0.0322).

23



The RMSE values of Lowess, Quantreg, Smoothseg, SWTi, and DTCWTi-bi are 0.0503,

0.0532, 0.0462, 0.0444, and 0.0377, respectively. In aCGH data, the segment A and C

which may be causal to cancer are important. Therefore, we consider the segment A and C

as the abnormal segments, the segment B and D as the normal segments. We calculate the

RMSE values of the abnormal segments and the normal segments separately. For the ab-

normal segments, Lowess, Quantreg, Smoothseg, SWTi, DTCWTi-bi, and SWPT-LaBi give

out 0.0522, 0.0626, 0.0679, 0.0658, 0.0758, and 0.0520 in term of the RMSE values respec-

tively. For the normal segments, the RMSE values are 0.0717 (Lowess), 0.0741 (Quantreg),

0.0608 (Smoothseg), 0.0583 (SWTi), 0.0416 (DTCWTi-bi), and 0.0408 (our method). In

both cases, our method has the smallest RMSE value. Therefore, the SWPT-LaBi method

gives out the best result for both the abnormal segments and normal segments. In visible,

the denoised signals using the SWPT-LaBi also tracks the true signal better than the others,

and the denoised results of Lowess, Quantreg, Smoothseg, SWTi, and DTCWTi-bi methods

have some ripples.

We also perform six methods on the real aCGH data that is the BAC array data on 15

fibroblast cell lines (Snijders et al., 2001; L.Hsu et al., 2005). This dataset comes from

Stanford University, which can be freely downloaded at (Stanford, 2001). Because the true

copy number changes are already known for these cell lines by manual inspection of profiles,

we choose these data as a proof of principles. We pick up the chromosome 14 of GM01750

from these data and perform our method and other algorithms for denoising.

Fig. 10 illustrates six sub-figures for six methods. From Fig. 10, we know there are only

the copy four and the copy two in this aCGH data. At the copy two, the denoised signals

using the DTCWTi-bi and SWPT-LaBi look smoother than results of other methods. At the
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copy four, the SWPT-LaBi in Fig. 10 (f) still gives more exact segmentation than Fig. 10 (c)

and (e). In summary, the performance of the SWPT-LaBi based denoised signal is the best

one in Fig. 10.

4 CONCLUSION

In this paper, we propose the dependent Laplacian bivariate shrinkage estimator to improve

the SWPT method in aCGH data denoising study. In our experiments, the denoising results

of our SWPT-LaBi method are much better than the previous methods in terms of the root

mean squared error measurement (improve 5%− 59.3%) and the ROC curve at different

Gaussian noise levels. Furthermore, we also propose to use real noise to improve the tradi-

tional aCGH synthetic data generation. Since our new synthetic data generation model is a

better approximation of real aCGH data, it can more accurately evaluate the aCGH smooth-

ing algorithms. This new synthetic aCGH with real noise is also exploited in evaluation, and

our method still outperforms others. Meantime, we also use the real aCGH data to demon-

strate our SWPT-LaBi approach is better than other most common used smoothing methods.
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Figure 8: Receiver operating characteristic (ROC) curves obtained from the 270 artificial

chromosomes (generated from 7 genomic templates) with each of the different noise lev-

els using the SWPT-LaBi and other most common used CGH algorithms such as SWTi,

DTCWTi-bi, Lowess, Quantreg, and Smoothseg.
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Figure 9: Example of smoothing results at the noise level of σ = 0.2 of six methods
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Figure 10: The wavelet denoising results of six methods on chromosome 14 in the real signal

GM01750
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