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ABSTRACT
Singular Value Decomposition (SVD)/Principal Component
Analysis (PCA) have played a vital role in finding patterns
from many datasets. Recently tensor factorization has been
used for data mining and pattern recognition in high in-
dex/order data. High Order SVD (HOSVD) is a commonly
used tensor factorization method and has recently been used
in numerous applications like graphs, videos, social networks,
etc.

In this paper we prove that HOSVD does simultaneous
subspace selection (data compression) and K-means cluster-
ing widely used for unsupervised learning tasks. We show
how to utilize this new feature of HOSVD for clustering.
We demonstrate these new results using three real and large
datasets, two on face images datasets and one on hand-
written digits dataset. Using this new HOSVD clustering
feature we provide a dataset quality assessment on many
frequently used experimental datasets with expected noise
levels.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications-
Data Mining
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Algorithms
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1. INTRODUCTION
Tensor based dimension reduction has recently been ex-

tensively studied for data mining, machine learning, and pat-
tern recognition applications. At the beginning, standard
Principal Component Analysis (PCA) and Singular Value
Decomposition (SVD) were popular as a tool for the anal-
ysis of two-dimensional arrays of data in a wide variety of
applications. For example, Deerwester et al. [4] and Pa-
padimitriou et al. [17] presented SVD based latent semantic
indexing for automatic information indexing and retrieval;
Billsus and Pazzani [3] used SVD for collaborative filtering
method; Sirovich and Kirby used PCA for human facial im-
ages [12]; Turk and Pentland [16] proposed the well-known
PCA based eigenface method for face recognition; and Al-
ter et al. [2] employed SVD to reduce the dimensions of
genome-wide expression data.

PCA and SVD work well for data dimension reduction of
two-dimensional arrays, but it is not natural to apply them
into higher dimensional data, known as high order tensors.
Powerful tools have been proposed by Tucker decomposi-
tion [19]. In learning and vision area, there are several ten-
sor based methods that have been proposed. Shashua and
Levine [18] employed rank-1 to represent images; Yang et
al. [21] proposed a two dimensional PCA (2DPCA) with
column-by-column correlation of image; Ye et al. [22, 23]
proposed a method called Generalized Low Rank Approxi-
mation of Matrices (GLRAM) to project the original data
onto a two dimensional space with minimizing the recon-
struction error. Ding and Ye proposed a non-iterative al-
gorithm called two dimensional singular value decomposi-
tion (2DSVD) [7]. There are several other 3D tensor fac-
torization methods [10] and the equivalence between them
and GLRAM/2DSVD has been discussed in paper [11]. For
higher dimensional tensors, Vasilescu and Terzopoulos pre-
sented High Order Singular Value Decomposition (HOSVD)



[20]. Higher Order Orthogonal Iteration (HOOI) [14] used
an iterative method to do tensor decomposition in all in-
dices. Ding et al. provided D-1 tensor reduction algorithm
and error bound analysis of tensor factorization [6].

Although many studies on tensor factorization appeared
in data mining, pattern recognition, and machine learning
areas, to our knowledge, this paper is the first one to propose
and prove the equivalence between HOSVD and tensor clus-
tering. In previous research, there are several papers that
ever explored the relations between unsupervised dimension
reduction and unsupervised learning [5, 24].

The main contributions of our paper are as follows:
1) We propose and prove the equivalence of HOSVD and si-
multaneous subspace selection (compression) and K-means
clustering with maintaining global consistency;
2) Experimental results on three public datasets demon-
strate our theory;
3) Furthermore, our algorithm provides a dataset quality as-
sessment method to help data mining and machine learning
researchers to select the experimental datasets with their
expected noise level.

2. TENSOR FACTORIZATION AND
CLUSTERING

Consider a set of input data vectors X = (x1, · · · ,xn)
which can be also viewed as a 2D tensor X = {Xij}m

i=1
n
j=1.

PCA is the most widely used dimension reduction method by
finding the optimal subspace defined (spanned) by the prin-
cipal directions U = (u1, · · · ,uk) ∈ <m×k. The projected
data point in the new subspace are V = (v1, · · · ,vn) ∈
<k×n. PCA finds U and V by minimizing

min
U,V

JPCA = ||X − UV ||2
F

(1)

In PCA or SVD, the Eckart-Young Theorem plays a funda-
mental role. Eckart-Young Theorem[8] states the optimiza-
tion problem has PCA/SVD as its global solution and the
optimal (minimum) value is the sum of eigenvalues.

Jopt
PCA =

min(p,n)∑

m=k+1

λm. (2)

where λm are eigenvalues of the covariance matrix XXT .

2.1 High Order SVD
The input data is a 3D tensor: X = {Xijk}n1

i=1
n2
j=1

n3

k=1
.

The rank-1 and HOSVD factorizations, treating every index
uniformly, is

min
U,V,W,S

J1 = ||X − U ⊗1 V ⊗2 W ⊗3 S||2 (3)

where U, V, W are 2d matrices and S is a 3D tensor. Using

explicit index, J1 =
∑

ijk

(
Xijk −

∑
pqr UipVjqWkrSpqr

)2

.

For HOSVD, S ∈ <k1×k2×k3 ; for rank-1 decomposition, S
is diagonal: Spqr = mp if p = q = r, Spqr = 0 otherwise. In
many cases, we require that W, U, V are orthogonal: UT U =
I, V T V = I, W T W = I.

2.2 GLRAM/2DSVD
The input data 3D tensor X = {Xijk}n1

i=1
n2
j=1

n3

k=1
can be

viewed as X = {X1, · · · , Xn3} where each Xi is a 2d matrix
(e.g. an image) of size n1×n2. Therefore, instead of treating

every index equally as in J1 of Eq.(3), As in Ye and Ding [7,
22], we leave the data index uncompressed and optimize

min
U,V,M

J2 = ||X − U ⊗1 V ⊗2 M ||2

=

n3∑

`=1

||X` − U ⊗1 V ⊗2 M`||2

s.t. V T V = I, UT U = I (4)

where M = {M1, · · · , Mn3}. By definition,

[U ⊗1 V ⊗2 M`]ij =
∑
p,q

UipVjqMpq`

=
∑
p,q

Uip(M`)pq(V
T )qj = (UM`V

T )ij .

Thus, a 3D tensor factorization can also be written as

min
U,V,M`

J3 =

n3∑

`=1

||X` − UM`V
T ||2

s.t. V T V = I, UT U = I. (5)

2.3 Tensor Clustering
Given a set of 1d tensors (vectors) x1, x2, · · · , xn, we can

do K-means clustering

min
{ck}

n∑

`=1

min
1≤k≤K

||x` − ck||2 =

K∑

k=1

∑
i∈ck

||x` − ck||2 (6)

where ck is the centroid vector of cluster ck. This formalism
can be extended to generic tensors. Given a three dimen-
sional tensor X, or, equivalently a set of two dimensional
images X(1), X(2), · · · , X(n), the K-means tensor clustering
minimizes

min
{Ck}

n∑

`=1

min
1≤k≤K

||X(`) −Ck||2 =

K∑

k=1

∑

`∈Ck

||X(`)
k −Ck||2 (7)

where Ck is the centroid tensor of cluster Ck. Now suppose
we carried out a 2DSVD (when d = 3, otherwise, we need
to use a generalized version of 2DSVD) on X into U, V , and
{M`}. Using the distance relationship, the tensor clustering
can be done entirely in {M`}:

min
{Ck}

n∑

`=1

min
1≤k≤K

||M (`)−Ck||2 =

K∑

k=1

∑

`∈Ck

||M (`)
k −Ck||2 (8)

where Ck is the centroid tensor of cluster Ck.

3. SIMULTANEOUS COMPRESSION
(SUBSPACE SELECTION) AND
CLUSTERING

The main purpose of this paper is to provide new insights
to understand the relations between HOSVD and tensor
clustering. In this section, we first prove HOSVD is equiv-
alent to simultaneous subspace selection and K-means clus-
tering. After that, we provide the algorithm to find the
clustering indicators from HOSVD results.

3.1 The Equivalence Theorem
The HOSVD does simultaneous 2DSVD data compression

(subspace selection) and K-means clustering. In Eq.3, ma-
trices U and V include the subspaces after projection and



matrix W gives out the clustering results on the data index
direction.

Theorem 1. The HOSVD factorization of Eq.3 is equiv-
alent to simultaneous 2DSVD data compression of Eq.5 and
K-means clustering of Eq.8.

Proof. We will prove the following:
1) Solution of W in HOSVD is the cluster indicator to K-
means clustering (tensor clustering) of Eq.8;
2) (U, V ) in 2DSVD of Eq.5 is the same (U, V ) in HOSVD
of Eq.3;

Given a three dimensional tensor Xn1n2n3 , or, equiva-
lently a set of two dimensional images X(1), X(2), · · · , X(n3)

with size n1×n2 (we have Xijl = X
(`)
ij ), the objective func-

tion of tensor clustering is (please see Eq.8):

min
{Ck}

JK =

K∑

k=1

∑

`∈Ck

||M (`)
k − Ck||2, (9)

where M (`) = UT X(`)V . We prove Eq.9 is equivalent to
Eq.3.

Eq.9 can be written as:

min
{Ck}

JK =

n3∑

`=1

||M (`)||2 −
K∑

k=1

1

nk

∑

`,`′∈Ck

Tr(M (`) T M (`′)),

(10)
where nk is the number of images in cluster Ck. The solu-
tion of tensor clustering is represented by K non-negative
indicator vectors:

Q = (q1, · · · ,qK), qT
k ql = δkl. (11)

where

qk = (0, · · · , 0,

nk︷ ︸︸ ︷
1, · · · , 1, 0, · · · , 0)T /

√
nk (12)

Let’s denote:

A``′ = Tr(M (`) T M (`′))

= Tr(V T X(`) T UUT X(`′)V ). (13)

We rewrite Eq.10 using Eq.11 and Eq.13:

min
Q

JK = Tr(MT M)− Tr(QT AQ). (14)

The first item is a constant. Thus min JK becomes

max
Q

JK = Tr(QT AQ)

s.t. QT Q = I, (15)

and

(QQT )``′ =

{
0 if M (`) or M (`′) 6∈ Ck

1/nk if M (`) and M (`′) ∈ Ck

(16)

The solution to Eq.3 can be derived using the following
functions:

max
W

Tr(W T HW ) s.t. W T W = I. (17)

max
U

Tr(UT FU) s.t. UT U = I. (18)

max
V

Tr(V T GV ) s.t. V T V = I. (19)

where

Fii′ =
∑

jj′``′
Xij`Xi′j′`′(V V T )jj′(WW T )``′

=
∑

``′
(X(`)V V T X(`′) T )ii′(WW T )``′ (20)

Gjj′ =
∑

ii′``′
Xij`Xi′j′`′(UUT )ii′(WW T )``′

=
∑

``′
(X(`)UUT X(`′) T )ii′(WW T )``′ (21)

H``′ =
∑

ii′jj′
Xij`Xi′j′`′(UUT )ii′(V V T )jj′

= Tr(V T X(`) T UUT X(`′)V ) (22)

Obviously, Eq.22 is the same as Eq.13. Therefore, objec-
tive function Eq.17 is equivalent to Eq.15. Thus, we have
proved HOSVD is doing K-means clustering. The equiv-
alence of (U, V ) in 2DSVD and (U, V ) in HOSVD will be
discussed in Lemma 1 in next section.

3.2 Global Consistence Lemma
Considering the following situation:

A) We do 2DSVD first to obtain M (`).

B) We do K-means clustering in the subspace of {M (`)}.
This is equivalent to HOSVD as proved in section 3.1.
C) We would like to do 2DSVDs on all K clusters simulta-
neously, but this would create different subspaces (Uk, Vk)
(k = 1, · · · , K). Instead, we enforce the subspaces (Uk, Vk)
to be a single pair of global basis (U, V ).
Go back to A) until convergence. After convergence, the
results are identical to solutions of HOSVD

Lemma 1: The converged results (U, V ) of steps A)–C)
are identical to the (U, V ) in solutions of HOSVD.

Proof. Step C) is solved by K 2DSVDs and solution of
each 2DSVD is given by:

max
U

Tr(UT F̃kU) s.t. UT U = I. (23)

max
V

Tr(V T G̃kV ) s.t. V T V = I. (24)

where

F̃k =
1

nk

∑

`∈Ck

(X(`)VkV T
k X(`) T ), (25)

G̃k =
1

nk

∑

`∈Ck

(X(`)UkUT
k X(`) T ), (26)

If we solve for K 2DSVDs separately, (Uk, Vk) will be dif-

ferent based on F̃k and G̃k. When we perform K 2DSVDs
simultaneously as step C), the objective functions are:

F̃ =

K∑

k=1

F̃k

=

K∑

k=1

1

nk

∑

`∈Ck

(X(`)V V T X(`) T )

=
∑

`

1

n`
(X(`)V V T X(`) T ) (27)



G̃ =

K∑

k=1

G̃k

=

K∑

k=1

1

nk

∑

`∈Ck

(X(`)UUT X(`) T )

=
∑

`

1

n`
(X(`)UUT X(`) T ) (28)

After convergence, the iterations of A)–C) stop.

Note that, F in Eq.20 is identical to F̃ of Eq.27 using
Eq.16. Similar relation holds for G and G̃. Therefore, (U, V )
in 2DSVD of Eq.5 are equivalent to (U, V ) in HOSVD of
Eq.3. 2

In summary, we have proved that HOSVD is performing
simultaneous 2DSVD and K-means clustering while main-
taining global consistence. This is the major contribution of
this paper.

3.3 Illustration of Theorem 1
According to Theorem 1, the matrix W in HOSVD so-

lutions is the indicator to clustering results. The cluster-
ing indicator can be found by applying clustering method
into matrix W . In this paper, we apply K-means clustering
method on matrix W to obtain the clustering indicator.

We demonstrate the equivalence theorem by using AT&T
face image database [1] (40 subjects, each subject has 10 dif-
ferent images with size 112×96, please see the more detailed
data description in section 4) to illustrate the visualization
results of confusion matrix C = WW T . Later we will show
more experimental results in next section. After performing
the HOSVD on a 112× 96× 400 image tensor with reduced
dimensions as 30×30×400, we get a 400×30 matrix W and
use it to calculate the confusion matrix C. Since HOSVD
does both compression and clustering simultaneously, differ-
ent compression rates affect the clustering results. Here, we
choose the commonly used 30 × 30 as the image size after
compression.

In order to get a clear representation, we resize the original
400 × 400 matrix C to a new 40 × 40 matrix. Each square
represents a 10× 10 matrix in the original one and includes
all images of one subject. The areas of squares are the sum of
values in matrix. Fig. 1 shows the visualization of confusion
matrix C. Compared to the small size squares, the large
squares on the diagonal denote more images are clustered
into one cluster. Therefore, there exists clustering results
in matrix W of HOSVD. Here, we use K-means clustering
method to find them from the HOSVD results.

The algorithm for finding clustering indicator from HOSVD
results is presented in Table 1. Here we only use K-means
clustering method to find the clustering results that already
exist in HOSVD factorization results. In 2DSVD + K-means
clustering, K-means clustering method really processes the
non-clustered data into clusters.

The clustering mechanism of HOSVD is similar to use
PCA (each image is resized as one vector) to do data pro-
jection, but HOSVD uses a more efficient way – tensor fac-
torization.

4. EXPERIMENTAL RESULTS
In this section, we experimentally demonstrate the pro-

posed new insights to understand relations among HOSVD,
2DSVD + K-means clustering, and PCA + K-means clus-
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Figure 1: The visualization of confusion matrix C of
HOSVD result using AT&T image dataset.

1) Compute HOSVD to get matrix W ;
2) Run K-means clustering on matrix W and
get clustering indicator.

Table 1: Algorithm to find clustering indicator from
HOSVD results.

tering. Two well known datasets will be used: one is AT&T
face images dataset and another one is MNIST hand-written
digits dataset.

4.1 AT&T Face Image Databases
At first, the benchmark face databases AT&T [1] is used

to demonstrate the simultaneous compression (subspace pro-
jection) and clustering of HOSVD. In the AT&T database,
there are ten different images of each of 40 distinct sub-
jects. For some subjects, the images were taken at differ-
ent times, varying the lighting, facial expression (open/close
eyes, smiling/no-smiling) and facial details (glasses/no glasses).
All images were taken against a dark homogeneous back-
ground with the subjects in an upright, frontal, position
(with tolerance for some side movement).

We explore three methods (PCA + K-means clustering,
2DSVD + K-means Clustering, and HOSVD) using AT&T
dataset and the experimental steps are described as follows:
1) PCA + K-means clustering. We reshape each image
(image size is 102 × 92) into one vector and all 400 images
consist of a 9384× 400 matrix. PCA is used to do subspace
projection with the same dimensionality as the number of
distinct subjects, X = UV . K-means clustering is employed
on data projection matrix V to obtain clusters (K=40 for
AT&T datasets).
2) 2DSVD + K-means Clustering. 2DSVD is applied
to the 102×92×400 image tensor for data compression with
reduced dimensions 30 × 30. From Eq.5, Xl = UMlV , l =
1 · · · 400). As described in section 2.3, K-means Clustering
method is used to cluster Ml with objective function Eq.8.



3) HOSVD. We perform HOSVD on the 102 × 92 × 400
image tensor to do simultaneous compression and clustering
with reduced dimensions 30× 30× 40. After that, K-means
Clustering method helps us find the cluster indicator from
matrix W .

Since there are 40 distinct subjects in AT&T database,
all previous papers using this public dataset consider all 400
images as 40 natural clusters and each cluster includes 10
different images of the same subject. After using three above
methods, the final results are represented as 400 × 40 ma-
trices Q. Each row labeled by one image and each column
shows one cluster, e.g., Qij means image i is clustered into
cluster j. We hope to group all ten images of the same sub-
ject together to observe how many images of one subject are
clustered into the same cluster (the remaining images are
clustered into wrong clusters). But in matrix Q the subject
label is not identical to the cluster label. In order to demon-
strate the clustering results better, we perform the following
steps to generate a new 40× 40 matrix I:
1) We group every ten images of the same subject together
along vertical axis and sum their values together by columns:
Iij =

∑10
k=1 Qikjδikj , if image ik is clustered into cluster j,

δikj = 1; otherwise, δikj = 0. As a result, each row in new
matrix represents one subject and one column represents one
cluster;
2) Using the new matrix I, we build a bipartite graph G =
(V = V1∪V2, E) with two sets of 40 vertices V1, V2 and map
V1 to the 40 rows and V2 to the 40 columns in matrix I;
3) The value of edge e(i, j) in the bipartite graph are de-
fined as the value of Iij , i, j = 1, · · · , 40. Using Hungarian
algorithm [13], we do bipartite graph cut with maximizing
weight matching.

The result is a new matrix P and the image group num-
ber is identical to the cluster number if the images from
that group are not clustered into other subjects’ clusters.
We visualize PPCA in Fig. 2(a), P2DSV D in Fig. 2(b), and
PHOSV D in Fig.2(c), respectively. In these three figures,
each row illustrates one subject and each column represents
one cluster. The green squares show the number of images
are clustered into one cluster. The areas of squares are pro-
portional to the number of images clustered together, from
10 to 0. Because most images are clustered into the de-
fault subject cluster and few images are clustered into other
subjects’ clusters, the large squares mostly locate on the di-
agonals and some small squares are scattered into the other
areas.

We also calculate the clustering accuracy of these three
methods. The clustering accuracy is defined by the ratio
of the number of images that are clustered into the default
subject clusters and the number of total images. The num-
ber of images with correct labels can be directly computed
by summing all the squares’ areas on diagonal in each figure
of Fig. 2(a), Fig. 2(b), and Fig.2(c). Table 2 illustrates the
clustering accuracy comparisons of three methods.

In the beginning, we use all 400 images to do cluster-
ing and notice there are some misclustered images for every
method. Because images from one subject are not always
similar, some of them can even be treated as outliers (noise).
Thus, we hope to select the subset of images from original
one with fewer outlier images. We consider using the su-
perset of correct clustering results from different methods.
After running three methods on 400 images, we select the
groups in which at least n (we use n = 8 and 10 for two
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Figure 2: Visualization of (a) PCA + K-means clus-
tering, (b) 2DSVD + K-means clustering, and (c)
HOSVD results on AT&T dataset. Each row repre-
sents one subject and each column denotes one clus-
ter. The green squares show the number of images
clustered into the same cluster.



Figure 4: Sample images of MNIST hand-written
digits dataset.

subsets of images selection) images are clustered into the
default cluster by at least one of three methods and merge
all of them together to create the new dataset. When n =
8, we have 30 distinct subjects with 300 images; n = 10, we
have 22 distinct subjects with 220 images. Three methods
are performed on the new datasets again and the cluster-
ing accuracy values are summarized into column 3 and 4 in
Table 2. Our experimental results show the clustering accu-
racy is improved when the selection quality of subset images
increases.

All images Subset images Subset images
(400) (300) (220)

PCA +
K-means 70.5% 74.5% 80.2%
2DSVD +
K-means 73.5% 78.7% 83.6%
HOSVD 74.0% 80.7% 84.5%

Table 2: The clustering accuracy comparison of
PCA + K-means clustering, 2DSVD + K-means
clustering, and HOSVD methods using AT&T
datasets.

In order to understand the clustering results better, we
also pay attention to the images that are not clustered into
the default subject cluster. For example, results of three
clusters are illustrated into Fig.3. Images on each row are
clustered into the same cluster by HOSVD method. Every
cluster includes images from more than one subject. The
white lines are used to separate the images of different sub-
jects. Because the images from AT&T face database vary
in the lighting, facial expression, and facial details, images
of some subjects are far away to other images of the same
subject and more closer to images of other subjects. The im-
ages within the same subject group are not homogeneous.
Therefore, if we use distinct subjects as the default labels,
the original datasets don’t always have the correct cluster
labels. We will discuss this issue more in next section.

4.2 MNIST Hand-written Digit Dataset
Here, we present experimental results on the MNIST hand-

written digits dataset, which consists of 60,000 training and
10,000 test digits [15]. The MNIST dataset can be down-
loaded from “http://yann.lecun.com/exdb/mnist/” with 10
classes, from digit “0” to “9”. In the MNIST dataset, each
image is centered (according to the center of mass of the
pixel intensities) on a 28x28 grid. Fig.4 displays sample im-
ages of hand-written digits.
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Figure 5: Visualization of HOSVD results on
MNIST hand-written digit dataset. Each row is one
digit and each column is one cluster. The green
squares show the number of digits clustered into the
same cluster.

In our experiments, we randomly choose 1000 images (i.e.,
each digit has 100 images) and apply HOSVD factorization
on this 28 × 28 × 1000 tensor. The reduced dimensions are
10×10×10. Using the same way to plot Fig. 2(a), Fig. 2(b),
and Fig.2(c), we visualize the clustering results of HOSVD
in Fig.5. Since the areas of squares on diagonal are much
larger than the areas of other small squares, the clustering
results are pretty good.

5. DATASET QUALITY ASSESSMENT
In our experiments, the clustering results tell us that the

images within the same subject group are not always consis-
tent. For example, in face image databases, the same person
can have different poses, lights, expression details, and there
is also misalignment problem between images. The figures
of one person can be more similar to other’s than his own
images. The digit images also have this situation.

In most high dimensional datasets, there exist outliers
leading such data inconsistent problem and confusing the
data mining and pattern analysis algorithms. How can we
select the high dimensional datasets or subdatasets with
fewer outliers? Based on the proposed clustering feature
of HOSVD, we provide a dataset quality assessment using
HOSVD to help other researchers select a subset of high di-
mensional data with less noise. Two well known public face
image databases will be used to illustrate this new function
of HOSVD.

5.1 The AT&T Faces Database
We ever show the examples of different people who are

clustered into the same cluster in Fig.3. Here, we draw
out several examples in Fig.6 to demonstrate why the im-
ages of the same subject are clustered into different clusters
during K-means clustering. Six examples are illustrated on
each row in Fig.6, respectively. The white lines are used to
separate the images of each subject through the clustering
(HOSVD) results.

In Fig.6, the subject shown as the first example (first



Figure 3: The clustering results using HOSVD method. Each row shows the images of different subjects are
clustered into the same cluster. White lines are used to separate the images of different subjects.

row) has different face directions in his ten images: his jaw
changes directions from right to left, and then to center.
These different face directions create misalignment errors
during image matching. As a result, his ten images are clus-
tered into five different clusters. The subject in the second
example has different face directions and different face sizes
in these ten images and those differences effect the clustering
results. Both third and fourth examples are clustered into
two clusters. One has two different face directions and the
other one has different face details (the glass). The fifth and
sixth examples show the consistent images within the same
subject cluster without separation during clustering process.

In order to quantitatively observe the difference between
those images, we calculate the average distance of each pair
images of the subject. We call it as dispersion distance and
define it as follows:

Ddispersion =
∑
i,j

||Xi −Xj ||2∑
i ||Xi||2 /

n(n− 1)

2
, (29)

where Xi and Xj are images of the same subject, and n = 10.
The dispersion distances of six examples in Fig.6 are 0.56,
0.68, 0.65, 0.51, 0.49, and 0.46. The fifth and sixth examples
have small dispersion distances compared to other examples.
These dispersion distances help us measure the consistency
of high dimensional data under the same category.

So far many data mining and pattern analysis algorithms
are tested on the public face databases, e.g. AT&T databases,
but the noise within those public datasets definitely bothers
the evaluations and comparisons of their methods.

Now we show how clustering accuracy changes using dif-
ferent image subsets. At first, the HOSVD method is per-
formed on all images. Based on the results, we select the
subjects which at least have n images been clustered into
the default subject cluster. When n ranges from 1 to 10, we
create ten image subsets. We run HOSVD method again on
the selected subset images and the clustering accuracy re-
sults are shown in Fig. 7. The numbers of x-axis denote the
n values and the values on y-axis are the clustering accuracy.
The red line is the clustering accuracy using all 400 images.
This figure illustrates how images of the same subject are
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Figure 7: HOSVD results after selecting the subset
images for experiments. The values of x-axis denote
the n values for subset images selection and the val-
ues on y-axis are the clustering accuracy. The red
line is the clustering accuracy using all 400 images.

consistent in different subset images. Researchers can select
the subset images based on their expected noise level.

5.2 The Yale Face Database B
The other face image database used in our experiment is

the combination of extended and original Yale database B
[9]. These two databases contain single light source images
of 38 subjects (10 subjects in original database and 28 sub-
jects in extended one) under 576 viewing conditions (9 poses
x 64 illumination conditions). We fixed the pose. Thus, for
each subject, we obtained 64 images under different lighting
conditions. The facial areas were cropped into the final im-
ages for matching [9], including: 1) preprocessing to locate
the faces was applied; 2) original images were normalized (in
scale and orientation) such that the two eyes were aligned
at the same position. The size of each cropped image in
our experiments is 192 × 168 pixels, with 256 gray levels
per pixel. Because there is a set of images which are cor-
rupted during the image acquisition [9], we have 31 subjects



Figure 6: The HOSVD results separate the images of several people into different clusters. AT&T face image
datasets are used. Each row includes all ten images of the same subject. The white lines are used to separate
the images that are clustered into different clusters.
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Figure 8: Visualization of HOSVD method using
images from the Yale Face Database B.

in total without any corrupted images. We randomly select
ten illumination conditions for all 31 subjects to create the
experimental dataset with 310 images.

We employ HOSVD factorization on the 192× 168× 310
tensor with reduced dimensions as 30 × 30 × 31. Using the
same way to draw clustering results in section 4.1, we vi-
sualize the HOSVD clustering results in Fig.8. Although
the main large green squares locate on the diagonal, several

Figure 9: All 27 images from different subjects are
clustered into cluster 7 in Fig.8.

small ones still scatter in other regions. Some images are
not consistent with other images of the same subject.

In Fig.8, cluster 7 is an interesting cluster, because there
are 27 images from different subjects are clustered into the
same cluster. We display all these 27 images in Fig.9. Be-
cause these images use dark ambient light, different people’s
faces are not recognizable. Since they look all similar (dark)
and are different to other images of the same subject, we
don’t believe they are helpful in face images mining and
recognition.

6. CONCLUSION
Because numerous data mining and machine learning ap-

plications can be handled by matrices or tensors, tensor fac-
torization methods are growing increasingly popular as pow-



erful dimension reduction techniques. In this paper, we first
propose a new theorem of HOSVD that it does simultaneous
2DSVD subspace selection (compression) and K-means clus-
tering while maintaining the global consistence. A rigorous
proof is provided for this novel insight of relation between
HOSVD and tensor clustering. Using the same technique
of proving Theorem 1, we can also prove that the ParaFac
tensor decomposition is also equivalent to a K-means clus-
tering.

We provide experiments to demonstrate our theoretical
results on three public datasets. In experiments, we com-
pare HOSVD method with PCA + K-means clustering and
2DSVD + K-means clustering methods. The experimental
results show that HOSVD gives out both data compression
and clustering results.

Furthermore, our experimental results suggest that the
high dimensional data are not consistent in those public
datasets, because of the outliers. In order to select the clean
datasets with expected noise level for data mining and ma-
chine learning research experiments, we provide a HOSVD
based dataset quality assessment method and use it to find
interesting results from two well known face image datasets.
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