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A Novel Surface Registration Algorithm with
Biomedical Modeling Applications

Heng Huang, Li Shen, Rong Zhang, Fillia Makedon, Andrew Saykin, Justin Pearlman

Abstract— In this paper, we propose a novel surface matching
algorithm for arbitrarily shaped but simply connected 3D objects.
The spherical harmonic (SPHARM) method is used to describe
these 3D objects and a novel surface registration approach
is presented. The proposed technique is applied to various
applications of medical image analysis. The results are compared
with those using the traditional method, in which the first order
ellipsoid is used for establishing surface correspondenceand
aligning objects. In these applications, our surface alignment
method is demonstrated to be more accurate and flexible than
the traditional approach. This is due in large part to the fact that
a new surface parametrization is generated by a shortcut that
employs a useful rotational property of spherical harmonicbasis
functions for a fast implementation. In order to achieve a suitable
computational speed for practical applications, we propose a fast
alignment algorithm that improve computational complexity of
the new surface registration method fromO(n3) to O(n2).

Index Terms— surface registration, surface alignment (match-
ing), medical image computing, cardiac modeling, spherical
harmonics.

I. I NTRODUCTION

Shape modeling and surface representation combine physi-
cal measurement of objects with the mathematical model and
are important in a large number of scientific and engineering
areas. Medical image computing is one of the most important
applications. A variety of 3D modeling techniques are now
available for modeling and inspecting the anatomic structures
in the diagnosis and treatment of disease. Based on certain
mathematical properties (orthogonality, completeness, and or-
dering in spatial frequency,etc.), the spherical harmonics
approach provides three dimensional models to derive func-
tional information analysis and classify different pathological
symptoms and has been used for the representation of shapes
in many types of biomedical image data.

A number of previous spherical harmonic based shape de-
scriptions have been developed for medical image computing.
Chenet al. [1] used this method to model and analyzed left
ventricular shape and motion. Mathenyet al. [2] used 3D
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and 4D surface harmonics to reconstruct rigid and nonrigid
shapes. Since all their approaches started from an initial
radial surface functionr(θ, φ), their method was capable of
representing only star-shaped or convex objects without holes.
Brechbühleret al. [4] presented the SPHARM description that
is an extended spherical harmonic method for modeling any
simply connected 3D object. The object surface is represented
as v(θ, φ) = (x(θ, φ), y(θ, φ), z(θ, φ))

T and spherical har-
monics expansion is used for all three coordinates. Gerig and
Styner [5], [6] applied the SPHARM description technique to
do segmentation and structural analysis on brain tissues. It has
also been used for shape modeling and functional analysis for
cardiac MRI [3].

Medical applications often require the comparison between
different 3D models. A shape registration step is often neces-
sary for aligning these models together and extracting their
shape descriptors (i.e., excluding translation, rotation, and
scaling). Like the shape registration using iterative closest
point (ICP) algorithm [7], two important substeps are in-
volved in aligning SPHARM models: (1) creating surface
correspondence, and (2) minimizing the distance between the
corresponding surface parts. Once the surface correspondence
is established, the distance minimization becomes relatively
easy. Thus, the focus of this paper is on creating surface
correspondence for two 3D SPHARM models.

In the past, the first order ellipsoid based method was
used for SPHARM shape registration [5], [6]. In this method,
the parameter net on the first order ellipsoid is rotated to a
canonical position such that the north pole is at one end of the
longest main axis, and the crossing point of the zero meridian
and the equator is at one end of the shortest main axis.
The aligned parameter space creates surface correspondence
between two models: two points with the same parameter pair
(θ, φ) on two surfaces are defined to be a corresponding pair.
This alignment technique works only if the first order ellipsoid
is a real ellipsoid, as in the case of hippocampal data [6], but
not if it is an ellipsoid of revolution or a sphere. There are
also many other cases in which this first order ellipsoid based
alignment method may not work. We give out one example of
cardiac ventricle in Fig. 3 as a failed case using this method.

Problems associated with the first order ellipsoid method
and the need for better shape modeling and analysis in current
medical applications encouraged this work. Instead of aligning
the first order ellipsoid, we employ a more general metric
for establishing surface correspondence: minimizing the mean
squared distance between two SPHARM surfaces. The idea
is to fix one object and rotate the mesh of the other one
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to find the position with minimum surface distance. When
the mesh of an object is rotated, a re-parametrization process
must be performed to calculate the new SPHARM coefficients.
But the standard recalculation [4] (e.g., generating and solving
a set of linear equations) of SPHARM coefficients for a re-
parameterized object is time consuming.

In this paper, based on the rotational properties of harmonics
analysis, we prove that a new set of SPHARM coefficients
after a rotated parametrization can be directly generated from
the original set. Thus we can easily obtain a new SPHARM
model for a re-parameterized object by rotating its para-
metrization along the surface. This process is more explicit
and faster than the standard method, because we needn’t re-
generate (re-distribute(θ, φ) for each sampling points that
created the linear equations) and solve the linear equations.
Meanwhile a fast surface alignment algorithm is proposed
with the new parametrization method to do the global surface
registration. Some medical image computing applications are
used to demonstrate our algorithm in this paper.

The closest approach to ours is that of Burel and Hen-
nocq [8], which focused on determining the orientation of
3D objects without point correspondence information. Their
approach applies only to star-shaped objects and their aim is
to align the orientation of these objects. Their work can be
replaced by aligning two first order ellipsoids referred above.
Our research differs in aligning the surface correspondence for
arbitrarily shaped but simply connect objects, rather thanfixing
the orientation only for star-shaped objects. The contributions
of our work are thus twofold:1) a new approach for estab-
lishing surface correspondence, with theoretical proofs and
justifications, and2) a fast surface alignment algorithm with
applications to several problems in medical image computing.

The paper is structured as follows. Section II describes the
proposed surface alignment algorithm and a theorem on some
rotational property of a SPHARM parametrization. Section III
shows experimental results of applying the proposed algorithm
to several medical applications. Section IV concludes the
paper.

II. M ETHODS

A. SPHARM Surface Description

The SPHARM technique [4] can be used to model arbi-
trarily shaped, simply connected 3D objects. An input object
surface is assumed to be defined by a square surface para-
meter mesh converted from an isotropic voxel representation.
Fig. 1(a) shows one example of voxel model that is composed
of a mesh of square faces based on the exterior voxels of the
object. Two steps are involved in converting the object surface
to its SPHARM shape description: (1) surface parameteriza-
tion, and (2) SPHARM expansion.

Surface parameterization aims to create a continuous
and uniform mapping from the object surface to the surface
of a unit sphere. The parameterization is formulated as a
constrained optimization problem with the goals of preserving
area and topology while minimizing distortions; see [4] for
details. The result is a mapping of two spherical coordinates
θ and φ (θ ∈ [0, π] is the polar angle andφ ∈ [0, 2π) is
the azimuthal angle, and Fig. 1(b) and Fig. 1(c) show the

(a) (b)

(c) (d)

Fig. 1. (a) shows one example of voxel model that is composed of a mesh
of square faces based on the exterior voxels of the object. (b) and (c) show
the parametrization result of the object surface. During the parametrization
procedure, the same color area on the object surface is mapped onto the same
color area of the sphere. (d) shows the reconstructed surfaces of left ventricle,
including epicardium and endocardium.

parametrization reuslt, where the parameterization aims to
preserve the area and minimize the angle distortion) to each
point v(θ, φ) on a surface:

v(θ, φ) =





x(θ, φ)
y(θ, φ)
z(θ, φ)



 . (1)

When the free variablesθ and φ range over the whole
sphere, v(θ, φ) ranges over the whole object surface.
SPHARM expansionis then used to expand the object surface
into a complete set of SPHARM basis functionsY m

l , where
Y m

l denotes the spherical harmonic of degreel and orderm
(see [4] for details). The expansion takes the following form:

v(θ, φ) =

∞
∑

l=0

l
∑

m=−l

c
m
l Y m

l (θ, φ), (2)

where

c
m
l =





cm
lx

cm
ly

cm
lz



 . (3)

The coefficientscm
l are 3D vectors. Their components,cm

lx,
cm
ly , andcm

lz are usually complex numbers. The coefficients up
to a user-desired degree can be estimated by solving a set of
linear equations in a least square fashion. The object surface
can be reconstructed using these coefficients, and using more
coefficients leads to a more detailed reconstruction. Thus,a
set of coefficients actually form an object surface description.

The orthonormality property of spherical harmonic basis
functions can be expressed as

∫ 2π

0

∫ π

0

Y m
l (θ, φ)Ȳ m′

l′ (θ, φ)sinθdθdφ = δmm′δll′ . (4)
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Here, z̄ denotes the complex conjugate andδij is the Kro-
necker delta:

δij ≡
{

0 for i 6= j
1 for i = j

B. Fast Rotation Theorem for Spherical Harmonic Parame-
trization

According to Euler’s rotation theorem, any rotation of the
coordinate system(e1, e2, e3) can be decomposed into three
elementary rotationsR(α, β, γ): a rotationα around axisz,
which transforms(e1, e2, e3) to (e′1, e

′
2, e3), followed by a

rotation β around axise′2, which transforms(e′1, e
′
2, e3) to

(ê1, e
′
2, ê3), and finally a rotationγ around axiŝe3. TheSO(3)

harmonics provide the tool to express the rotated version ofa
function on the sphere extended by spherical harmonics [9].
The effect of such a rotation on the spherical harmonic basis
functions is [10]

RZY Z(αβγ)Y m
l (θ, φ) =

l
∑

m′=−l

Y m′

l (θ, φ)Dl
m′m(αβγ), (5)

whereRZY Z(αβγ) represents the rotation operator dependent
on the Euler angles; the rotation matricesDl

m′m(αβγ) (also
called theSO(3) matrix elements) are calculated by

Dl
m′m(αβγ) = e−im′αdl

m′m(β)e−imγ ,

where

dl
m′m(β) =

min(l+m,l−m′)
∑

t=max(0,m−m′)

(−1)t

×
√

(l + m)!(l − m!)(l + m′)!(l − m′)!

(l + m − t)!(l − m′ − t)!(t + m′ − m)!t!

×
(

cos
β

2

)(2l+m−m′−2t) (

sin
β

2

)(2t+m′−m)

.

In order to reduce the computations, we use the symmetry
properties

dl
m′m(β) = dl

−m−m′(β) anddl
m′m(β) = (−1)m+m′

dl
mm′(β).

Since the SPHARM surface modeling technique is employed,
the surface coordinate information of a 3D object is coded onto
three unit spheres: anx-sphere, ay-sphere, and az-sphere.
These three spherical functions are expanded using spherical
harmonics and represented byf(θ, φ) (f ∈ {x, y, z}). We
denotef ′(θ, φ) as the new function after applying a rotation
operatorRZY Z(αβγ) to f(θ, φ) on thef -sphere:

f ′(θ, φ) = RZY Z(αβγ) f(θ, φ), (6)

thus

v
′(θ, φ) =





x′(θ, φ)
y′(θ, φ)
z′(θ, φ)



 = Robj(αβγ)





x(θ, φ)
y(θ, φ)
z(θ, φ)



 (7)

where

Robj(αβγ)=





RZY Z(αβγ) 0 0
0 RZY Z(αβγ) 0
0 0 RZY Z(αβγ)



.

Thenv
′(θ, φ) = Robj(αβγ)v(θ, φ) represents the new para-

metrization on the surface, which can be generated by rotating
the original parametrization along the object’s surface about
Euler angles(α, β, γ). In other word, the result of applying
the rotation matrixRZY Z(αβγ) on the mapping meshes of
x, y, z-sphere is to rotate the parameter mesh on the object’s
surface at the same orientation. Because of the distortions
introduced by spherical parameterization, the result of rotation
is not identical to the result of applying Euler angles on the
sphere, but both will have nearly the same orientation. Thus
we only useRobj , which we refer to as the parametric rotation
matrix, for rotating the parameter mesh along the surface of
an object. Substituting Eq. (2) and Eq. (5) into Eq. (6) gives

L
∑

l=0

l
∑

m=−l

cm
lf (αβγ)Y m

l (θ, φ) = f ′(θ, φ) =

RZY Z(αβγ)

L
∑

l′=0

l′
∑

m′=−l′

cm′

l′fY m′

l′ (θ, φ) =

L
∑

l′=0

l′
∑

m′=−l′

cm′

l′f RZY Z(αβγ) Y m′

l′ (θ, φ) =

L
∑

l′=0

l′
∑

m′=−l′

cm′

l′f

l′
∑

n=−l′

Y n
l′ (θ, φ)Dl′

nm′ (αβγ) (8)

and multiplyingȲ j
k (θ, φ) on both sides (adjusting thek from

0 to L and j from −k to k) and integrating on the sphere.
Since all Kronecker delta values are zero except atk = l = l′

andj = m = n, we get the following:

cm
lf (αβγ) =

l′
∑

m′=−l′

cm′

l′fDl′

mm′(αβγ) =

l
∑

m′=−l

cm′

lf Dl
mm′(αβγ).

(9)
According to the above derivation, the harmonics expansion

coefficients transform among themselves during rotation. Each
new spherical harmonic coefficientcm

lf (αβγ) after applying a
rotated functionRZY Z(αβγ) is a linear combination of the
coefficientscm

lf of the original functionf(θ, φ) (f ∈ {x, y, z}).
We can use this property to calculate the new SPHARM model
v′(θ, φ) for the object surface after a rotated parametrization,
and we only need the old coefficients{cm

lx, cm
ly , cm

lz} and
rotation matricesDl

mm′(αβγ).
Theorem (Parametrization Rotation). The parame-

trization spatial rotation on the surface can be decom-
posed into three rotations of mapping parameter meshes
onto the x-sphere, y-sphere, andz-sphere. v(θ, φ) =
∑∞

l=0

∑l
m=−l c

m
l Y m

l (θ, φ) represents the parameter mesh of
surface. After rotation along the surface in Euler angles
(α, β, γ), the new coefficientscm

l (αβγ) is

cm
l (αβγ) =

l
∑

m′=−l

cm′

l Dl
mm′(αβγ). (10)
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Rl
m′m =



























































dl
0m(β)

√
2 cos(mγ); m′ = 0, m > 0

dl
m′m(β) cos(mγ + m′α) + (−1)m′

dl
−m′,m(β) cos(mγ − m′α); m′ > 0, m > 0

(−1)m′+1dl
m′m(β) sin(mγ + m′α) + dl

−m′m(β) sin(mγ − m′α); m′ < 0, m > 0
dl
00(β); m′ = 0, m = 0

dl
m′0(β)

√
2 cos(m′α); m′ > 0, m = 0

(−1)m′+1dl
m′0(β)

√
2 sin(m′α); m′ < 0, m = 0

(−1)mdl
0m(β)

√
2 sin(mγ); m′ = 0, m < 0

(−1)mdl
−m′,m(β) sin(mγ − m′α) + (−1)mdl

m′m(β) sin(mγ + m′α); m′ > 0, m < 0

(−1)m+m′

dl
m′m(β) cos(mγ + m′α) + (−1)m+1dl

−m′m(β) cos(mγ − m′α); m′ < 0, m < 0

(11)

C. Parametrization Rotation Theorem on Real Spherical Har-
monics

Note that the spherical functions used to represent a 3D
surface are functions taking real values. Thus, in some medical
imaging applications, real spherical harmonics (RSH) have
been used instead of standard (or complex) spherical harmon-
ics to expand these functions.

In order to use RSH to describe simple-connected objects
(not only for star shape), like the SPHARM technique [4], sur-
face parameterization needs to be performed prior to expansion
into harmonics. The expansion takes the following form:

v(θ, φ) =
∞
∑

l=0

l
∑

m=−l

c
m
l Sm

l (θ, φ), (11)

where
c

m
l = (cm

lx, cm
ly , cm

lz )T ,

and

Sm
l (θ, φ) =























(Y m
l (θ, φ) + Ȳ m

l (θ, φ))/
√

2, m > 0

Y 0
l (θ, φ), m = 0

−i(Y −m
l (θ, φ) − Ȳ −m

l (θ, φ))/
√

2, m < 0
(12)

The choice of RSH as basis functions in shape model-
ing requires half the computer memory needed by spherical
harmonics. However, they are more difficult to manipulate
theoretically, owing to a number of useful relationships that
lose their simplicity when stated in terms of the RSH. Thus,
in this section, we will extend our theorem to RSH.

Rotational symmetry is preserved under the linear combi-
nations of Eq. (12) and the results of RSH can be written as
[11]:

RZY Z(αβγ)Sm
l (θ, φ) =

l
∑

m′=−l

Sm′

l (θ, φ)Rl
m′m(αβγ). (13)

Since Eq. (13) has a similar form to Eq. (5) (only using
Rl

m′m(αβγ), which is shown in Eq. (11), to replace the rota-
tion matricesDl

m′m(αβγ)), the proof steps for Parametrization
Theorem (Eq. (6), Eq. (7), Eq. (8), and Eq. (9)) still hold. As
a result, the new coefficients of RSH after rotation can also
be calculated by the original coefficients as:

cm
lf (αβγ) =

l
∑

m′=−l

cm′

lf Rl
mm′(αβγ), f ∈ {x, y, z}. (14)

D. Surface Correspondence Difference Measurement

The surface correspondence alignment problem is gener-
ally formulated in terms of the optimal parameters, such as
(α, β, γ), that minimize some surface distance function. In
this paper, we adopt the Euclidean distance as the distance
function between surfaces. Formally, for two surfaces given
by v1(s) andv2(s), we define their distanceD(v1,v2) as

D(v1,v2) = (

∮

‖ v1(s) − v2(s) ‖2 ds)1/2

= (

∮

((x1(s) − x2(s))
2 + (y1(s) −

y2(s))
2 + (z1(s) − z2(s))

2)ds)1/2

= (
∑

f∈{x,y,z}

∫ 2π

0

∫ π

0

(f1(θ, φ) − f2(θ, φ))2

×sinθdθdφ)1/2. (15)

By the orthonormality property of spherical harmonic basis
functions Eq. (4), the integral
∫ 2π

0

∫ π

0

f(θ, φ)2sinθdθdφ =

∫ 2π

0

∫ π

0

(
L

∑

l=0

l
∑

m=−l

cm
lfY m

l (θ, φ)

×
L

∑

l=0

l
∑

m=−l

cm
lfY m

l (θ, φ))sinθdθdφ =

L
∑

l=0

l
∑

m=−l

(cm
lf )2

and
∫ 2π

0

∫ π

0

f1(θ, φ)f2(θ, φ)sinθdθdφ =

L
∑

l=0

l
∑

m=−l

cm
lf1

cm
lf2

.

Substituing them into Eq. (15) gives the surface difference
measure a new form:

D(v1,v2) = (
∑

f∈{x,y,z}

L
∑

l=0

l
∑

m=−l

(cm
lf1

− cm
lf2

)2)1/2. (16)

One assumption of this surface correspondence metric is
that two object surfaces should be roughly superimposed to
each other in the object space. This can be done using the
ICP algorithm [7] when necessary.

E. Distance Minimization Algorithm

In this section, we propose an algorithm to determine the
rotation that gives the global minimum of Eq. (16) and reports
the surface correspondence alignment results.
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(a) (b) (c)

Fig. 2. Sampling mehtods for searching: (a) increase Euler angles with equal
angular increments step, (b) simple sampling method with uniformly sample
each euler angle independetly, (c) uniform sampling on the surface.

Because we truncate the degree value atl = L, the
number of spherical harmonics coefficients is(L+1)2. During
the distance function minimization procedure, we need to
calculate the new parameter mesh coefficientscm

l (αβγ) =
(cm

lx(αβγ), cm
ly(αβγ), cm

lz (αβγ))T for every new rotation un-
der Euler angles(α, β, γ). WhenL is increased, more details
of a surface can be obtained, but the computations of new
coefficients after rotation will take more time. Because the
low resolution object contributes the bulk of the shape, it is
reasonable to look for the target at low resolution first [11].
In the first step, surfaces reconstructed withL = 6 are
first used to carry out an approximate minimization of the
surface distance function; in a subsequent second step, surfaces
reconstructed withL = 16 are used to refine the minimization
in certain areas determined in the first step.

1) Sampling-based Search Algorithm: As described above,
search algorithm proceeds in two steps. In the first step, the
straightforward method for minimizing Eq. (16) is to fix one
parameter mesh and rotate the other to carry out a greedy
search on its surface with a small step size. Such an algorithm
can finish inO(n3) time, wheren is the sampling number for
each Euler angle. For example, in Fig. 2.(a), the points on
the surface are the north poles’ positions in every searching
step with angular increments step2π/n for α, γ andπ/n for
β. This method creates more sampling points near the north
and south poles and fewer points near the equator, and thus
cannot guarantee uniform incremental steps. A uniform step

Algorithm 1 The uniform sampling algorithm for Euler
angles
Initial: the number of sampling pointsn
Result: uniformly distributed Euler angle rotation set(α, β, γ)
begin

for i = 1 to n do
αi = 2π ∗ r-generator;
βi = arcsin(1 − 2 ∗ r-generator) + π/2;
γi = 2π ∗ r-generator;

end for
return (α, β, γ)

end

can improve the efficiency of searching in three dimensional
configuration spaces. Thus, for efficiency the rotation space
should be uniformly sampled first. In this approach, we sample

the surface by calculating a new north pole (n2 points)
and continuing with a counterclockwise rotation around the
parameter mesh along the axis between the north and south
poles (n steps for every circle).

The simple method might try to uniformly sample each
Euler angle independently. However, this cannot derive a
uniform point distribution on the surface. In Fig. 2.(b) and
Fig. 2.(c), sets of sampling points on the surfaces of two
spheres are visualized to represent the sampling distributions
in SO(3) of 900 Euler angles(α, β, γ). Fig. 2.(b) shows
the result of the simple sampling method. The polar region
is oversampled under this method and accordingly there are
fewer sampling points in the equatorial region.

Fig. 2.(c) shows the uniformly distributed sample points
generated by a simple and efficient algorithm depicted in
Alg. 1. In this algorithm, we use the random number generator
function r-generator to return a floating point number in
the range[0, 1) and mapα into [0, 2π), β into [0, π), and
γ into [0, 2π). The inverse sine function ofβ can avoid
oversampling the polar regions. All the sampling points on
the surface in Fig. 2.(c) are considered as the new north pole.
For each candidate north pole, the parameter mesh should

Algorithm 2 Sampling-based search algorithm
Initial: SPHARM coefficients sets{cm

l1} and{cm
l2}, and Euler

angles set{αi, βi, γi} generated by Alg. 1
Result: new SPHARM coefficients{ĉm

l1}
begin

D = 104

target = ∅
for i = 1 to n2 do

Calculating the new coefficients:cm
lf (αiβiγi) =

∑l
m′=−l c

m′

lf Dl
mm′(αiβiγi), f ∈ {x, y, z}

Di = (
∑

f∈{x,y,z}

∑L
l=0

∑l
m=−l(c

m
lf (αiβiγi)−cm

lf2
)2)1/2

if Di ≤ D then
D = Di

target = {cm
l (αiβiγi)}

end if
for j = 1 to n do

Calculating the new coefficients:cm
lf (αijβijγij) =

∑l
m′=−l c

m′

lf (αiβiγi)D
l
mm′(αijβijγij)

Dij = (
∑

f

∑L
l=0

∑l
m=−l(c

m
lf (αijβijγij)−cm

lf2
)2)1/2

if Dij ≤ D then
D = Dij

target = {cm
l (αijβijγij)}

end if
end for

end for
Applying the BFGS searching algorithm on the new para-
meter mesh generated by coefficients intarget
return the search result{ĉm

l1}
end

be counterclockwise rotated along the north-south axis (the
rotation angleω ranges from 0 to2π). In order to calculate the
coefficients of the new rotated parameter mesh using Eq. (10),
we must transform the rotation angleω into the Euler angles
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(α, β, γ).
The original north and south poles of a surface’s parameter

mesh are mapped onto the axise3 = (0 0 1) and−e3 = (0 0 −
1) in thex-, y-, andz-sphere. After rotation using Euler angles
(αp, βp, γp), the north and south pole coordinates switch from
v(θ, φ) to v′(θ, φ) = Robj(αpβpγp)v(θ, φ), (θ = 0 or π). Si-
multaneously the axise3 in the coordinate systems of the three
mapping spheres is changed toê3 = RZY Z(αpβpγp)(0 0 1)T .
Becauseê3 also contains the origin and has unit length
direction, we apply the Rodrigues’ rotation formula [12] for
computing the rotation matrixRê3

∈ SO(3) corresponding to
a rotation by an angleω about the fixed axiŝe3

Rê3
(ω) = I + Ssinθ + S2(1 − cosθ)

whereI is the identity matrix,

S =





0 −ê3x ê3y

ê3z 0 −ê3x

−ê3y ê3x 0



 .

We can obtain the Euler angles(α, β, γ) by solving the
equationRZY Z(αβγ) = Rê3

(ω). These Euler angles can then
be used to calculate the coefficients of new parameter mesh
using Eq. (10).

In the second step, we use the BFGS algorithm [14] to
locally minimize Eq. (16) starting from the result of the first
step. Because the result of the first step is already close to the
target, this step generally needs only a few iterations. Although
the dimension of the Jacobian matrix is large, the matrix is
quite sparse. The computational time of this step is very low.

2) Fast Surface Alignment Algorithm: In the sampling-
based search algorithm, if we don’t want to miss the true
global minimization, we need to use a large numbern and
a correspondingly small step size. Because the SPHARM
coefficients must be calculated for every new Euler angles
set(α, β, γ), the computational time is increased substantially
with a largern.

In order to reduce the computational complexity of search
in Alg. 2 (O(n3)), we utilize the properties of the surface
parametrization. There are north pole and south pole in every
parametrized surface [4], and their movement follows the
parameter mesh rotation on the surface. If the distance between
two surfaces is minimal, their north/south poles are usually
very close to each other in the object space. Therefore, in the
first step, we align the surfaces’ north poles and south poles
by minimizing the value of

Dpoles =‖ v1(0, φ) − v2(0, φ) ‖ + ‖ v1(π, φ) − v2(π, φ) ‖ .

Based on the new north pole’s position, we can search more
carefully for the distance function minimum in its vicinity.

We still use the uniform sampling method in Alg. 1 to
generate the new north poles’ position, and the distanceDpoles

is calculated for each new north pole. In our implementation,
we select the first ten promising positions (with the minimum
Dpoles) as the new north poles. For each new north pole, the
parameter mesh is clockwise rotated to minimize the surface
distance in Eq. (16). In thex-, y-, z-sphere coordinate systems,
the north pole is mapped on̂e3, and thus we have the new
rotation matrixRZY Z(αβγ) = RZY Z(α 0 0), α ∈ [0, 2π)

and Robj(αβγ) = Robj(α 0 0). In the second step, we use
the same BFGS algorithm employed in Alg. 2. Therefore
the computational complexity of the alignment algorithm is
reduced toO(n2).

III. E XPERIMENTS AND DISCUSSIONS INMEDICAL IMAGE

ANALYSIS

The fast alignment algorithm for surface correspondence
described above was used for shape analysis in selected
medical image computing applications. Based on segmented
MRI data of heart and brain, we use the SPHARM method
to do surface reconstruction and apply the surface alignment
algorithm presented in this paper to determine the corre-
spondence between shapes. The established correspondenceis
necessary for researchers to perform comparative studies and
access more functional details. In this section, we show how
the surface alignment algorithm can help in these applications.

A. Comparison with The First Order Ellipsoid Based Surface
Alignment Method

In previous shape analysis study using the SPHARM de-
scription [5], researchers choose to use the three major axis
of the first order ellipsoid (which is computed from the
first order SPHARM coefficients) as the intrinsic coordinate
system. Parametrization is rotated in the parameter space for
normalization so that three main ridges of the first order
ellipsoid are moved to a canonical position [5], [6]. Their
method works well if two or more objects have a similar
orientation (e.g., aligning hippocampal shapes). However this
method may not work in some cases. The following is an
example.

Fig. 3.(a) and Fig. 3.(c) show the reconstructed surface of
two ventricles of the heart (left ventricle and right ventricle).
We separate the parametrization on the surface into eight
regions using five lines (θ = π/2 in white, north pole in
yellow with θ = 0, south pole in red withθ = π, the
other four lines representφ = 0, π/2, π, 3π/2). These five
lines and two poles show the correspondence on the surfaces;
thus it can give us a visualized validation for the alignment
result. The correspondence between surfaces in Fig. 3.(a)
and Fig. 3.(c) are not established as the visualization shows.
Fig. 3.(b) and Fig. 3.(d) show their first order ellipsoids.
By using the previous method, the first order ellipsoids and
parametrizations are rotated to the positions in Fig. 3.(f)and
Fig. 3.(h). Three main directions of the ellipsoids are moved
to a canonical position. The regions with similar(θ, φ) values
on two ellipsoids’ surface are visualized by the same color.
The surface correspondence is created when the first order
ellipsoid is aligned. As the result, the SPHARM surfaces and
parametrizations should be rotated as Fig. 3.(e) and Fig. 3.(g).
A limitation of this approach is that it can’t represent the
real surface correspondence between two surfaces. The reason
for this is that the left ventricle and right ventricle have two
very different orientations of their first order ellipsoid that are
obvious in Fig. 3.(b) and Fig. 3.(d). Thus, although the first
order ellipsoids are rotated to the normalized positions, the
surfaces are rotated to the opposite orientations.
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)
Fig. 3. Comparison of methods: (a) shows the reconstructed SPHARM surface of left ventricle, (b) is the first order ellipsoid of surface (a); (c) shows
the reconstructed SPHARM surface of right ventricle, (d) isthe first order ellipsoid of surface (c). By using the previous method, the first order ellipsoids
and parametrizations are rotated to the positions in (f) and(h), and the SPHARM surfaces and parametrizations are rotated as (e) and (g). By using our
algorithm, (i) shows the result of poles alignment. North (yellow point) and south (red point) poles are aligned close tothe poles of (a). (i), (j), and (k) show
the alignment procedure by rotating the parameter mesh along the north pole. For example, the red line is rotated from theback side (hidden) to the top side,
and to the front side; the green line is rotated from the top side to the front side, and to the bottom side. After using the BFGS algorithm in the second step,
the last alignment result is shown in (l).

(a) (b) (c) (d)

Fig. 4. (a) shows a visualization of the left ventricle without the parametric
mesh,(b) is the inner surface before alignment, (c) is the outer surface that is
fixed during alignment procedure, (d) is the alignment result of inner surface.

Our new alignment algorithm produces a correct alignment
in such cases, because it is a general surface alignment method
that does not depend on any orientation information. Fig. 3.(i)
to Fig. 3.(l) show the results generated by our algorithm.
Fig. 3.(a) is the fixed surface and the parametrization in
Fig. 3.(c) is rotated to Fig. 3.(l). The visualized color lines
and poles can validate our result.

The effectiveness of our algorithm can also be validated
by computing the surface correspondence distance defined
in Eq. (16). The surface correspondence distance between
surfaces in Fig. 3.(e) and Fig. 3.(g) is258.6536mm, but the
surface correspondence distance between surfaces in Fig. 3.(a)
and Fig. 3.(l) is62.4798mm. Our surface alignment algorithm
generates a better result.

B. Surface Correspondence Alignment between Epicardium
and Endocardium

In paper [3], the SPHARM model is used to accurately
measure and visualize heart and left ventricle geometry and
function. Fig. 4.(a) shows a visualization of the left ven-
tricle without the parametric mesh. Two important para-
meters, the left ventricular wall thickness and wall stress,

were accurately calculated using the SPHARM model. The
new alignment algorithm in this work can further simplify
the measurement method; now, after aligning the surface
correspondence between the left ventricular endocardial and
epicardial surfaces, the wall thickness can be calculated simply
as‖ vendo(θi, φi) − vepi(θi, φi) ‖, with (θi, φi) coming from
the interesting region. Since the wall stress is related to wall
thickness, we can also estimate it without placing additional
efforts.

In cardiac MRI, since the positions and shapes of heart or
ventricle comprise rich medical information, we can’t translate
or rotate them in some heart functional analysis applications.
For example, we can only align the surface correspondence
between the endocardial and epicardial surfaces without any
rotation or change on their shape if we want to accurately
assess the changes in wall thickness. Our algorithm is suitable
for this task.

Fig. 4.(b) and Fig. 4.(c) show the results of SPHARM
parameterization with unordered correspondence. We fix the
epicardial surface and apply our algorithm on the endocardial
surface. As a result, the parametrization is rotated to minimize
the surface correspondence distance and the aligned resultis
shown in Fig. 4.(d).

We compare the wall thickness results calculated by this
simple method to the reuslts from the 3D measurement method
proposed in paper [3] and the earlier method that makes
measurement within a single imaging plane of short-axis
MR images. TABLE. III-B lists planar, 3D and proposed
method measured wall thickness results in our experiments.
We measure the planar (measured using ImageJ [19] from MRI
2D slices), 3D and proposed method (by SPHARM model) of
left ventricle wall thickness from 20 pigs’ MRI, and use their
average measurements. Four normal directions are considered,
and low section is close to apex of LV and mid section is close
to papillary muscles plane and high section is close to the base



8

(a)

(b)

Fig. 5. (a) shows a sequence of a left ventricular inner surface during one heart cycle before surface alignment. The surface sequence in (b) is the result
after surface alignment.

of LV. In the low part, the planar wall thicknesses overestimate
the wall thickness more [3], because the bias line is longer than
the perpendicular line. The proposed method in this section
can calculate the approximated wall thickness which are close
to the result by using 3D measurement method and doesn’t
overestimate the wall thickness at the apex of Left ventricle
like 2D measurement method.

C. Alignment for Spatio-temporal Cardiac Modeling

This new surface alignment algorithm also provides a
promising method for studying spatio-temporal structures. In
paper [15], surface tracking techniques (tracking points on 3D
shape using 2D images) are used to create temporal sequence
descriptions for points on the left ventricle inner surface
through each heart cycle. Such temporal sequence descriptions
can quantify the ventricular mechanical asynchrony or syn-
chrony, which has important diagnostic and prognostic values,
and can help determine optimal treatment in heart failures
where a heart has a highly asynchronous contraction. Because
the points are tracked on 2D images and mapped to a 3D
surface, this method can only describe the heart contraction
and dilation along the plane direction, and is not accurate for
the perpendicular direction.

Combining the SPHARM description and our surface align-
ment methods offers a set of spatio-temporal surface corre-
spondences for medical image analysis research. As in the pre-
vious example, our new algorithm generates more reasonable
surface correspondences for the left ventricle sequence, and
these surface correspondences describe the heart contraction
and dilation in every direction of 3D space. Based on this new
model, more valuable diagnostic and prognostic information
can be derived for helping make clinical determinations [16],
[17].

Fig. 5(a) is a shape sequence of a left ventricular inner
surface during one heart cycle. Before surface alignment, the
correspondence between surfaces is not established. The shape
sequence in Fig. 5(b) is the result after surface alignment.
During the alignment procedure, each shape in the sequence
is aligned with the first one.

(a)

(b)

(c)

Fig. 6. In our experiments, ten pairs of hippocampal shapes (left and right)
are used. Fig. 6(a) shows three pairs of hippocampal shapes before surface
registration. Fig. 6(b) shows the aligned results by using our method, and
Fig. 6(c) shows the aligned results by using the first order ellipsoid based
SPHARM alignment method. The same color is used to visualizepoints with
the same(θ, φ) on different SPHARM shapes.

D. Surface Registration for Hippocampal Shapes

The SPHARM description has been employed in several
hippocampal shape discrimination studies. Davieset al. [18]
combined the SPHARM description with a minimum de-
scription length model. Geriget al. [5], [6] conducted a
hippocampal shape classification study by using a SPHARM
approach to calculate hippocampal asymmetry. In all the
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TABLE I

END-DIASTOLIC WALL THICKNESS COMPARISON IN DIFFERENT DIRECTION OF LV MEASURED BY 2D, 3D AND PROPOSED METHODS

Location Anterior Septal Lateral Inferior

Methods 2D 3D Current 2D 3D Current 2D 3D Current 2D 3D Current

Low (mm) 6.9 5.7 5.9 5.0 4.4 4.3 4.2 3.5 3.6 6.0 5.6 5.5

Mid (mm) 11.6 12.7 12.3 8.2 8.4 8.5 4.0 4.1 4.2 13.1 14.3 13.8

High (mm) 8.0 8.1 8.0 5.0 5.0 5.2 8.1 7.9 7.9 5.0 5.1 5.1

TABLE II

THE AVERAGE SURFACE DISTANCES COMPARISON OF ALIGNMENT

RESULTS BETWEEN PREVIOUS METHODS AND OURS.

Hippocampus Left Right

Our method 256.4950 233.3269

First order ellipsoid
based method 348.9394 317.2034

previous works, the first order ellipsoid based method was
used to finish the surface registration step. Since the first order
ellipsoid of a hippocampal shape is a real ellipsoid, using
this ellipsoid for alignment often works well for hippocampal
surfaces modeled by SPHARM. Here we applied our surface
registration method and compare it with the first order ellipsoid
SPHARM alignment method.

In our experiments, ten pairs of hippocampal shapes (left
and right) are used. Fig. 6(a) shows three pairs of hippocam-
pal shapes before surface registration. Fig. 6(b) shows the
aligned results by using our method, and meshes of the
other hippocampal shapes are rotated to align with the first
one. Fig. 6(c) shows the aligned results by using the first
order ellipsoid based SPHARM alignment method, and all
the meshes of hippocampal shapes are rotated with the first
order ellipsoid alignment results. In the surface distances
comparison, we calculated the surface distance between every
object and the first one and compare the average results. Our
method outperforms the first order ellipsoid alignment method
(see also TABLE. II). Thus, our surface registration method
can get better alignment results even on the hippocampal
shapes to which the first order ellipsoid alignment method is
often applicable.

IV. CONCLUSIONS

We have described a novel method for establishing surface
correspondences between SPHARM parametric surfaces. In
this method, we make use of the SPHARM rotational property
to prove a parametrization rotation theorem that can help
us rapidly rotate the SPHARM parameter mesh along the
surface. The mean square distance between object surfaces is
defined as the objective function. In the proposed surface dis-
tance minimization algorithm, we improve the computational
complexity of the search algorithm fromO(n3) to O(n2).
Its efficacy is demonstrated in experiments based on several
medical research problems, where we observe a significant
improvement in robustness relative to existing shape modeling
and analysis techniques.
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