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Abstract. The spherical harmonic (SPHARM) description is a powerful surface
modeling technique that can model arbitrarily shaped but simply connected 3D
objects and has been used in many applications in medical imaging. Previous
SPHARM techniques use the first order ellipsoid for establishing surface corre-
spondence and aligning objects. However, this first order information may not be
sufficient in many cases; a more general method for establishing surface corre-
spondence would be to minimize the mean squared distance between two corre-
sponding surfaces. In this paper, a new surface matching algorithm is proposed
for 3D SPHARM models to achieve this goal. This algorithm employs a useful
rotational property of spherical harmonic basis functionsfor a fast implementa-
tion. Applications of medical image analysis (e.g., spatio-temporal modeling of
heart shape changes) are used to demonstrate this approach.Theoretical proofs
and experimental results show that our approach is an accurate and flexible sur-
face correspondence alignment method.

1 Introduction

Surface representation and shape modeling play increasingly prominent roles in many
computer vision and image processing applications. Medical image analysis is one of
the most important applications. Many techniques have beendeveloped for modeling
and inspecting anatomic structures in the diagnosis and treatment of disease. The spher-
ical harmonics approach has been used for the representation of shapes in many types
of biomedical image data to help perform functional information analysis or classify
different pathological symptoms.

Many spherical harmonic based shape descriptions have beendeveloped for med-
ical image analysis. Chenet al. [1] use this method to model and analyze left ventricular
shape and motion. Mathenyet al. [2] and Burelet al. [3] use 3D and 4D surface har-
monics to reconstruct rigid and nonrigid shapes. Since theystart from an initial radial
surface functionr(θ, φ), their method is capable of representing only star-shaped or
convex objects without holes. Brechbühleret al. [4] present the SPHARM description
that is an extended spherical harmonic method for modeling any simply connected 3D
object. The object surface is represented asv(θ, φ) = (x(θ, φ), y(θ, φ), z(θ, φ))

T and
spherical harmonics expansion is used for all three coordinates. Gerig and Styner have
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applied SPHARM in many medical imaging applications (e.g., shape analysis of brain
structures [5–7]). It has also been used for shape modeling and functional analysis for
cardiac MRI [8].

In order to compare different SPHARM models, a shape registration step is often
necessary for aligning these models together and extracting their shape descriptors (i.e.,
excluding translation, rotation, and scaling). Like shaperegistration using ICP [9], two
important substeps are involved in aligning SPHARM models:(1) creating surface cor-
respondence, and (2) minimizing the distance between the corresponding surface parts.
Once the surface correspondence is established, the distance minimization becomes rel-
atively easy. Thus, the focus of this paper is on creating surface correspondence for two
3D SPHARM models.

Previous studies [5, 6] used the first order ellipsoid for shape registration. The pa-
rameter net on this ellipsoid is rotated to a canonical position such that the north pole
is at one end of the longest main axis, and the crossing point of the zero meridian and
the equator is at one end of the shortest main axis. The aligned parameter space creates
surface correspondence between two models: two points withthe same parameter pair
(θ, φ) on two surfaces are defined to be a corresponding pair. This alignment technique
works only if the first order ellipsoid is a real ellipsoid, asin the case of hippocampal
data [6], but not if it is an ellipsoid of revolution or a sphere. There are also other cases
in which first order ellipsoid alignment may not work. One example is given in Fig. 1
for the heart ventricle case.

In this paper, instead of aligning the first order ellipsoid,we employ a more general
metric for establishing surface correspondence: minimizing the mean squared distance
between two SPHARM surfaces. A fast surface alignment algorithm is proposed to
achieve this. Based on the rotational properties of harmonics analysis, we prove that a
new set of SPHARM coefficients after a rotated parametrization can be directly gen-
erated from the original set. Thus we can easily obtain a new SPHARM model for a
re-parameterized object by rotating its parametrization along the surface. This process
is faster than a standard recalculation (e.g., solving a linear equation) of SPHARM co-
efficients for a re-parameterized object. This work is motivated by the need for better
shape modeling and analysis in current medical applications. Some of these applications
are used to demonstrate our algorithm in this paper.

2 Methods

2.1 Surface Description Using SPHARM

The SPHARM technique [4] can be used to model arbitrarily shaped, simply connected
3D objects. The object surface is represented by using spherical harmonics expansion
for all three coordinates,

v(θ, φ) = (x(θ, φ), y(θ, φ), z(θ, φ))T =
∞
∑

l=0

l
∑

m=−l

c
m
l Y m

l (θ, φ). (1)

The coefficientscm
l = (cm

lx, cm
ly , cm

lz )T are 3D vectors. Their components,cm
lx, cm

ly , and
cm
lz are usually complex numbers. The coefficients up to a user-desired degree can be
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estimated by solving a set of linear equations in a least square fashion. The object
surface can be reconstructed using these coefficients, and using more coefficients leads
to a more detailed reconstruction. Thus, a set of coefficients actually form an object
surface description.

2.2 Fast Rotation Theorem for Spherical Harmonic Parametrization

Theorem (Parametrization Rotation). The parametrization spatial rotation on the
surface can be decomposed into three rotations of mapping parameter meshes onto
thex-sphere,y-sphere, andz-sphere. Letv(θ, φ) =

∑∞
l=0

∑l
m=−l c

m
l Y m

l (θ, φ) be a
SPHARM parametric surface. After rotating the parameter net on the surface in Euler
angles(α, β, γ), the new coefficientscm

l (αβγ) is

cm
l (αβγ) =

l
∑

m′=−l

cm′

l Dl
mm′(αβγ). (2)

Proof. According to Euler’s rotation theorem, any rotation of the coordinate system
(e1, e2, e3) can be decomposed into three elementary rotationsR(α, β, γ). TheSO(3)
harmonics provide the tool to express the rotated version ofa function on the sphere
extended by spherical harmonics [10]. The effect of such a rotation on the spherical
harmonic basis functions is [11]

RZY Z(αβγ)Y m
l (θ, φ) =

l
∑

m′=−l

Y m′

l (θ, φ)Dl
m′m(αβγ), (3)

whereRZY Z(αβγ) represents the rotation operator dependent on the Euler angles; the
rotation matricesDl

m′m(αβγ) (also called theSO(3) matrix elements) are calculated
by

Dl
m′m(αβγ) = e−im′αdl

m′m(β)e−imγ ,

where

dl
m′m(β) =

min(l+m,l−m′)
∑

t=max(0,m−m′)

(−1)t ×

√

(l + m)!(l − m!)(l + m′)!(l − m′)!

(l + m − t)!(l − m′ − t)!(t + m′ − m)!t!

×

(

cos
β

2

)(2l+m−m′−2t) (

sin
β

2

)(2t+m′−m)

.

Since we employ the SPHARM surface modeling technique, the surface coordinate
information of a 3D object is coded onto three unit spheres: an x-sphere, ay-sphere,
and az-sphere. These three spherical functions are expanded using spherical harmonics
and represented byf(θ, φ) (f ∈ {x, y, z}). We denotef ′(θ, φ) as the new function after
applying a rotation operatorRZY Z(αβγ) to f(θ, φ) on thef -sphere:

f ′(θ, φ) = RZY Z(αβγ) f(θ, φ), (4)
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thus
v
′(θ, φ) = Robj(αβγ) (x(θ, φ), y(θ, φ), z(θ, φ))

T (5)

whereRobj(αβγ) = [RZY Z(αβγ) 0 0; 0 RZY Z(αβγ) 0; 0 0 RZY Z(αβγ)].
Thenv

′(θ, φ) = Robj(αβγ)v(θ, φ) represents the new parametrization on the sur-
face, which can be generated by rotating the original parametrization along the object’s
surface about Euler angles(α, β, γ). In other word, the result of applying the rotation
matrixRZY Z(αβγ) on the mapping meshes ofx, y, z-sphere is to rotate the parameter
mesh on the object’s surface at the same orientation. Because of the distortions intro-
duced by spherical parameterization, the result of rotation is not identical to the result
of applying Euler angles on the sphere, but both will have nearly the same orientation.
Thus we only useRobj , which we refer to as the parametric rotation matrix, for rotating
the parameter mesh along the surface of an object. Substituting Eq. (1) and Eq. (3) into
Eq. (4) gives

L
∑

l=0

l
∑

m=−l

cm
lf (αβγ)Y m

l (θ, φ) = f ′(θ, φ) = RZY Z(αβγ)

L
∑

l′=0

l′
∑

m′=−l′

cm′

l′fY m′

l′ (θ, φ) =

L
∑

l′=0

l′
∑

m′=−l′

cm′

l′f RZY Z(αβγ) Y m′

l′ (θ, φ) =

L
∑

l′=0

l′
∑

m′=−l′

cm′

l′f

l′
∑

n=−l′

Y n
l′ (θ, φ)Dl′

nm′(αβγ)

and multiplyingȲ j
k (θ, φ) on both sides (adjusting thek from 0 to L andj from −k

to k) and integrating on the sphere. Since all Kronecker delta values are zero except at
k = l = l′ andj = m = n, we get the following:

cm
lf (αβγ) =

l′
∑

m′=−l′

cm′

l′fDl′

mm′(αβγ) =

l
∑

m′=−l

cm′

lf Dl
mm′(αβγ). (6)

According to the above derivation, the harmonics expansioncoefficients transform
among themselves during rotation. Each new spherical harmonic coefficientcm

lf (αβγ)
after applying a rotated functionRZY Z(αβγ) is a linear combination of the coefficients
cm
lf of the original functionf(θ, φ) (f ∈ {x, y, z}). We can use this property to calculate

the new SPHARM modelv′(θ, φ) for the object surface after a rotated parametrization,
and we only need the old coefficients{cm

lx, cm
ly , cm

lz} and rotation matricesDl
mm′(αβγ).

2.3 Surface Correspondence Difference Measure

The surface correspondence alignment problem is generallyformulated in terms of the
optimal parameters, such as(α, β, γ), that minimize some surface distance function. In
this paper, we adopt the Euclidean distance as the distance function between surfaces.
Formally, for two surfaces given byv1(s) andv2(s), their distanceD(v1,v2) is defined
as [6]

D(v1,v2) = (
∑

f∈{x,y,z}

L
∑

l=0

l
∑

m=−l

(cm
lf1

− cm
lf2

)2)1/2. (7)
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2.4 Fast Surface Alignment Algorithm

We use a sampling-based search algorithm, which fixes one parameter mesh and rotates
the other to carry out a greedy search on its surface with a small step size, to align the
surface correspondence by minimizing the surface distancedefined in Eq. (7). First, we
uniformly distribute sample points on the surface as the newnorth poles locations, and
the new SPHARM coefficients can be calculated by using Eq. (2)with new Euler angles
set(α, β, γ). For each candidate north pole, the parameter mesh is counterclockwise
rotated along the new north-south aixes (the rotation angleω ranges from 0 to2π). In
order to calculate the coefficients of the new rotated parameter mesh using Eq. (2), we
must transform the rotation angleω into the Euler angles(α, β, γ).

The original north and south poles of a surface’s parameter mesh are mapped onto
the axise3 = (0 0 1) and−e3 = (0 0 − 1) in the x-, y-, andz-sphere. After ro-
tation using Euler angles(αp, βp, γp), the north and south pole coordinates switch
from v(θ, φ) to v′(θ, φ) = Robj(αpβpγp)v(θ, φ), (θ = 0 or π). Simultaneously the
axis e3 in the coordinate systems of the three mapping spheres is changed toê3 =
RZY Z(αpβpγp)(0 0 1)T . Becausêe3 also contains the origin and has unit length direc-
tion, we apply the Rodrigues’ rotation formula [13] for computing the rotation matrix
Rê3

∈ SO(3) corresponding to a rotation by an angleω about the fixed axiŝe3

Rê3
(ω) = I + Ssinθ + S2(1 − cosθ), S =





0 −ê3x ê3y

ê3z 0 −ê3x

−ê3y ê3x 0



 ,

whereI is the identity matrix. We can obtain the Euler angles(α, β, γ) by solving the
equationRZY Z(αβγ) = Rê3

(ω). These Euler angles can then be used to calculate the
coefficients of new parameter mesh using Eq. (2).

In the second step, we use the BFGS algorithm [14] to locally minimize Eq. (7)
starting from the result of the first step. Because the resultof the first step is already
close to the target, this step generally needs only a few iterations. Although the dimen-
sion of the Jacobian matrix is large, the matrix is quite sparse. The computational time
of this step is very low.

3 Experiments and Discussions in Medical Image Analysis

The fast alignment algorithm for surface correspondence described above was used for
shape analysis in selected medical image analysis applications. Based on segmented
MRI data of heart, we use the SPHARM method to do surface reconstruction and apply
the surface alignment algorithm presented in this paper to determine a correspondence
between shapes. This aligned correspondence allows researchers to access more func-
tional details.

3.1 Comparison of Methods

In previous shape analysis study using the SPHARM description [5], researchers choose
to use the three major axis of the first order ellipsoid (whichis computed from the
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 1. Comparison of methods: (a) shows the reconstructed SPHARM surface of left ventricle,
(b) is the first order ellipsoid of surface (a); (c) shows the reconstructed SPHARM surface of
right ventricle, (d) is the first order ellipsoid of surface (c). By using the previous method, the first
order ellipsoids and parametrizations are rotated to the positions in (f) and (h), and the SPHARM
surfaces and parametrizations are rotated as (e) and (g). Byusing our algorithm, (i) shows the
result of poles alignment. North and south poles are alignedclose to the poles of (a). And the
parameter mesh is rotated along the north pole. After using the BFGS algorithm [14] in the
second step, the last alignment result is shown in (j).

first order SPHARM coefficients) as the intrinsic coordinatesystem. Parametrization is
rotated in the parameter space for normalization so that three main ridges of the first
order ellipsoid are moved to the equator [5, 6]. Their methodworks well if two or more
objects have a similar orientation (e.g., aligning hippocampal shapes). However this
method may not work in some cases.

Fig. 1.(a) and Fig. 1.(c) show the reconstructed surface of two ventricles of the
heart (left ventricle and right ventricle). We separate theparametrization on the surface
into eight regions using five lines (θ = π/2 in middle line, in north poleθ = 0, in
south poleθ = π, the other four lines separately representφ = 0, π/2, π, 3π/2, 2π).
The correspondences between surfaces in Fig. 1.(a) and Fig.1.(c) are unordered as
the visualizations. Fig. 1.(b) and Fig. 1.(d) show their first order ellipsoids. By using
the previous method, the first order ellipsoids and parametrizations are rotated to the
positions in Fig. 1.(f) and Fig. 1.(h). Three main directions of the ellipsoids are moved
to the equator. The surface correspondence is created when the first order ellipsoid is
aligned. As the result, the SPHARM surfaces and parametrizations should be rotated
as Fig. 1.(e) and Fig. 1.(g). A limitation of this approach isthat it may not represent
the real surface correspondence between two surfaces. The reason for this is that the
left ventricle and right ventricle have two very different orientations of their first order
ellipsoid that are obvious in Fig. 1.(b) and Fig. 1.(d). Thus, although the first order
ellipsoids are rotated to the normalized positions, the surfaces are rotated to the opposite
orientations.

Our new alignment algorithm produces a correct alignment inthese cases, because
it is a general surface alignment method that does not dependon any orientation infor-
mation. Fig. 1.(i) and Fig. 1.(j) show the results generatedby our algorithm. Fig. 1.(a)
is the fixed surface and the parametrization in Fig. 1.(c) is rotated to Fig. 1.(j).
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The effectiveness of our algorithm can also be demonstratedby computing the sur-
face correspondence distance defined in Eq. (7). The surfacecorrespondence distance
between surfaces in Fig. 1.(e) and Fig. 1.(g) is258.6536mm, but the surface correspon-
dence distance between surfaces in Fig. 1.(a) and Fig. 1.(j)is 62.4798mm. Our surface
alignment algorithm derives a better result.

3.2 Alignment for Temporal Heart Sequences

(a)

(b)

Fig. 2. (a) shows a shape sequence of a left ventricular inner surface during one heart cycle before
surface alignment. The shape sequence in (b) is the result after surface alignment.

This new surface alignment algorithm also provides a promising method for study-
ing spatio-temporal structures. In the previous research [15], surface tracking tech-
niques (tracking points on 3D shape using 2D images) are usedto create temporal
sequence descriptions for points on the left ventricle inner surface through each heart
cycle. Such temporal sequence descriptions can quantify the ventricular mechanical
asynchrony or synchrony, which has important diagnostic and prognostic values, and
can help determine optimal treatment in heart failures where a heart has a highly asyn-
chronous contraction. Because the points are tracked on 2D images and mapped to a
3D surface, this method can only describe the heart contraction and dilation along the
plane direction, and is not accurate for the perpendicular direction.

Combining the SPHARM description and our surface alignmentmethods offers a
set of spatio-temporal surface correspondences for medical image analysis research.
Our new algorithm generates more reasonable surface correspondences for the left ven-
tricle sequence, and these surface correspondences describe the heart contraction and
dilation in every direction of 3D space. Based on this new model, more valuable diag-
nostic and prognostic information can be derived for helping make clinical determina-
tions.

Fig. 2.(a) is a shape sequence of a left ventricular inner surface during one heart
cycle. Before surface alignment, the parametrization of every surface is unordered. The
shape sequence in Fig. 2.(b) is the result after surface alignment. During the alignment
procedure, every shape is aligned with its anterior shape.
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4 Conclusions

This paper addresses the problem of finding surface correspondences between SPHARM
parametric surfaces. We propose a theorem based on the SPHARM rotational property
to easily calculate SPHARM coefficients of the new parametermesh along the surface.
The distance between surfaces is defined as the objective function. Its efficacy is demon-
strated in experiments based on several medical research problems, where we observe a
significant improvement in robustness relative to existingshape modeling and analysis
techniques.

There are several future directions. 1) The current algorithm can be integrated into
an ICP-like framework for registration of 3D parametric surfaces. After finding the cor-
responding points on the surfaces, we can use an ICP-like algorithm to minimize the
value of the correspondence. 2) Considerable research has focused on generating an
equal area parametric mesh for a given surface. Our alignment algorithm can be com-
bined with such parametrization methods to produce a bettersurface correspondence.
These results are very useful for the shape and functional analysis in medical imaging.
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