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Abstract. We propose a novel framework to predict pacing sites in tfie/ém-
tricle (LV) of a heart and its result can be used to assistpaker implantation
and programming in cardiac resynchronization therapy (CRWidely adopted
therapy for heart failure patients. In a traditional CRTidexdeployment, pacing
sites are selected without quantitative prediction. Thasrthe risk of subop-
timal benefits. In this work, the spherical harmonic (SPHARMscription is
employed to model the ventricular surfaces and a novel SR#ARsed surface
correspondence approach is proposed to capture the weatrigall motion. A
hierarchical agglomerative clustering technique is aupio the time series of re-
gional wall thickness to identify candidate pacing sitesing clinical MRI data
in our experiments, we demonstrate that the proposed frankezan not only ef-
fectively identify suitable pacing sites, but also distirgh patients from normal
subjects perfectly to help medical diagnosis and prognosis

1 Introduction

Heart failure, also called congestive heart failure, is gomhaealth problem that con-
tinues to increase in prevalence. It is a disorder in whiehhtart loses its ability to
pump blood efficiently. Low cardiac output resulting fromahiefailure may cause the
body’s organ systems to fail. As one important part of théofmms, the walls of the left
ventricle (LV) are unable to contract synchronously.

Over the past decade, investigators [2] have establishedetsibility of placing
multiple pacing leads of pacemaker to improve the activesynchrony (sameness of
activation time) of LV and biventricle. Based on these stsda promising therapeutic
option, called cardiac resynchronization therapy (CRBEs been proposed as an al-
ternative treatment in patients with severe, drug-refngcheart failure. It is aimed at
correcting contraction delays that result in differentioeg of the heart not working
optimally in concert [1].

Although clinical trials have confirmed that CRT improvedhidal symptoms, in-
creased exercise capacity, and led to cessation or eversatw# chronic chamber
remodeling, a significant minority seem not to benefit. [3kféhare a lot of potential
explanations for the CRT failure cases, and improper sarglacement of the LV lead



is one of the most important reasons. Improvements in thaadstof identification of
likely responsive implantation placements are needed.

The initial CRT device utilization incorporates right veoke and LV pacing sites,
but a right ventricle pacing site is not required for hemagiyiic benefit in many pa-
tients [4]. Since LV pacing alone has the almost similar ffiemath biventricular pac-
ing, it is used more popular in the CRT system. Thus, in thjzepawe focus on the
CRT with LV pacing sites.

The principal goal of the present study is to efficiently pcethe optimal LV pac-
ing sites that should be stimulated by electrical impulsepazemaker and provide
the corresponding parameters (timing deletg,) to help the programmable device.
In order to identify the optimal pacing sites, the mecharigasynchrony is directly
analyzed by the spatio-temporal modeling. Based on thetfatventricular wall thick-
ening and motion reflect activation, we build an integrategniework to estimate the
most effective places for implanting the pacemaker to aghmeaximized CRT benefit.
Given a stack of cardiac MRI, both endocardium and epicandite reconstructed, and
the optimal correspondences between them are establighmihbmizing the surface
Euclidean distance. LV wall motion is described by the thieeensional (3D) wall
thickness change that is computed using the reconstrusteditfaces. After applying
the hierarchical clustering method on a time series of watkiness measurements, we
can find candidate pacing sites with abnormal local motiair.éXperiments also show
that this study can be used to distinguish patients and risuigects and judge the
disease degree.

2 Methods

2.1 Spatio-temporal LV Motion Modeling

In order to quantify the ventricular mechanical asynchrongynchrony that can di-
rectly help determine optimal treatment, we develop outisgamporal model to de-
scribe a temporal sequence of wall thickness changing gartmeart cycle.

Surface reconstruction. We reconstruct both endocardium and epicardium of the
LV by using the spherical harmonic (SPHARM) method, whichsvistroduced by
Brechbiihler, Gerig and Kubler [5] for modeling any simplynnected 3D object. The
object surface is parameterizeda®, ¢) = (z(0, ¢), y(0, 3), z(0,¢))" using a pair

of spherical coordinate@, ¢), where the parameterization aims to preserve the area
and minimize the angle distortion. Thus(f, ¢) becomes a vector of three spherical
functions that can be expanded using spherical harmafiiv®, ¢) as follows,
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wherec)" = (cjr, ¢, cj2)" are expansion coefficients that can be used to reconstruct
the object surface. SPHARM has been used by Gerig and Stynery medical imag-
ing applications€.g., shape analysis of brain structures [6—8]). It has also heed for



shape modeling and functional analysis of cardiac MRI [#jc& SPHARM provides
an implicit correspondence between surfaces of 3D objgdsssuitable to be used to
analyze the LV wall motion during heart cycle.

In our cardiac MRI data sets, each MRI sequence holds semrtaenporal phases
per heartbeat. Since the LV deformation is exhibited by ttiekhess change of the
wall between endocardium and epicardium, we use 17 SPHARMhsgructed surface
pairs (including both endocardium and epicardium) to dbedhe LV contraction and
dilation during a whole heart cycle.

Surface correspondence In order to measure the wall thickness at each surface loca-
tion as well as compare thickness changes between diffénempoints, a registration
step is necessary for aligning all the reconstructed egiabsurfaces together. Given
two SPHARM models, we establish their surface correspoceléy minimizing the
Euclidean distances between their corresponding surémegibns. Formally, for two
surfaces given by (s) andvsy(s), their distanceD (v, v3) is defined as [7]
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The epicardial surface in the first time phase (diastolicspha our MRI data) dur-
ing heartbeat is used as the template. For any other epatatdiface in the same se-
quence, we align it to the template by rotating its parame&f10] so that the surface
distanceD (v, v;), (i = 2,...,17) between them is minimized. Given an aligned sur-
face sequence, we use the same method to align the endonaadibe epicardium in
the same timing phase.

Wall motion series. Because the wall thickness change of LV directly shows the wa
motion in 3D space during a heart cycle, we can use it as thematlon descriptor.
In this study, we observe that the distance between thesmneling pointsi(e., with
the samg#, ¢)) on the endocarium and epicardium surfaces, can be direséd to
approximate the wall thickness, since we have already nimeichthis distance in the
previous step. In addition, the underlying equal area patarization implies the cor-
respondence relationships between any pair points on thessurfaces are reasonable
and effective.

After that, we create the wall motion series that includesttiickness values for
each corresponding surface location at each time phasegdutieart cycle, from end-
diastolic phase to next end-diastolic one. Since we are iotdyested in the LV wall
motion, we ignore the points appearing on the top of recantd surfaces. Even if
only one point whose thickness value in the wall motion sesjgpears on the top of its
surface, the whole motion series is discarded.

2.2 Clustering Based Pacing Sites Search

After the above steps, a set of motion series are used torprsel V wall contraction.
Given a pair of(8, ¢), we usew (6, ¢) = {w1 (0, ¢), w2(0, @), ..., w, (0, )} to denote



its corresponding wall motion series, whesg0, ¢) is the wall thickness value of walll
motion phaseé corresponding to the parametrized pdifit¢) on the epicrdium.

Similarity measurement Formlly, given two wall motion serie® (6., ¢,.) andw(6,, ¢,),
we employ the following formulae to measure the distanceissimhilarity between
them:
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wheres = /(X i, (wi(0, 9) — Wimean (0, 9))2)/n. 7(w(0y, dx), w(0y, dy)) is the
Pearson correlation coefficient of two wall motion seri@g,cq. (0, ¢) is the mean of
wall motion series, and is the standard deviation @$(6, ¢). The Pearson correlation
coefficient is always between -1 and 1, and we normalizemistéunction asl.,/2
(the result will change from 0 to 1) in our experiments.

Hierarchical clustering By combining or clustering similar wall motion series we can
identify groups of wall motion series that are the main trefidVV contraction and
dilation for different locations in the 3D space. To groupigar wall motion series
together, we employ hierarchical agglomerative clustedpproach [11], which is a
bottom-up clustering method where clusters can have sugierk.

The hierarchical clustering result, a dendrogram, is arlitrae (see Fig. 1 for an
example) in which each data point corresponds to a leaf nesesdistance from the
root to a subtree indicates the similarity of subtrees-iighmilar nodes or subtrees
have joining points that are farther from the root.

Sweep line methodWe move the horizontal sweep-line from top to bottom in the-de
drogram result (for example, the “sweep-line 1” in Fig. 1y&t the abnormal clusters
(small clusters) that have a large dissimilarity to the ndirster. Note that the pace-
maker system uses electrical impulses to adjust the sitesemtontraction character-
istics are considerably different from other sites’. Thhigrarchical clustering results
can help us to find these location candidates for installiregpiacing leads.

2.3 Pacing Site Pre-filtering

Cross correlation In order to set the electrical impulses in a pacemaker system
technician still needs to know the timing delay value betwe pacing position and
a common position. Hence we use cross correlation methodgoir@ such a value
between the wall motion series. For two wall motion seti€$.,, ¢,,) andw(f,, ¢,),
the correlation function of two wall motion series is defirsed

Cczry(t) = w(eflfa ¢T) * w(ozn (by) = Z wm(o:m ¢m)wm+t (ozn (by)
m=1



where %” is the correlation operator, and= 0,1,...,n — 1. If t = t, satisfies
CCay(to) = max(ceyy(t)) for t € [0,n — 1], then the wall motion series (6., ¢.)
shifts ¢, to get the maximum correlation with the wall motion serie§,, ¢,). Thus,
to is the timing shift (or delay). The timing period between tagighbouring phases
can be calculated using the heartbeat velocity. Thus, thiegi delay can be calculated
by: timing delay = to x (a heartbeat period/the number of phases).

Pacing sites selectionWe introduce a filtering step on the pacing site candidasts li
because a few of them don’t have contraction timing delayh&ortormal activation.
After picking up the site candidates, there is a single bigstelr in the dendrogram,
called the main cluster (see Fig. 1 for a marked sample masta). The wall motion
series (average motion series) of the main cluster is reglead the normal wall motion
variation of the LV, for example the square-line in Fig. 2 &gl 3. Using the contrac-
tion timing delay between pacing site candidates and mastal, we filter out the site
candidates without contraction delay.

In the implantation, a doctor still needs to test the leagtwghether a candidate lo-
cation is suitable for pacing, because the pacing lead ¢éeqaced into some regions
of left ventricle (such condition normally is created byagpiial scar or unacceptable
phrenic nerve stimulatioretc). Based on the dendrogram result, we provide the loca-
tion candidates for implanting and they are rated by thedtss from the main cluster,
which is described below.

3 Results and Discussions

We have implemented our pacing site prediction framewoikguSlatlab 6.5. To show
the effectiveness of this framework, we use cardiac MRI dfata 20 patients in our
experiments, where half of them have heart failure problérhgse experiments are
conducted on a PC with a 2.40GHz CPU and 512 MB main memorye it the
patients are diagnosed by specialized physicians, and thiagnostic results are used
to validate our results in the experiments.

For convenience, we allocate a number to each wall motiaesdfrom apex to
basis of the LV]1 ~ 96 are used to mark the points of wall motion series level bylleve
Therefore, the points represented by consecutive numteeirs the neighbour locations
on the surface, and the points with small numbers shoulddse¢b apex and the points
with large numbers should be close to the basis of the LV.

Fig. 1 shows the hierarchical clustering result of a patiétit heart failure problem.
The dendrogram consists of a main cluster and several atedt ganes. The locations
corresponding to the motion series in those small clusterselected as the candidate
pacing sites. Note that a single small cluster may includ&iphe regions on the LV,
since the different regions may have similar motion behavim Fig. 1,{92, 93} (close
to the basis of LV) is the top-priority option for resynchrzattion therapy, and the next
pacing candidates that should be considered @re78, 79} and{30, 31}.

Since the distance function used by us cannot discrimihatgrhing delay between
wall motion series, pre-filtering step should be executeé.heig. 2 and Fig. 3 show
the pacing sites filtering step. In Fig. 2, the curve with sguags is the average motion



series of the main cluster in Fig. 1 and the curve with ciralgstis the average motion
series of regiod 92, 93}. Because there is no timing delay between the main cluster an
this region, it is filtered out, although their average watltion series is very different
from the main cluster’s. Regiod§7, 78, 79} and{30, 31} still remain in the candidate
list, since obvious timing delays are observed in Fig. 3eAfiltering step, our results
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Fig. 1. Dendrogram result of a failing heart. Theaxis ~ Fi9-3. There is a contraction
label represents the number of wall motion series.jFhe ~ iming delay between the main
axis label corresponds to the distance between clusters¢luster and region§77, 78, 79}

The dendrogram is cut into clusters by the “sweep-line (diamond-curve) and{30,31}
3", (circle-curve).

can be used for pacemaker implantation. As we mentionedddfe pacing lead can-
not be placed into some particular regions of the LV. The fulgs will test the pacing
lead on candidate pacing sites according to the suggeseedrdiering until they find
a suitable region for fixing the tip of pacing lead. If the listempty and a suitable
site isn’t found, we will continue to select a lower value sydine in the dendrogram
result, for example, the “sweep-line 2" and “sweep-line3Fig. 1. Because the can-
didates list includes locations with notable asynchroramugraction and timing delay,
the optimal resynchronization therapy can be obtained aétding electrical pulse into
these candidates. These sites are potentially good caadigeimplant the pacemaker
for a more efficient CRT. Furthermore, in some clinical caagshysician may want to
use multiple sites in left ventricular pacing for cardiasymrechronization, and they can
select additional locations from the candidates list.



We test our methods on the MRI data of both normal and failieeyts. The dendro-
gram results of the normal hearts are very different fronfalileng ones. In the normal
heart dendrogram, see Fig. 4, if the value of sweep-linelectsd as> 0.3 (the dis-
tance between clusters), we obtain only one single maineriusthout any other small
clusters. This matches our intuition, since the wall motiba normal heart tends to be
synchronous and so the motion difference on different serfacations are very small.
Thus our analysis may be useful in identifying patient cdatis for helping diagno-
sis. After obtaining twenty dendrograms for all subjeats,dach single case, we move

Fig.5. The cutoff value of
the sweep-line.
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Fig. 4. Dendrogram result of a normal heart. Thaxis Fig. 6. The number of small
label represents the number of wall motion series.ghe  clusters extracted from the
axis label corresponds to the distance between clusters. abnormal subjects.

the sweep-line from top to bottom until the result contaixaotly two clusters. Fig. 5
summarizes the final values of these sweep-lines, sortegdrgtoups — one group
holds 10 low values, and the other one holds 10 high valuesclihical diagnosis in-
dicates that all low value points (circles) correspond towed hearts and all high value
ones (squares) correspond to failing hearts. Note that ikea big gap between these
two lines, and so such hierarchical clustering results ctunedly separate subjects with
heart failure from normal subjects. This observation iphgifor heart failure diagno-
sis and prognosis. The valOel ~ 0.5 seems to be a good threshold for the sweep-line
to distinguish failing hearts from normal hearts in our data

In the failing heart data set, we move the sweep-line to ekadhsmall clusters (this
sweep-line may separate the main cluster into two or mora rlaisters). “Sweep-
line 3" in Fig. 1 is such an example and in this case we have fiveters:{92, 93},
{77,78,79}, {30,31}, main cluster 1 and main cluster 2. Fig. 6 shows the number
of clusters gotten from these 10 abnormal subjects, withouhting the main cluster.



In this result, the dendrogram result of patieab has more small clusters and the
patient also has worse heart failure symptom. It is ofterctise that, the more severe
heart failure the patient has, the more asynchronous wattaction the LV performs.
Our results reveal such a reasonable relationship betweenumber of pacing site
candidates and the degree of patients’ symptom.

4 Conclusion

In this paper, we propose a new pacing sites prediction frariethat is based on
spatio-temporal analysis of cardiac motion patterns aedihchical clustering method.
It can automatically generate the candidate site list tp hgbhysician to localize the
pacing areas. Blinded analysis of clinical MRI data demmss that our approach can
not only identify pacing sites in the LV for assisting pacéeramplantation in CRT, but
also be used to help medical diagnosis of heart failure €Sime bi-ventricular pacing is
useful for some clinical cases, our further study will berigat out on the prediction of
its pacing sites. This further study will be combined withr ourrent prediction system
to improve the accuracy and feasibility of estimated result
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