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Abstract. We propose a novel framework to predict pacing sites in the left ven-
tricle (LV) of a heart and its result can be used to assist pacemaker implantation
and programming in cardiac resynchronization therapy (CRT), a widely adopted
therapy for heart failure patients. In a traditional CRT device deployment, pacing
sites are selected without quantitative prediction. That runs the risk of subop-
timal benefits. In this work, the spherical harmonic (SPHARM) description is
employed to model the ventricular surfaces and a novel SPHARM-based surface
correspondence approach is proposed to capture the ventricular wall motion. A
hierarchical agglomerative clustering technique is applied to the time series of re-
gional wall thickness to identify candidate pacing sites. Using clinical MRI data
in our experiments, we demonstrate that the proposed framework can not only ef-
fectively identify suitable pacing sites, but also distinguish patients from normal
subjects perfectly to help medical diagnosis and prognosis.

1 Introduction

Heart failure, also called congestive heart failure, is a major health problem that con-
tinues to increase in prevalence. It is a disorder in which the heart loses its ability to
pump blood efficiently. Low cardiac output resulting from heart failure may cause the
body’s organ systems to fail. As one important part of the problems, the walls of the left
ventricle (LV) are unable to contract synchronously.

Over the past decade, investigators [2] have established the feasibility of placing
multiple pacing leads of pacemaker to improve the activation synchrony (sameness of
activation time) of LV and biventricle. Based on these studies, a promising therapeutic
option, called cardiac resynchronization therapy (CRT), has been proposed as an al-
ternative treatment in patients with severe, drug-refractory heart failure. It is aimed at
correcting contraction delays that result in different regions of the heart not working
optimally in concert [1].

Although clinical trials have confirmed that CRT improved clinical symptoms, in-
creased exercise capacity, and led to cessation or even reversal of chronic chamber
remodeling, a significant minority seem not to benefit. [3] There are a lot of potential
explanations for the CRT failure cases, and improper surgical placement of the LV lead
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is one of the most important reasons. Improvements in the methods of identification of
likely responsive implantation placements are needed.

The initial CRT device utilization incorporates right ventricle and LV pacing sites,
but a right ventricle pacing site is not required for hemodynamic benefit in many pa-
tients [4]. Since LV pacing alone has the almost similar benefit with biventricular pac-
ing, it is used more popular in the CRT system. Thus, in this paper, we focus on the
CRT with LV pacing sites.

The principal goal of the present study is to efficiently predict the optimal LV pac-
ing sites that should be stimulated by electrical impulses of pacemaker and provide
the corresponding parameters (timing delay,etc.) to help the programmable device.
In order to identify the optimal pacing sites, the mechanical dyssynchrony is directly
analyzed by the spatio-temporal modeling. Based on the factthat ventricular wall thick-
ening and motion reflect activation, we build an integrated framework to estimate the
most effective places for implanting the pacemaker to achieve maximized CRT benefit.
Given a stack of cardiac MRI, both endocardium and epicardium are reconstructed, and
the optimal correspondences between them are established by minimizing the surface
Euclidean distance. LV wall motion is described by the threedimensional (3D) wall
thickness change that is computed using the reconstructed LV surfaces. After applying
the hierarchical clustering method on a time series of wall thickness measurements, we
can find candidate pacing sites with abnormal local motion. Our experiments also show
that this study can be used to distinguish patients and normal subjects and judge the
disease degree.

2 Methods

2.1 Spatio-temporal LV Motion Modeling

In order to quantify the ventricular mechanical asynchronyor synchrony that can di-
rectly help determine optimal treatment, we develop our spatio-temporal model to de-
scribe a temporal sequence of wall thickness changing during a heart cycle.

Surface reconstruction. We reconstruct both endocardium and epicardium of the
LV by using the spherical harmonic (SPHARM) method, which was introduced by
Brechbühler, Gerig and Kübler [5] for modeling any simplyconnected 3D object. The
object surface is parameterized asv(θ, φ) = (x(θ, φ), y(θ, φ), z(θ, φ))

T using a pair
of spherical coordinates(θ, φ), where the parameterization aims to preserve the area
and minimize the angle distortion. Thus,v(θ, φ) becomes a vector of three spherical
functions that can be expanded using spherical harmonicsY m

l (θ, φ) as follows,
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lz )T are expansion coefficients that can be used to reconstruct
the object surface. SPHARM has been used by Gerig and Styner in many medical imag-
ing applications (e.g., shape analysis of brain structures [6–8]). It has also beenused for
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shape modeling and functional analysis of cardiac MRI [9]. Since SPHARM provides
an implicit correspondence between surfaces of 3D objects,it is suitable to be used to
analyze the LV wall motion during heart cycle.

In our cardiac MRI data sets, each MRI sequence holds seventeen temporal phases
per heartbeat. Since the LV deformation is exhibited by the thickness change of the
wall between endocardium and epicardium, we use 17 SPHARM reconstructed surface
pairs (including both endocardium and epicardium) to describe the LV contraction and
dilation during a whole heart cycle.

Surface correspondence.In order to measure the wall thickness at each surface loca-
tion as well as compare thickness changes between differenttime points, a registration
step is necessary for aligning all the reconstructed epicardial surfaces together. Given
two SPHARM models, we establish their surface correspondence by minimizing the
Euclidean distances between their corresponding surface locations. Formally, for two
surfaces given byv1(s) andv2(s), their distanceD(v1,v2) is defined as [7]

D(v1,v2) = (

∮

‖ v1(s) − v2(s) ‖
2 ds)1/2 = (
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lf2

)2)1/2.

The epicardial surface in the first time phase (diastolic phase in our MRI data) dur-
ing heartbeat is used as the template. For any other epicardial surface in the same se-
quence, we align it to the template by rotating its parameternet [10] so that the surface
distancesD(v1,vi), (i = 2, ..., 17) between them is minimized. Given an aligned sur-
face sequence, we use the same method to align the endocardium to the epicardium in
the same timing phase.

Wall motion series. Because the wall thickness change of LV directly shows the wall
motion in 3D space during a heart cycle, we can use it as the wall motion descriptor.
In this study, we observe that the distance between the corresponding points (i.e., with
the same(θ, φ)) on the endocarium and epicardium surfaces, can be directlyused to
approximate the wall thickness, since we have already minimized this distance in the
previous step. In addition, the underlying equal area parameterization implies the cor-
respondence relationships between any pair points on thesetwo surfaces are reasonable
and effective.

After that, we create the wall motion series that includes the thickness values for
each corresponding surface location at each time phase during a heart cycle, from end-
diastolic phase to next end-diastolic one. Since we are onlyinterested in the LV wall
motion, we ignore the points appearing on the top of reconstructed surfaces. Even if
only one point whose thickness value in the wall motion series appears on the top of its
surface, the whole motion series is discarded.

2.2 Clustering Based Pacing Sites Search

After the above steps, a set of motion series are used to present the LV wall contraction.
Given a pair of(θ, φ), we usew(θ, φ) = {w1(θ, φ), w2(θ, φ), ..., wn(θ, φ)} to denote
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its corresponding wall motion series, wherewi(θ, φ) is the wall thickness value of wall
motion phasei corresponding to the parametrized point(θ, φ) on the epicrdium.

Similarity measurement Formlly, given two wall motion seriesw(θx, φx) andw(θy , φy),
we employ the following formulae to measure the distance or dissimilarity between
them:

dcorr(w(θx, φx), w(θy, φy)) = 1 − r(w(θx, φx), w(θy, φy)) =

1 −

[

n
∑

i=1

(

wi(θx, φx) − wmean(θx, φx)

σx

) (

wi(θy, φy) − wmean(θy , φy)

σy

)

]

/n,

whereσ =
√

(
∑n

i=1
(wi(θ, φ) − wmean(θ, φ))2)/n. r(w(θx, φx), w(θy, φy)) is the

Pearson correlation coefficient of two wall motion series,wmean(θ, φ) is the mean of
wall motion series, andσ is the standard deviation ofw(θ, φ). The Pearson correlation
coefficient is always between -1 and 1, and we normalize distance function asdcorr/2
(the result will change from 0 to 1) in our experiments.

Hierarchical clustering By combining or clustering similar wall motion series we can
identify groups of wall motion series that are the main trendof LV contraction and
dilation for different locations in the 3D space. To group similar wall motion series
together, we employ hierarchical agglomerative clustering approach [11], which is a
bottom-up clustering method where clusters can have sub-clusters.

The hierarchical clustering result, a dendrogram, is a binary tree (see Fig. 1 for an
example) in which each data point corresponds to a leaf nodes, and distance from the
root to a subtree indicates the similarity of subtrees–highly similar nodes or subtrees
have joining points that are farther from the root.

Sweep line methodWe move the horizontal sweep-line from top to bottom in the den-
drogram result (for example, the “sweep-line 1” in Fig. 1) toget the abnormal clusters
(small clusters) that have a large dissimilarity to the maincluster. Note that the pace-
maker system uses electrical impulses to adjust the sites whose contraction character-
istics are considerably different from other sites’. Thus,hierarchical clustering results
can help us to find these location candidates for installing the pacing leads.

2.3 Pacing Site Pre-filtering

Cross correlation In order to set the electrical impulses in a pacemaker system, a
technician still needs to know the timing delay value between the pacing position and
a common position. Hence we use cross correlation method to acquire such a value
between the wall motion series. For two wall motion seriesw(θx, φx) andw(θy , φy),
the correlation function of two wall motion series is definedas:

ccxy(t) = w(θx, φx) ? w(θy, φy) =

n
∑

m=1

wm(θx, φx)wm+t(θy, φy)
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where “?” is the correlation operator, andt = 0, 1, . . . , n − 1. If t = t0 satisfies
ccxy(t0) = max(ccxy(t)) for t ∈ [0, n − 1], then the wall motion seriesw(θx, φx)
shifts t0 to get the maximum correlation with the wall motion seriesw(θy, φy). Thus,
t0 is the timing shift (or delay). The timing period between twoneighbouring phases
can be calculated using the heartbeat velocity. Thus, the timing delay can be calculated
by: timing delay = t0 × (a heartbeat period/the number of phases).

Pacing sites selectionWe introduce a filtering step on the pacing site candidates list,
because a few of them don’t have contraction timing delay to the normal activation.
After picking up the site candidates, there is a single big cluster in the dendrogram,
called the main cluster (see Fig. 1 for a marked sample main cluster). The wall motion
series (average motion series) of the main cluster is regarded as the normal wall motion
variation of the LV, for example the square-line in Fig. 2 andFig. 3. Using the contrac-
tion timing delay between pacing site candidates and main cluster, we filter out the site
candidates without contraction delay.

In the implantation, a doctor still needs to test the lead to see whether a candidate lo-
cation is suitable for pacing, because the pacing lead cannot be placed into some regions
of left ventricle (such condition normally is created by epicardial scar or unacceptable
phrenic nerve stimulation,etc). Based on the dendrogram result, we provide the loca-
tion candidates for implanting and they are rated by the distances from the main cluster,
which is described below.

3 Results and Discussions

We have implemented our pacing site prediction framework using Matlab 6.5. To show
the effectiveness of this framework, we use cardiac MRI datafrom 20 patients in our
experiments, where half of them have heart failure problems. These experiments are
conducted on a PC with a 2.40GHz CPU and 512 MB main memory. Note that the
patients are diagnosed by specialized physicians, and these diagnostic results are used
to validate our results in the experiments.

For convenience, we allocate a number to each wall motion series. From apex to
basis of the LV,1 ∼ 96 are used to mark the points of wall motion series level by level.
Therefore, the points represented by consecutive numbers are in the neighbour locations
on the surface, and the points with small numbers should be close to apex and the points
with large numbers should be close to the basis of the LV.

Fig. 1 shows the hierarchical clustering result of a patientwith heart failure problem.
The dendrogram consists of a main cluster and several other small ones. The locations
corresponding to the motion series in those small clusters are selected as the candidate
pacing sites. Note that a single small cluster may include multiple regions on the LV,
since the different regions may have similar motion behaviors. In Fig. 1,{92, 93} (close
to the basis of LV) is the top-priority option for resynchronization therapy, and the next
pacing candidates that should be considered are{77, 78, 79} and{30, 31}.

Since the distance function used by us cannot discriminate the timing delay between
wall motion series, pre-filtering step should be executed here. Fig. 2 and Fig. 3 show
the pacing sites filtering step. In Fig. 2, the curve with square tags is the average motion
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series of the main cluster in Fig. 1 and the curve with circle tags is the average motion
series of region{92, 93}. Because there is no timing delay between the main cluster and
this region, it is filtered out, although their average wall motion series is very different
from the main cluster’s. Regions{77, 78, 79} and{30, 31} still remain in the candidate
list, since obvious timing delays are observed in Fig. 3. After filtering step, our results
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Fig. 1. Dendrogram result of a failing heart. Thex-axis
label represents the number of wall motion series. They-
axis label corresponds to the distance between clusters.
The dendrogram is cut into clusters by the “sweep-line
3”.
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Fig. 3. There is a contraction
timing delay between the main
cluster and regions{77, 78, 79}
(diamond-curve) and{30, 31}
(circle-curve).

can be used for pacemaker implantation. As we mentioned before, the pacing lead can-
not be placed into some particular regions of the LV. The physician will test the pacing
lead on candidate pacing sites according to the suggested site ordering until they find
a suitable region for fixing the tip of pacing lead. If the listis empty and a suitable
site isn’t found, we will continue to select a lower value sweep-line in the dendrogram
result, for example, the “sweep-line 2” and “sweep-line 3” in Fig. 1. Because the can-
didates list includes locations with notable asynchronouscontraction and timing delay,
the optimal resynchronization therapy can be obtained after adding electrical pulse into
these candidates. These sites are potentially good candidates to implant the pacemaker
for a more efficient CRT. Furthermore, in some clinical cases, a physician may want to
use multiple sites in left ventricular pacing for cardiac resynchronization, and they can
select additional locations from the candidates list.
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We test our methods on the MRI data of both normal and failing hearts. The dendro-
gram results of the normal hearts are very different from thefailing ones. In the normal
heart dendrogram, see Fig. 4, if the value of sweep-line is selected as≥ 0.3 (the dis-
tance between clusters), we obtain only one single main cluster without any other small
clusters. This matches our intuition, since the wall motionof a normal heart tends to be
synchronous and so the motion difference on different surface locations are very small.
Thus our analysis may be useful in identifying patient candidates for helping diagno-
sis. After obtaining twenty dendrograms for all subjects, for each single case, we move
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Fig. 4. Dendrogram result of a normal heart. Thex-axis
label represents the number of wall motion series. They-
axis label corresponds to the distance between clusters.
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the sweep-line from top to bottom until the result contains exactly two clusters. Fig. 5
summarizes the final values of these sweep-lines, sorted in two groups – one group
holds 10 low values, and the other one holds 10 high values. The clinical diagnosis in-
dicates that all low value points (circles) correspond to normal hearts and all high value
ones (squares) correspond to failing hearts. Note that there is a big gap between these
two lines, and so such hierarchical clustering results can actually separate subjects with
heart failure from normal subjects. This observation is helpful for heart failure diagno-
sis and prognosis. The value0.4 ∼ 0.5 seems to be a good threshold for the sweep-line
to distinguish failing hearts from normal hearts in our data.

In the failing heart data set, we move the sweep-line to extract all small clusters (this
sweep-line may separate the main cluster into two or more main clusters). “Sweep-
line 3” in Fig. 1 is such an example and in this case we have five clusters:{92, 93},
{77, 78, 79}, {30, 31}, main cluster 1 and main cluster 2. Fig. 6 shows the number
of clusters gotten from these 10 abnormal subjects, withoutcounting the main cluster.
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In this result, the dendrogram result of patient#5 has more small clusters and the
patient also has worse heart failure symptom. It is often thecase that, the more severe
heart failure the patient has, the more asynchronous wall contraction the LV performs.
Our results reveal such a reasonable relationship between the number of pacing site
candidates and the degree of patients’ symptom.

4 Conclusion

In this paper, we propose a new pacing sites prediction framework that is based on
spatio-temporal analysis of cardiac motion patterns and hierarchical clustering method.
It can automatically generate the candidate site list to help a physician to localize the
pacing areas. Blinded analysis of clinical MRI data demonstrates that our approach can
not only identify pacing sites in the LV for assisting pacemaker implantation in CRT, but
also be used to help medical diagnosis of heart failure. Since the bi-ventricular pacing is
useful for some clinical cases, our further study will be carried out on the prediction of
its pacing sites. This further study will be combined with our current prediction system
to improve the accuracy and feasibility of estimated results.
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