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Abstract— In this paper, we propose a novel surface matching
algorithm for arbitrarily shaped but simply connected 3D objects.
The spherical harmonic (SPHARM) method is used to describe
these 3D objects and a novel surface registration approach
is presented. The proposed technique is applied to various
applications of medical image analysis. The results are cqpared
with those using the traditional method, in which the first order
ellipsoid is used for establishing surface correspondencand
aligning objects. In these applications, our surface aligment
method is demonstrated to be more accurate and flexible than
the traditional approach. This is due in large part to the fad that
a new surface parametrization is generated by a shortcut thia
employs a useful rotational property of spherical harmonicbasis
functions for a fast implementation. In order to achieve a sitable
computational speed for practical applications, we propos a fast
alignment algorithm that improve computational complexity of
the new surface registration method fromO(n?) to O(n?).

Index Terms— surface registration, surface alignment (match-
ing), medical image computing, cardiac modeling, spherida
harmonics.

I. INTRODUCTION

and 4D surface harmonics to reconstruct rigid and nonrigid
shapes. Since all their approaches started from an initial
radial surface function(6, ¢), their method was capable of
representing only star-shaped or convex objects witholgtsho
Brechbiihleet al. [4] presented the SPHARM description that
is an extended spherical harmonic method for modeling any
simply connected 3D object. The object surface is represent
asv(8,¢) = (z(0,9), y(60,¢), 2(6,4))" and spherical har-
monics expansion is used for all three coordinates. Geriy an
Styner [5], [6] applied the SPHARM description technique to
do segmentation and structural analysis on brain tisstibasl
also been used for shape modeling and functional analysis fo
cardiac MRI [3].

Medical applications often require the comparison between
different 3D models. A shape registration step is often sece
sary for aligning these models together and extracting thei
shape descriptors (i.e., excluding translation, rotatiand
scaling). Like the shape registration using iterative efbs
point (ICP) algorithm [7], two important substeps are in-
volved in aligning SPHARM models: (1) creating surface

Shape modeling and surface representation combine physirrespondence, and (2) minimizing the distance between th
cal measurement of objects with the mathematical model asotresponding surface parts. Once the surface correspoade
are important in a large number of scientific and engineeriig) established, the distance minimization becomes relstiv
areas. Medical image computing is one of the most importagdisy. Thus, the focus of this paper is on creating surface
applications. A variety of 3D modeling techniques are noeorrespondence for two 3D SPHARM models.

available for modeling and inspecting the anatomic stmestu

In the past, the first order ellipsoid based method was

in the diagnosis and treatment of disease. Based on certased for SPHARM shape registration [5], [6]. In this method,

mathematical properties (orthogonality, completenesd, a-

the parameter net on the first order ellipsoid is rotated to a

dering in spatial frequencyetc.), the spherical harmonics canonical position such that the north pole is at one endeof th
approach provides three dimensional models to derive funongest main axis, and the crossing point of the zero maridia

tional information analysis and classify different pathgital

and the equator is at one end of the shortest main axis.

symptoms and has been used for the representation of shapies aligned parameter space creates surface corresp@ndenc

in many types of biomedical image data.

between two models: two points with the same parameter pair

A number of previous spherical harmonic based shape dé;¢) on two surfaces are defined to be a corresponding pair.
scriptions have been developed for medical image computifidhis alignment technique works only if the first order elbfb
Chenet al. [1] used this method to model and analyzed lefs a real ellipsoid, as in the case of hippocampal data [6], bu

ventricular shape and motion. Mathesy al. [2] used 3D
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not if it is an ellipsoid of revolution or a sphere. There are
also many other cases in which this first order ellipsoid Base
alignment method may not work. We give out one example of
cardiac ventricle in Fig. 3 as a failed case using this method
Problems associated with the first order ellipsoid method
and the need for better shape modeling and analysis in ¢urren
medical applications encouraged this work. Instead ohilig
the first order ellipsoid, we employ a more general metric
for establishing surface correspondence: minimizing tieam
squared distance between two SPHARM surfaces. The idea
is to fix one object and rotate the mesh of the other one
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to find the position with minimum surface distance. When

the mesh of an object is rotated, a re-parametrization psoce

must be performed to calculate the new SPHARM coefficients.
But the standard recalculation [43.¢., generating and solving

a set of linear equations) of SPHARM coefficients for a re-

parameterized object is time consuming.

In this paper, based on the rotational properties of harosoni
analysis, we prove that a new set of SPHARM coefficients (a) (b)
after a rotated parametrization can be directly generated f
the original set. Thus we can easily obtain a new SPHARM
model for a re-parameterized object by rotating its para-
metrization along the surface. This process is more explici
and faster than the standard method, because we needn't re-
generate (re-distributéd, ¢) for each sampling points that
created the linear equations) and solve the linear equsation
Meanwhile a fast surface alignment algorithm is proposed

with the new parametrization method to do the global surface ©) C)
registration. Some medical 'ma_‘ge c.omp_utmg applicatiames 6}:ig. 1. (a) shows one example of voxel model that is compo$edmesh
used to demonstrate our algorithm in this paper. of square faces based on the exterior voxels of the objexiar(d (c) show

The closest approach to ours is that of Burel and Helqe parametrization result of the object surface. During plarametrization
8 hich f d d L. h . . cﬁrocedure, the same color area on the object surface is mappe the same
nocq [ ]* which tocused on determining the orientation olor area of the sphere. (d) shows the reconstructed ssrfafdeft ventricle,

3D objects without point correspondence information. Theicluding epicardium and endocardium.

approach applies only to star-shaped objects and theiraim i

to align the orientation of these objects. Their work can be

replaced by aligning two first order ellipsoids referred aho parametrization reuslt, where the parameterization aims t
Our research differs in aligning the surface corresponelémc Preserve the area and minimize the angle distortion) to each
arbitrarily shaped but simply connect objects, rather faang ~ Point v(6, ¢) on a surface:
the orientation only for star-shaped objects. The contidins

of our work are thus twofold1) a new approach for estab- 0.4) — Igz’ig 1)
lishing surface correspondence, with theoretical proofd a vie.o)=| v 9’ ) ’
justifications, an®2) a fast surface alignment algorithm with 20,9

applications to several problems in medical image computin \yhen the free variable§ and ¢ range over the whole
The paper is structured as follows. Section Il describes tQEhere v(0,¢) ranges over the whole object surface.

proposed surface alignment algorithm and a theorem on sog|8ARM expansionis then used to expand the object surface
rotational prqperty of a SPHARM pa_lrametrlzatlon. Sectltbn_ linto a complete set of SPHARM basis functiolg’, where
shows experimental results of applying the proposed agori ym genotes the spherical harmonic of degteand ordenn

to several medical applications. Section IV concludes ti( ee [4] for details). The expansion takes the followingrfor
paper.

o0 l
Il. METHODS v(0,6) =Y Y "Y"(0,9), 2)
A. SPHARM Surface Description 1=0 m=—1
The SPHARM technique [4] can be used to model arb\i/\-/

. . . . .“Wwh
trarily shaped, simply connected 3D objects. An input objec ere

. . Cm
surface is assumed to be defined by a square surface para- o — Cﬁ% 3)
meter mesh converted from an isotropic voxel represemtatio ! Cf}{ '
1z

Fig. 1(a) shows one example of voxel model that is composed

of a mesh of square faces based on the exterior voxels of ffige coefficientsc)* are 3D vectors. Their components?,

object. Two steps are involved in converting the objectaef . andc? are usually complex numbers. The coefficients up

to its SPHARM shape description: (1) surface parameterizg-a user-desired degree can be estimated by solving a set of

tion, and (2) SPHARM expansion. linear equations in a least square fashion. The object cirfa
Surface parameterization aims to create a continuouscan be reconstructed using these coefficients, and using mor

and uniform mapping from the object surface to the surfag@efficients leads to a more detailed reconstruction. Thus,

of a unit sphere. The parameterization is formulated assat of coefficients actually form an object surface desionipt

area and topology while minimizing distortions; see [4] fofynctions can be expressed as

details. The result is a mapping of two spherical coordmate
6 and ¢ (0 € [0,7] is the polar angle and € [0,27) is mwom I ) -
the azimuthal angle, and Fig. 1(b) and Fig. 1(c) show the /0 /0 Y™(0,0)Y," (0, ¢)sinfd0dd = Spmrdr- (4)



Here, z denotes the complex conjugate afig is the Kro- Thenv’(6,¢) = Roy;(af8v)v(6,$) represents the new para-

necker delta: o metrization on the surface, which can be generated by ngtati
5i; = { 0 for ’753 the original parametrization along the object’s surfaceuab
L for i=j Euler angles(a, 3,~). In other word, the result of applying

the rotation matrixRzy z(«afv) on the mapping meshes of
B. Fast Rotation Theorem for Spherical Harmonic Parame- =z, y, z-sphere is to rotate the parameter mesh on the object’s
trization surface at the same orientation. Because of the distortions

According to Euler's rotation theorem, any rotation of théntroduced by spherical parameterization, the result ftion
coordinate systente, es, e3) can be decomposed into thredS not identical to the result of applying Euler angles on the
which transforms(e;, es, e3) to (¢}, e}, es), followed by a We only useR,;, which we refer to as the parametric rotation
rotation 3 around axise}, which transforms(e/, e}, e3) to matrix, for rotating the parameter mesh along the surface of
(é1,€},é3), and finally a rotationy around axig;. The SO(3) @n object. Substituting Eq. (2) and Eg. (5) into Eq. (6) gives
harmonics provide the tool to express the rotated versian of L
function on the sphere extended by spherical harmonics [9].

P y sp Bl S S e asn)ym0,0) = £1(0,6) =

8
By

The effect of such a rotation on the spherical harmonic basis

functions is [10] o m=t
! , . L v
Ry z(aB)Y™(0,6) = Y V" (0,0) Dby (aBy), (5) Rzyvz(aBy) > Y. Y (0,4) =
m/=—I U'=0m'==1"
whereRzy z(af7) represents the rotation operator dependent
on the Euler angles; the rotation matricBs,,,, («37) (also L v , ,
called theSO(3) matrix elements) are calculated by S Y s RavzlaBy) YT (0,6) =
o, , U=0m'=-1l
Dy (aBy) = ™™, (B)e™™,
where Lo ;
i) YD el Y V0.0 Dh(aBr)  (8)
. . U=0m'=-1l n=-1U'
t=max(0,m—m’) and multiplyingY} (6, ¢) on both sides (adjusting thefrom
\/(l +m)!(l —m) (I +m)(1 —m')! 0 to L andj from —k to k) and integrating on the sphere.
U+m -1 —m/ =)t +m —m)ltl Since all Kronecker delta values are zero except at! =’

andj = m = n, we get the following:

(2l+m—m/—2t) (2t+m/—m)
X <cosé> <smé> . ,
2 2 l l
l

In order to reduce the computations, we use the symmefij(@37) = D Do (@B1) = D7 €l Dy ().
properties mi== m/==l )
d, (B =d . _ (3 andd, ()= (-1)"""q (3. Accordingtothe above derivation, the harmonics expansion
coefficients transform among themselves during rotati@chEe
Since the SPHARM surface modeling technique is employegkw spherical harmonic coefficient: (a3v) after applying a
the surface coordinate information of a 3D object is coded oryotated functionRzy z(o/37) is a linear combination of the
three unit spheres: an-sphere, a-sphere, and a-sphere. coefficientscy; of the original functionf (6, ¢) (f € {z,y, 2}).
These three spherical functions are expanded using sphenigie can use this property to calculate the new SPHARM model
harmonics and represented Y0, ¢) (f € {z,y,z}). We /(g,¢) for the object surface after a rotated parametrization,
denotef’(¢, ¢) as the new function after applying a rotatiomnd we only need the old coefficients{”, ¢, cj2} and

lx?

operatorRzy z (af37v) to f(6,¢) on the f-sphere: rotation matricesD!, (a37).
F'(0,6) = Rzyz(aBy) f(0,9), (6) Theorem (Parametrization Rotation). The parame-
trization spatial rotation on the surface can be decom-
thus posed into three rotations of mapping parameter meshes
2'(0, ) z(0, ¢) onto the z-sphere, y-sphere, andz-sphere. v(0,¢) =
v'i(0,0) =1 y(0,9) | = Ropi(aBy) | y(0,¢) @ St _ Y™, ¢) represents the parameter mesh of
2'(0, P) 2(0, ¢) surface. After rotation along the surface in Euler angles
where (e, B,7), the new coefficients]" (a(y) is

m/=—1

Rzyz(aﬁ’}/) 0 0 l C
Ropi(af3y)= 0 Rzy z(afy) 0 . "(efy) = > " Dh(aBy). (10)
0 0 Rzy z(aBy)



dh,. (B)V2cos(my); m' = 0,m>0
d . (B)cos(my +m'a) + (=1)™d" m(B) cos(my —m/a); m' >0,m>0
(=)™ +1dl () sin(my + m'a) +d- ., (8)sin(my — m/a); m' <0,m>0
diyo (B); m' =0,m=0
R =1 d o(3)V2cos(m'a); m' > 0,m =0 (11)
(=)™ +1dl , (B)y/2sin(m’a); m' < 0,m=0
(=1)"dpy, (B )\/_bln(mv) m' =0,m <0
(— )mdl_m m(B)sin(my —m'a) + (— nmdt . (8)sin(my +m'a); m' >0,m<0
(=1)mtm’ dl m(B) cos(my +m/a) + (— )m“dl_m m(B) cos(my —m/a); m' <0,m <0

C. Parametrization Rotation Theorem on Real Spherical Har- D. Surface Correspondence Difference Measurement
monics The surface correspondence alignment problem is gener-
Note that the spherical functions used to represent a 3y formulated in terms of the optimal parameters, such as
surface are functions taking real values. Thus, in someceaédi(a, 8, v), that minimize some surface distance function. In
imaging applications, real spherical harmonics (RSH) hatieis paper, we adopt the Euclidean distance as the distance

been used instead of standard (or complex) spherical harmfumction between surfaces. Formally, for two surfaces mive

ics to expand these functions. by vi(s) andva(s), we define their distanc®(vy,vs) as
In order to use RSH to describe simple-connected objects

(not only for star shape), like the SPHARM technique [4];sur D(vi,va) = (]{ | vi(s) — va(s) ||? ds)'/?
face parameterization needs to be performed prior to exmans
into harmonics. The expansion takes the following form: = (?{((Il(s) —29(5))® + (y1(s) —

00 l 1/2

- y2(s))* + (21(s) — 22(s))*)ds)
= Z Z " S" (6, 9), (11) 27

== .S / | 516.0) - ra6.0)°

where fe{z,y,2}
" = (s ey, )7 x sinfdfdp)'/2. (15)

and By the orthonormality property of spherical harmonic basis

(Y60, 9) +Y,™(6,0))/V2, m >0 functions Eq. (4), the integral
L l

S8, ¢) = Y (0, 9), /%/ £(0, 8)%sindode = /%/ IR AUCR"

= =0 m=—1
—i(Y,7"(0, ) = ¥, (0, 0))/V2, m<(52) o
The choice of RSH as basis functions in shape model- XZ Z Y0, ¢))sinfdfde = Z Z cif)?
ing requires half the computer memory needed by spherical =0 m=-! 1=0 m=-1

harmonics. However, they are more difficult to manipulatend
theoretically, owing to a number of useful relationshipatth

27 L l
lose their simplicity when stated in terms of the RSH. Thus, / / f1(0, ) f2(0, ¢)sinfdfdg = Z Z B et
in this section, we will extend our theorem to RSH. =0 m——1

Rotational symmetry is preserved under the linear com diff
nations of Eq. (12) and the results of RSH can be written t%lék;sstgtgns ggsvn;olrr:‘;o Eq. (15) gives the surface difference
[11]:

/
Razy 2(af7)S"(0, Z P (60, 6) Rbyryn (037)- (13) Dvi,va) = (3, ZZ ey, —cip))P (16)

fefwy,z} 1=0 m=—1
m/=—1

Since Eq. (13) has a similar form to Eq. (5) (only using One assumption of this surface correspondence metric is
R, (afy), which is shown in Eq. (11), to replace the rotathat two object surfaces should be roughly superimposed to
tion matncele . (a3v)), the proof steps for Parametrizatiorfach other in the object space. This can be done using the
Theorem (Eq. (6), Eq. (7), Eq. (8), and Eq. (9)) still hold. AP algorithm [7] when necessary.

a result, the new coefficients of RSH after rotation can also
be calculated by the original coefficients as: E. Distance Minimization Algorithm

! - In this section, we propose an algorithm to determine the
cflapy) = Z cf Ry (@B7), f€{z,y,2z}. (14) rotation that gives the global minimum of Eq. (16) and report
m/=—1 the surface correspondence alignment results.



the surface by calculating a new north pole? (points)

and continuing with a counterclockwise rotation around the
parameter mesh along the axis between the north and south
poles @ steps for every circle).

The simple method might try to uniformly sample each
Euler angle independently. However, this cannot derive a
uniform point distribution on the surface. In Fig. 2.(b) and
Fig. 2.(c), sets of sampling points on the surfaces of two

(a) (b) (c) spheres are visualized to represent the sampling distritsit
Fig. 2. Sampling mehtods for searching: (a) increase Eulglea with equal in 50(3) of 900 Euler angles(a,ﬁﬁ). Fig. 2.(b) shows
angular increments step, (b) simple sampling method wifformly sample  the result of the simple sampling method. The polar region
each euler angle independetly, (c) uniform sampling on tiréase. is oversampled under this method and accordingly there are
fewer sampling points in the equatorial region.

Fig. 2.(c) shows the uniformly distributed sample points
generated by a simple and efficient algorithm depicted in
Alg. 1. In this algorithm, we use the random number generator
fAnction r-generator to return a floating point number in
. the range[0,1) and mapa into [0,27), 8 into [0,7), and
(ciz(@B), ey (aBy), ez (aBy)) for every new rotation un- g [%,[27r).) The invé)rse siné fun)ctign off [can) avoid
der Euler anglega, ,v). WhenL is increased, more de'ta'lsoversampling the polar regions. All the sampling points on

of a surface can be obtained, but the computations of NAE surface in Fig. 2.(c) are considered as the new north pole

coefficients after rotation will take more time. Because ﬂ}@or each candidate north pole, the parameter mesh should
low resolution object contributes the bulk of the shapesit i '

reasonable to look for the target at low resolution first [11Ngorithm 2 Sampling-based search algorithm

I.n the first step, surfaces recongtructed WEh — 0 a'® Initial. SPHARM coefficients setéc)} and{c}5}, and Euler
first used to carry out an approximate minimization of thgngles sefa,, Bi,vi} generated by Alg. 1

surface distance_ function; in asubseque_nt second_ s_téq_acel_ar Result: new SPHARM coefficientd & }

reconstructed witl. = 16 are used to refine the mlnlmlzatlonbegin

in certain areas determined in the first step. 4
1) Sampling-based Search Algorithm: As described above, D =10

search algorithm proceeds in two steps. In the first step, thetarggt =0 9

straightforward method for minimizing Eq. (16) is to fix one or i=1 FO n” do .

parameter mesh and rotate the other to carry out a greedy Calculatlng/ the new coefficients:cjj(aifivi) =

search on its surface with a small step size. Such an algorith Domie—i crf D} (i), | € {x,y,2}

can finish inO(n?) time, wheren is the sampling number for Di = (Csetay,) Yo Zin:_l(c{’}(aiﬁm)—cg’}2)2)1/2

each Euler angle. For example, in Fig. 2.(a), the points on if D; <D then

the surface are the north poles’ positions in every seagchin D =D,

step with angular increments stép/n for «,v andn/n for target = {¢]"(a;Bivi)}

3. This method creates more sampling points near the north end if

and south poles and fewer points near the equator, and thus for j=1ton do

cannot guarantee uniform incremental steps. A uniform step Calculating the new coefficientse]; (vi;Bijvii) =

l ’
S o= 1 fF (@iBii) Dl (i Bigvig )

Because we truncate the degree valuel at L, the
number of spherical harmonics coefficientg is+ 1)2. During
the distance function minimization procedure, we need
calculate the new parameter mesh coefficiefft§a5y) =

Algorithm 1 The uniform sampling algorithm for Euler L l m m
ang s ping aig Dij = (325200 > ome (T Bigvig)—cip,) P2
g _ _ if D;; <D then
Initial: the number of sampling points D =D,
Res_ult: uniformly distributed Euler angle rotation set, 3, ) target = {c™(vi;Bijvis)}
begin end if
for i =1ton do end for
o; = 27 * r-generator; end for
Bi = arcsin(1 — 2 x r-generator) + w/2; Applying the BFGS searching algorithm on the new para-
v; = 2 * r-generator; meter mesh generated by coefficientganget
end for return the search resulfcy;
return (a7 B, P)/) end
end

be counterclockwise rotated along the north-south axie (th
can improve the efficiency of searching in three dimensionaitation anglev ranges from 0 t@~). In order to calculate the
configuration spaces. Thus, for efficiency the rotation spacoefficients of the new rotated parameter mesh using Eqg, (10)
should be uniformly sampled first. In this approach, we seamplve must transform the rotation angleinto the Euler angles



(o, B, 7). and Ry (afy) = Ropj(a 0 0). In the second step, we use
The original north and south poles of a surface’s parametee same BFGS algorithm employed in Alg. 2. Therefore

mesh are mapped onto the axis= (00 1) and—e; = (00 — the computational complexity of the alignment algorithm is

1) in thez-, y-, andz-sphere. After rotation using Euler angleseduced taO(n?).

(v, Bp,7p), the north and south pole coordinates switch from

v(0,9) 10 v'(0,¢) = Ropj(apBpyp)v(0,¢), (0 =0o0rm). Si- |||, EXPERIMENTS AND DISCUSSIONS INMEDICAL |MAGE

multaneously the axis; in the coordinate systems of the three ANALYSIS

. : e T
mapping spheres is changedbtp= Rzy z(apfp7,) (00 1)° The fast alignment algorithm for surface correspondence

B_ecaqseé3 also_contains the orl,gm apd has unit IengtlEJescribed above was used for shape analysis in selected
d"ec“of" we apply_the Rod_rlgues rotation formula [12} fomedical image computing applications. Based on segmented
computing the rotation matrikiz, < .SO(?’) g?rrespondlng © MRI data of heart and brain, we use the SPHARM method
a rotation by an angle> about the fixed axis; to do surface reconstruction and apply the surface alighmen

Re, (w) = I + Ssinf + S*(1 — cosh) algorithm presented in this paper to determine the corre-
] ) ) ) spondence between shapes. The established correspotiglence
where[ is the identity matrix, necessary for researchers to perform comparative studiks a
0 —é3, €3y access more functional details. In this section, we show how
S = €3 0 —éa, | . the surface alignment algorithm can help in these apptinati
—é3y  €3g 0

We can obtain the Euler anglesy, 3,7) by solving the A. Comparison with The First Order Ellipsoid Based Surface

equationRy z(af7) = R, (w). These Euler angles can therflignment Method
be used to calculate the coefficients of new parameter meshn previous shape analysis study using the SPHARM de-
using Eg. (10). scription [5], researchers choose to use the three majer axi

In the second step, we use the BFGS algorithm [14] tsf the first order ellipsoid (which is computed from the
locally minimize Eq. (16) starting from the result of the firsfirst order SPHARM coefficients) as the intrinsic coordinate
step. Because the result of the first step is already clodeeto $ystem. Parametrization is rotated in the parameter smace f
target, this step generally needs only a few iterationdidMgh normalization so that three main ridges of the first order
the dimension of the Jacobian matrix is large, the matrix édlipsoid are moved to a canonical position [5], [6]. Their
quite sparse. The computational time of this step is very lomethod works well if two or more objects have a similar

2) Fast Surface Alignment Algorithm: In the sampling- orientation €.g., aligning hippocampal shapes). However this
based search algorithm, if we don’'t want to miss the trusethod may not work in some cases. The following is an
global minimization, we need to use a large numheand example.
a correspondingly small step size. Because the SPHARMFig. 3.(a) and Fig. 3.(c) show the reconstructed surface of
coefficients must be calculated for every new Euler anglego ventricles of the heart (left ventricle and right veoie).
set(a, 3,7), the computational time is increased substantialle separate the parametrization on the surface into eight
with a largern. regions using five linesd( = =/2 in white, north pole in

In order to reduce the computational complexity of seargfellow with # = 0, south pole in red withd = =, the
in Alg. 2 (O(n?)), we utilize the properties of the surfaceother four lines represent = 0,7/2,m,37/2). These five
parametrization. There are north pole and south pole inyevéines and two poles show the correspondence on the surfaces;
parametrized surface [4], and their movement follows thus it can give us a visualized validation for the alignment
parameter mesh rotation on the surface. If the distancedsgtwresult. The correspondence between surfaces in Fig. 3.(a)
two surfaces is minimal, their north/south poles are ugualind Fig. 3.(c) are not established as the visualization show
very close to each other in the object space. Thereforegn thig. 3.(b) and Fig. 3.(d) show their first order ellipsoids.
first step, we align the surfaces’ north poles and south polBg using the previous method, the first order ellipsoids and
by minimizing the value of parametrizations are rotated to the positions in Fig. 2l

Fig. 3.(h). Three main directions of the ellipsoids are ntbve

Dpotes = v1(0,¢) = v2(0,9) || + || vi(m, @) — va(m, ) | . toga ca(ngnical position. The regions with sirF:]i(zﬁc $) values
Based on the new north pole’s position, we can search mane two ellipsoids’ surface are visualized by the same color.
carefully for the distance function minimum in its vicinity The surface correspondence is created when the first order

We still use the uniform sampling method in Alg. 1 tcellipsoid is aligned. As the result, the SPHARM surfaces and
generate the new north poles’ position, and the distdhcg. parametrizations should be rotated as Fig. 3.(e) and Hig).3.
is calculated for each new north pole. In our implementatioA limitation of this approach is that it can’t represent the
we select the first ten promising positions (with the minimumeal surface correspondence between two surfaces. Thanreas
Dyoies) as the new north poles. For each new north pole, tiier this is that the left ventricle and right ventricle haweot
parameter mesh is clockwise rotated to minimize the surfagery different orientations of their first order ellipsoidat are
distance in Eqg. (16). In the-, y-, z-sphere coordinate systemspbvious in Fig. 3.(b) and Fig. 3.(d). Thus, although the first
the north pole is mapped ofi, and thus we have the neworder ellipsoids are rotated to the normalized positiohs, t
rotation matrix Rzy z(af8y) = Rzyz(a 0 0),a € [0,27) surfaces are rotated to the opposite orientations.
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Fig. 3. Comparison of methods: (a) shows the reconstrucBdARM surface of left ventricle, (b) is the first order ellgd of surface (a); (c) shows
the reconstructed SPHARM surface of right ventricle, (djhie first order ellipsoid of surface (c). By using the pregauethod, the first order ellipsoids
and parametrizations are rotated to the positions in (f) @mMdand the SPHARM surfaces and parametrizations areetbi@as$ (e) and (g). By using our
algorithm, (i) shows the result of poles alignment. Norteligw point) and south (red point) poles are aligned closthéopoles of (a). (i), (j), and (k) show
the alignment procedure by rotating the parameter mestyatmnorth pole. For example, the red line is rotated frombthaek side (hidden) to the top side,
and to the front side; the green line is rotated from the tole $o the front side, and to the bottom side. After using th&BFalgorithm in the second step,
the last alignment result is shown in ().

(@) (b)

were accurately calculated using the SPHARM model. The
new alignment algorithm in this work can further simplify
the measurement method; now, after aligning the surface
correspondence between the left ventricular endocardidl a
epicardial surfaces, the wall thickness can be calculateply

as || Vendo (0, ®i) — Vepi (0:, ¢5) ||, with (6;, ¢;) coming from

the interesting region. Since the wall stress is relatedat w
(©) (d) thickness, we can also estimate it without placing addition

efforts.
Fig. 4. (a) shows a visualization of the left ventricle withdhe parametric . . ..
mesh,(b) is the inner surface before alignment, (c) is tieraurface thatis N cardiac MRI, since the positions and shapes of heart or

fixed during alignment procedure, (d) is the alignment testinner surface. ventricle comprise rich medical information, we can't skate
or rotate them in some heart functional analysis applioatio
For example, we can only align the surface correspondence
Our new alignment algorithm produces a correct alignmepgtween the endocardial and epicardial surfaces withopt an
in such cases, because it is a general surface alignmenbdhethyiation or change on their shape if we want to accurately

that does not depend on any orientation information. Fi@)} 3.assess the changes in wall thickness. Our algorithm isbéeita
to Fig. 3.(I) show the results generated by our algorithrgy this task.

Fig. 3.(a) is the fixed surface and the parametrization in Fig. 4.(b) and Fig. 4.(c) show the results of SPHARM

Fig. 3.(c) is rotated to Fig. 3.(I). The visualized coloré® ;5 ameterization with unordered correspondence. We fix the

and poles can validate our result. ___epicardial surface and apply our algorithm on the endoahrdi
The effectiveness of our algorithm can also be validatedl tace As a result, the parametrization is rotated tonmiae

by computing the surface correspondence distance defiqed g tace correspondence distance and the aligned isult
in Eq. (16). The surface correspondence distance betwg%wn in Fig. 4.(d)

surfaces in Fig. 3.(e) and Fig. 3.(g) 258.6536mm, but the

. - We compare the wall thickness results calculated by this
surface correspondence distance between surfaces in. (. 3sim le method to the reuslts from the 3D measurement method
and Fig. 3.(I) is62.4798mm. Our surface alignment algorithm P

proposed in paper [3] and the earlier method that makes

generates a better result. L : . : .
measurement within a single imaging plane of short-axis

) ) ) MR images. TABLE. IlI-B lists planar, 3D and proposed
B. Surface Correspondence Alignment between Epicardium  method measured wall thickness results in our experiments.
and Endocardium We measure the planar (measured using ImageJ [19] from MRI
In paper [3], the SPHARM model is used to accuratelgD slices), 3D and proposed method (by SPHARM model) of

measure and visualize heart and left ventricle geometry aledt ventricle wall thickness from 20 pigs’ MRI, and use thei

function. Fig. 4.(a) shows a visualization of the left venaverage measurements. Four normal directions are coedider
tricle without the parametric mesh. Two important paraand low section is close to apex of LV and mid section is close

meters, the left ventricular wall thickness and wall strest papillary muscles plane and high section is close to tise ba
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Fig. 5. (a) shows a sequence of a left ventricular inner sarfduring one heart cycle before surface alignment. Theasarfequence in (b) is the result

after surface alignment.
@

%

(b)

of LV. In the low part, the planar wall thicknesses overestien

the wall thickness more [3], because the bias line is lortggan t
the perpendicular line. The proposed method in this secti [
can calculate the approximated wall thickness which arseclc
to the result by using 3D measurement method and does

overestimate the wall thickness at the apex of Left verric
like 2D measurement method.

C. Alignment for Spatio-temporal Cardiac Modeling

This new surface alignment algorithm also provides
promising method for studying spatio-temporal structuias
paper [15], surface tracking techniques (tracking poimt8D i

shape using 2D images) are used to create temporal sequt
descriptions for points on the left ventricle inner surfac
through each heart cycle. Such temporal sequence desospt
can quantify the ventricular mechanical asynchrony or syn-
chrony, which has important diagnostic and prognostices|u

and can help determine optimal treatment in heart failur
where a heart has a highly asynchronous contraction. Beca
the points are tracked on 2D images and mapped to a
surface, this method can only describe the heart contract
and dilation along the plane direction, and is not accurate 1
(©

the perpendicular direction.

Combining the SPHARM description and our surface align-
ment methods offers a set of spatio-temporal surface COrggs 6 in our experiments, ten pairs of hippocampal shalegsand right)
spondences for medical image analysis research. As in e pite used. Fig. 6(a) shows three pairs of hippocampal shagfesebsurface
vious example, our new algorithm generates more reasonastration. Fig. 6(b) shows the aligned results by using method, and

. Fig. 6(c) shows the aligned results by using the first ordipseid based
surface correspondences for the left ventricle sequenue, @PHARM alignment method. The same color is used to visugidiets with
these surface correspondences describe the heart ctirache same#, ¢) on different SPHARM shapes.
and dilation in every direction of 3D space. Based on this new
model, more valuable diagnostic and prognostic infornmatio
can be derived for helping make clinical determinationd,[16p. gyrface Registration for Hippocampal Shapes
[17].

Fig. 5(a) is a shape sequence of a left ventricular innerThe SPHARM description has been employed in several
surface during one heart cycle. Before surface alignméet, thippocampal shape discrimination studies. Daeal. [18]
correspondence between surfaces is not established. @pe sltombined the SPHARM description with a minimum de-
sequence in Fig. 5(b) is the result after surface alignmestription length model. Geriget al. [5], [6] conducted a
During the alignment procedure, each shape in the sequehiggpocampal shape classification study by using a SPHARM
is aligned with the first one. approach to calculate hippocampal asymmetry. In all the



TABLE |
END-DIASTOLIC WALL THICKNESS COMPARISON IN DIFFERENT DIRECTI® OF LV MEASURED BY 2D, 3DAND PROPOSED METHODS

Location Anterior Septal Lateral Inferior
Methods 2D 3D | Current | 2D | 3D | Current| 2D | 3D | Current| 2D 3D | Current
Low (mm) | 6.9 5.7 5.9 50| 4.4 4.3 42| 35 3.6 6.0 5.6 5.5
Mid (mm) | 11.6 | 12.7 12.3 8.2 | 84 8.5 40| 41 4.2 13.1 | 14.3 13.8
High (mm) | 8.0 8.1 8.0 5.0 | 5.0 5.2 81| 79 7.9 5.0 5.1 5.1
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