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Abstract. Spectral analysis approaches have been actively studied in
machine learning and data mining areas, due to their generality, effi-
ciency, and rich theoretical foundations. As a natural non-linear gen-
eralization of Graph Laplacian, p-Laplacian has recently been proposed,
which interpolates between a relaxation of normalized cut and the Cheeger
cut. However, the relaxation can only be applied to two-class cases. In
this paper, we propose full eigenvector analysis of p-Laplacian and obtain
a natural global embedding for multi-class clustering problems, instead
of using greedy search strategy implemented by previous researchers. An
efficient gradient descend optimization approach is introduced to obtain
the p-Laplacian embedding space, which is guaranteed to converge to
feasible local solutions. Empirical results suggest that the greedy search
method often fails in many real-world applications with non-trivial data
structures, but our approach consistently gets robust clustering results.
Visualizations of experimental results also indicate our embedding space
preserves the local smooth manifold structures existing in real-world
data.

1 Introduction

Graph-based methods, such as spectral embedding [1], spectral clustering [2, 1],
and semi-supervised learning [3–5], have recently received much attention from
the machine learning community. Due to their generality, efficiency, and rich the-
oretical foundations [6, 1, 3, 7–9], these methods have been widely explored and
applied into various machine learning related research areas, including computer
vision [2, 10, 11], data mining [12], speech recognition [13], social networking [14],
bioinformatics [15], and even commercial usage [16, 17]. More Recently, as a non-
linear generalization of the standard graph Laplacian, graph p-Laplacian starts
to attract attentions from machine learning community, such as Bühler et. al.
[18] proved the relationship between graph p-Laplacian and Cheeger cuts. Mean-
while, discrete p-Laplacian has also been well studied in mathematics community
and solid properties have been investigated by previous work [19–21].

Bühler [18] provided a rigorous proof of the approximation of the second
eigenvector of p-Laplacian to the Cheeger cut. Unlike other graph-based ap-
proximation/relaxation techniques (e.g. [22]), the approximation to the optimal
Cheeger cut is guaranteed to be arbitrarily exact. This discovery theoretically
and practically starts a direction for graph cut based applications. Unfortunately,
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the p-Laplacian eigenvector problem leads to an untractable optimization, which
was solved (see [18]) by a somewhat complicated way. Moreover, they only solved
the problem for the second eigenvector and provided a direct approach to solve
two-class clustering problems. For multi-class problems, they employed hierar-
chical strategy, which often leads to poor clustering quality in real world data
with complicated structures due to its intrinsically greedy property.

Putting the nice theoretical foundations of p-Laplacian and its difficulties
together, one might immediately raise a question: can we obtain a full eigenvector
space of p-Laplacian, similar to other regular spectral techniques, and easily
derive a complete clustering analysis using p-Laplacian? To solve this question,
in this paper, we investigate the whole eigenvector space of p-Laplacian and
provide (1) an approximation of the whole eigenvectors which lead to a tractable
optimization problems, (2) a proof to show that our approximation is very close
to the true eigenvector solutions of p-Laplacian, and (3) an efficient algorithm
to solve the resulting optimization problems, which is guaranteed to converge to
feasible solutions.

After introducing several important research results from mathematics com-
munity, we further explore the new properties of the full eigenvector space of
p-Laplacian. Our main theoretical contributions are summarized in Theorems 2
and 3. Through our theoretical analysis and practical algorithm, the p-Laplacian
based clustering method can naturally and optimally find the cluster structures
in multi-class problems. Empirical studies in real world data sets reveal that
greedy search often fails in complicated structured data, and our approach con-
sistently obtains high clustering qualities. Visualizations of images data also
demonstrate that our approach extracts the intrinsic smooth manifold reserved
in the embedding space.

2 Discrete p-Laplacian and Eigenvector Analysis

Given a set of similarity measurements, the data can be represented as a weighted,
undirected graph G = (V,E), where the vertices in V denote the data points
and positive edge weights in W encode the similarity of pairwise data points.
We denote the degree of node i ∈ V by di =

∑
j wij . Given function f : V →R,

the p-Laplacian operator is defined as follows:

(∆W
p f)i =

∑
j

wijϕp(fi − fj), (1)

where ϕp(x) = |x|p−1sign(x). Note that ϕ2(x) = x, which becomes the stan-
dard graph Laplacian. In general, the p-Laplacian is a nonlinear operator. The
eigenvector of p-Laplacian is defined as following:

Definition 1. f : V → R is an eigenvector of p-Laplacian ∆W
p , if there exists

a real number λ, such that

(∆W
p f)i = λϕp(fi), i ∈ V. (2)



p-Laplacian Embedding 3

λ is called as eigenvalue of ∆W
p associated with eigenvector f .

One can easily verify that when p = 2, the operator ∆W
p becomes the regular

graph Laplacian ∆W
2 = L = D−W , where D is a diagonal matrix with Dii = di,

and the eigenvectors of ∆W
p become the eigenvectors of L. The eigenvector of

p-Laplacian is also called p-eigenfunction.

2.1 Properties of Eigenvalues of p-Laplacian

Proposition 1. [23] If W represents a connected graph, and if λ is an eigen-
value of ∆W

p , then

λ ≤ 2p−1 max
i∈V

di.

This indicates that the eigenvalues of p-Laplacian are bounded by the largest
volume. It is easy to check that for connected bipartite regular graph, the equality
is achieved.

2.2 Properties of Eigenvectors of p-Laplacian

Starting from previous research results on p-Laplacian, we will introduce and
prove our main theoretical contributions in Theorems 2 and 3. The eigenvectors
of p-Laplacian have the following properties:

Theorem 1. [18] f is an eigenvector of p-Laplacian ∆W
p , if and only if f is a

critical point of the following function

Fp(f) =

∑
ij wij |fi − fj |p

2∥f∥pp
, (3)

where ∥f∥pp =
∑

i |fi|p.

The above theorem provides an equivalent statement of eigenvector and
eigenvalue of p-Laplacian. It also serves as the foundation of analysis of eigen-
vector. Notice that Fp(αf) = Fp(f) which indicates the following property of
p-Laplacian:

Corollary 1. If f is an eigenvector of ∆W
p associated with eigenvalue λ, then

for any α ̸= 0, αf is also an eigenvector of ∆W
p associated with eigenvalue λ.

Notice that ∆W
p is not a linear operator, i.e. ∆W

p (αf) ̸= α∆W
p f , if p ̸= 2.

However, Corollary 1 shows that the linear transformation of a single eigenvector
remains an eigenvector of the p-Laplacian. Also note that ∆W

p f = ∆W
p (f + d)

for any constant vector d. Thus, ∆W
p is translation invariant, and we have

Corollary 2. c1 is an eigenvector of ∆W
p for constant c ̸= 0, associated with

eigenvalue 0, where 1 is a column vector with all elements 1 and proper size.
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In the supplement (Lemma 3.2) of [18], authors also provided the following
property of the non-trivial eigenvector of p-Laplacian.

Proposition 2. If f is a non-trivial eigenvector of ∆W
p , then∑

i

ϕp(fi) = 0. (4)

The non-trivial eigenvectors refer to those eigenvectors associated with non-zero
eigenvalues. Inspired by the above properties of eigenvectors of p-Laplacian, we
propose the following new theoretical analysis on eigenvectors of p-Laplacian.

Definition 2. We call f ̸= 0 and g ̸= 0 as p-orthogonal if the following condi-
tion holds ∑

i

ϕp(fi)ϕp(gi) = 0. (5)

As one of the main results in this paper, the following property of the full
eigenvectors of p-Laplacian is proposed,

Theorem 2. If f and g are two eigenvectors of p-Laplacian ∆W
p associated with

different eigenvalues λf and λg, and W is symmetric, and p ≥ 1, then f and g
are p-orthogonal up to the second order Taylor expansion.

Proof: By definitions, we have

(∆W
f )i = λfϕ(fi), (6)

(∆W
g )i = λgϕ(gi). (7)

Multiplying ϕp(gi) and ϕp(fi) on both sides of Eq. (6) and Eq. (7), respectively,
we have

(∆W
f )iϕ(gi) = λfϕ(fi)ϕ(gi), (8)

(∆W
g )iϕ(fi) = λgϕ(gi)ϕ(fi). (9)

By summing over i and taking the difference of both sides of Eq. (8) and Eq. (9),
we get

(λf − λg)
∑
i

ϕp(fi)ϕp(gi) =
∑
i

[
(∆W f)iϕp(gi)− (∆W g)iϕp(fi)

]
.

Notice that for any p > 1, a, b ∈ R,

ϕp(a)ϕp(b) =|a|p−1sign(a)|b|p−1sign(b)

=|a|p−1|b|p−1sign(a)sign(b) = |ab|p−1sign(ab) = ϕp(ab).
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Therefore, we have∑
i

[
(∆W f)iϕp(gi)− (∆W g)iϕp(fi)

]
=
∑
ij

wij [ϕp(fi − fj)ϕp(gi)− ϕp(gi − gj)ϕp(fi)]

=
∑
ij

wij [ϕp(figi − fjgi)− ϕp(gifi − gjfi)]

Since any constant vector c1 is a valid eigenvector of p-Laplacian, we write ϕp(x)
as ϕp(x) = ϕp(c) + ϕ′

p(c)(x − c) + o2, where o2 is the sum of high order Taylor
expansion terms (starting from the second order) at constant c. Note that both
ϕp(c) and ϕ′

p(c) are constants. Because of wij = wji, the above equation becomes∑
ij

wij [ϕp(c) + ϕ′
p(c)(figi − fjgi − c)

− ϕp(c)− ϕ′
p(c)(gifi − gjfi − c)] + o2

=
∑
ij

wij [ϕ
′
p(c)(figi − gifi)− ϕ′

p(c)(fjgi − gjfi)

+ ϕp(c)− cϕ′
p(c)− ϕp(c) + cϕ′

p(c)] + o2

=o2.

All 0th and 1st order Taylor expansion terms are canceled explicitly. This leads
to

(λf − λg)
∑
i

ϕp(fi)ϕp(gi) ≈ 0.

Since λf ̸= λg, we have ∑
i

ϕp(fi)ϕp(gi) ≈ 0.

If p = 2, the second order term of Taylor expansion is 0, then the approxi-
mately equal becomes exactly equal. This property of p-Laplacian is significant
different from those in existing literacy, in the sense that it explores the rela-
tionship of the full eigenvectors space.

�
Theorem 3. If f∗1, f∗2, · · · , f∗n are n eigenvectors of operator ∆W

p associated
with unique eigenvalues λ∗

1, λ
∗
2, · · · , λ∗

n, then f∗1, f∗2, · · · , f∗n are local solution
of the following optimization problem

min
F

J(F) =
∑
k

Fp(f
k), (10)

s.t. ∑
i

ϕp(f
k
i )ϕp(f

l
i ) = 0,∀k ̸= l, (11)

where F =
(
f1, f2, · · · , fn

)
.
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Proof: We do the derivative of J(F) w.r.t fk as:

∂J(F)
∂fk

=
∂Fp(f

k)

∂fk
=

∂
∑

ij wij |fk
i −fk

j |p

2∥fk∥p
p

∂fk

=
1

∥fk∥pp

[
∆W

p (fk)−
∑

ij wij |fk
i − fk

j |p

∥fk∥pp
ϕp(f

k)

]
.

From Theorem 3.1 in [18],

λ∗
k =

∑
ij wij |f∗k

i − f∗k
j |p

∥f∗k∥pp
,

and by definition,

∆W
p (f∗k)− λ∗

kϕp(f
∗k),

thus we have,

∂J(F)
∂f∗k = 0,

and according to Theorem 2, the constraints in Eq. (11) are satisfied. Thus
f∗k, k = 1, 2, · · · , n are local solutions for Eq. (10).

�
On the other hand, one can show the following relationship between the

Cheeger cut and the second eigenvector of p-Laplacian when K = 2.

Definition 3. Given a undirected graph W and a partition of the nodes {C1, C2, · · · , CK},
the Cheeger cut of the graph is

CC =
K∑

k=1

Cut(Ck, C̄k)

min1≤l≤K |Cl|
, (12)

where

Cut(A,B) =
∑

i∈A,j∈B

Wij , (13)

and C̄k is the complement of Ck, k = 1, 2, · · · ,K.

Proposition 3. Denoted by CC∗
c , the Cheeger cut value is obtained by thresh-

olding the second eigenvector of ∆W
p , and CC∗ is the global optimal value of

Eq. (12) with K = 2, then the following holds

CC∗ ≤ CC∗
c ≤ p(max

i∈V
di)

p−1
p (CC∗)

1
p . (14)
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This property of the second eigenvector of ∆W
p indicates that when p → 1,

CC∗
c → CC∗. Notice that this approximation can be achieved arbitrarily accu-

rate, which is different from other relaxation-based spectral clustering approxi-
mation. Thus, it opens a total new direction of spectral clustering.

However, this relationship holds only in the case of K = 2. In previous re-
search, a greedy search strategy is applied to obtain Cheeger cut results for multi-
class clustering [18]. In the algorithm, they first split data in to two parts and
recursively dichotomize the data till a desired number of clusters are achieved.
In our study, we discover that in many real world data sets, this greedy search
strategy isn’t efficient and effective. This limitation inspires us to explore the
whole eigenvectors of p-Laplacian to obtain better solution of Cheeger cut.

3 Solving Complete Eigenfunctions for p-Laplacian

In previous section, we derive a single optimization problem for full eigenvectors
of p-Laplacian. However, the optimization problem remains intractable. In this
section, we propose an approximation algorithm to obtain full eigenvectors of
p-Laplacian. We also provide a proof to show how good our approximation is.

3.1 Orthogonal p-Laplacian

Instead of solving Eq. (10), we solve the following problem:

min
F

Jo(F) =
∑
k

∑
ij

wij |fk
i − fk

j |p, (15)

s.t. FTF = I, ∥fk∥pp = 1, k = 1, 2, · · · , n (16)

3.2 The Approximation Evaluation

Here we show that the approximation is tight. By introducing Lagrangian mul-
tiplier, we obtain,

L =
∑
k

QW
p (fk)−TrFTFΛ−

∑
k

ξk
(
∥fk∥pp − 1

)
, (17)

where QW
p (f) =

∑
ij wij |fi − fj |p. Taking the derivative of L w.r.t. fk and set

it to be zeros, we have,

p
∑
j

wijϕp(f
k
i − fk

j )− λkf
k
i − pξkϕp(f

k
i ) = 0, i = 1, 2, · · · , n, (18)

which leads to

λk =
p
[
∆W

p (fk)− ξkϕ
k
f

]
i

fk
i

,
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or

λk

ξk
=

p
[
∆W

p (fk)/ξk − ϕk
f

]
i

fk
i

. (19)

Denote ηi =
[
∆W

p (fk)/ξk − ϕk
f

]
i
, from [23], we know that ηi is a constant w.r.t.

i. Notice that Eq. (19) holds for all i, thus ηi ≈ 0, indicating that compared to
ξk, λk can be ignored. Thus, Eq. (18) becomes

p
∑
j

wijϕp(f
k
i − fk

j )− pξkϕp(f
k
i ) = 0, i = 1, 2, · · · , n,

and by definition, fk is an eigenvector of ∆W
p associate with eigenvalue ξk.

4 p-Laplacian Embedding

Since Fp(f) = Fp(αf) for α ̸= 0, we can always scale f without any change.
Thus, we propose the following p-Laplacian Embedding problem.

min
F

JE(F) =
∑
k

∑
ij wij |fk

i − fk
j |p

∥fk∥pp
, (20)

s.t. FTF = I. (21)

4.1 Optimization

The gradient of JE w.r.t. fk
i can be written as,

∂JE
∂fk

i

=
1

∥fk∥pp

∑
j

wijϕp(f
k
i − fk

j )−
ϕp(f

k
i )

∥fk∥pp

 . (22)

If we simply use the gradient descend approach, the solution fk might not be
orthogonal. We modify the gradient as following to enforce the orthogonality,

∂JE
∂F

← ∂JE
∂F
− F

(
∂JE
∂F

)T

F .

We summarize the p-Laplacian embedding algorithm in Algorithm 1.
The parameter α is the step length, which is set to be

α = 0.01

∑
ik |Fik|∑
ik |Gik|

.

One can easily see that if FTF = I, then using the simple gradient descend
approach can guarantee to give a feasible solution. More explicitly, we have the
following theorem:
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Input: Pairwise graph similarity W , number of embedding dimension K
Output: Embedding space F
Compute L = D −W , where D is a diagonal matrix with Dii = di.
Compute eigenvector decomposition of L: L = USUT ,
Initialize F ← U(:, 1 : K)
while not converged do

G← ∂JE
∂F −F

(
∂JE
∂F

)T

F , where ∂JE
∂F is computed using Eq. (22)

F ← F − αG.
end

Algorithm 1: The p-Laplacian embedding algorithm.

Theorem 4. The solution obtained from Algorithm 1 satisfies the constraint in
Eq. (21).

Proof: Since Laplacian L is symmetric, we have FTF = I for initialization,
and

GTF t +
(
F t
)T

G

=

(
∂JE
∂F
− F

(
∂JE
∂F

)T

F

)T

F t +
(
F t
)T [∂JE

∂F
− F

(
∂JE
∂F

)T

F

]

=

(
∂JE
∂F

)T

F t −
(
F t
)T ∂JE

∂F
−
(
∂JE
∂F

)T

F t +
(
F t
)T ∂JE

∂F
=0,

By Algorithm 1 we have,
F t+1 = F t − αG,

Thus

(
F t+1

)T F t+1 =
(
F t − αG

)T (F t − αG
)
=
(
F t
)T F t−α

[
GTF t +

(
F t
)T

G
]
= I.

�
This technique is a special case of Natural Gradient, which can be found in

[24]. Since JE(F) is bounded as JE(F) ≥ 0, our algorithm also has the following
obvious property:

Theorem 5. Algorithm 1 is guaranteed to converge.

5 Experimental Results

In this section, we will evaluate the efficiency of our proposed p-Laplacian Em-
bedding algorithm. To demonstrate the results, we use eight benchmark data
sets: AT&T, MNIST, PIE, UMIST, YALEB, ECOLI, GLASS, and DERMA-
TOLOGY.
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5.1 Data Set Descriptions

In the AT&T database 1, there are ten different images of each of 40 distinct
subjects. For some subjects, the images were taken at different times, varying
the lighting, facial expression, and facial details. All images were taken against a
dark homogeneous back-ground with the subjects in an upright, frontal, position
(with tolerance for some side movement).

MNIST hand- written digits data set consists of 60,000 training and 10,000
test digits [25]. The MNIST data set can be downloaded from website 2 with 10
classes, from digit “0” to “9”. In the MNIST data set, each image is centered
(according to the center of mass of the pixel intensities) on a 28 × 28 grid. We
select 15 images for each digit in our experiment.

UMIST faces is for multi-view face recognition, which is challenging in com-
puter vision because the variations between the images of the same face in view-
ing direction are almost always larger than image variations in face identity.
This data set contains 20 persons with 18 images for each. All these images of
UMIST database are cropped and resized into 28×23 images. Due to the multi-
view characteristics, the images shall lie in a smooth manifold. We further use
this data set to visually test our embedding smoothness.

CMU PIE face database contains 68 subjects with 41,368 face images. Pre-
processing to locate the faces was applied. Original images were normalized (in
scale and orientation) such that two eyes were aligned at the same position.
Then, the facial areas were cropped into the final images for matching. The size
of each cropped image is 64 × 64 pixels, with 256 grey levels per pixel. In our
experiment, we randomly pick 10 different combinations of pose, face expression,
and illumination condition. Finally we have 68× 10 = 680 images.

Another images benchmark used in our experiment is the combination of
extended and original Yale database [26]. These two databases contain single
light source images of 38 subjects (10 subjects in original database and 28 sub-
jects in extended one) under 576 viewing conditions (9 poses x 64 illumination
conditions). Thus, for each subject, we got 576 images under different lighting
conditions. The facial areas were cropped into the final images for matching
[26].The size of each cropped image in our experiments is 192× 168 pixels, with
256 gray levels per pixel. We randomly pick up 20 images for each person and also
sub-sample the images down to 48× 42. To visualize the quality of the embed-
ding space, we pickup the images such that they come from different illumination
conditions.

Three other data sets (ECOLI, GLASS, and DERMATOLOGY) come from
UCI Repository [27]. The detailed information of eight benchmark data sets can
be found in Table 1.

For all data sets used in our experiments, we directly use the original space
without any processing. More specifically, for images data sets, we use the raw
gray level values as features.

1 http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
2 http://yann.lecun.com/exdb/mnist/



p-Laplacian Embedding 11

Table 1. Detailed information of data sets used in our experiments.

Data set #samples #Attribute #class

AT&T 400 644 40
MNIST 150 784 10
PIE 680 1024 68

UMIST 360 644 20
YALEB 1984 2016 31
ECOLI 336 343 8
GLASS 214 9 6

DERMATOLOGY 366 34 6

5.2 Experimental Settings

We construct the pairwise similarity of data points as follows.

Wij=

{
exp

(
−∥xi−xj∥2

rirj

)
, xi, xj are neighbors

0, otherwise
(23)

where ri and rj are the average distances of K-nearest neighbors of data points
i and j, respectively. K is set to 10 in all our experiments, which is the same as
in [18]. By neighbors here we mean xi is a K-nearest neighbors of xj or xj is a
K-nearest neighbors of xi.

For our method (Cheeger cut Embedding or CCE), we first obtain the embed-
ding space using Algorithm 1. Then a standard K-means algorithm is applied
to further determine the clustering assignments. For visualization, we use the
second and third eigenvectors as the x-axis and y-axis, respectively.

In direct comparison and succinct presentation, we compare our results to
greedy search Cheeger cut algorithm [18] in terms of three clustering quality
measurements. We download their codes and directly use them with default
settings. For both methods, we set p = 1.2, which is suggested in previous
research [18].

5.3 Measurements

We use three metrics to measure the performance in our experiments: the value of
objective in Eq. (3), the Cheeger cut defined in Eq. (12), and clustering accuracy.
Clustering accuracy (ACC) is defined as:

ACC =

∑n
i=1 δ(li,map(ci))

n
, (24)

where li is the true class label and ci is the obtained cluster label of xi, δ(x, y)
is the delta function, and map(·) is the best mapping function. Note δ(x, y) = 1,
if x = y; δ(x, y) = 0, otherwise. The mapping function map(·) matches the true
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class label and the obtained cluster label, and the best mapping is solved by
Kuhn-Munkres algorithm. A larger ACC indicates a better performance. And a
lower value of objective in Eq. (3) or lower Cheeger cut suggests better clustering
quality.

5.4 Evaluation Results

Embedding Results We use 4 data sets (AT&T, MNIST, UMIST, YALEB) to
visualize the embedding results obtained by our method. For each data set, we
select samples in four different clusters. We use the second and third eigenvector
as x-axis and y-axis, respectively. The embedding results are shown in Figure
1 (a) – (d). For AT&T data, the four persons are well separated. For MNIST
data, the four digits are separated in most of the images. Three images (“3”, “2”,
and “0” as highlighted in Figure 1(b)) are visually different from other images
of the same group. The embedding results also show that these three images
are far way from the other objects in the same group. This result indicates
that our embedding space reserves the visual characteristics. For UMIST and
YALEB data, since the images from the same group are taken under different face
expression or illumination conditions, they are arranged in a smooth manifold.
This structure also remains in our embedding space, see Figure 1(c) and 1(d).

Clustering Analysis on Confusion Matrices We select 10 groups for AT&T,
MNIST, PIE, UMIST, and YALEB, 6 for GLASS and DERMATOLOGY, and
8 for ECOLI. We compare the greedy search Cheeger cut [18] (GSCC) to our
method (CCE). The confusion matrices are shown in Figure 2. In AT&T, MNIST,
and ECOLI data, our method obviously outperforms GSCC, because the diag-
onals of our confusion matrices are much stronger than those in GSCC results.

Clustering Quality Analysis We use three metrics mentioned above to mea-
sure the quality of clustering results. We compare our method to greedy search
Cheeger cut in various experimental settings. For AT&T, MNIST, PIE, and
UMIST, we choose k = 2, 3, 4, 5, 6, 8, 10, where k is the number of clusters. Typ-
ically, a larger k leads to a more difficult clustering task and a lower clustering
accuracy. For ECOLI, GLASS, YALEB, and DERMATOLOGY data, we set
k = 2, 3, 4, 5, 6, 8, k = 2, 3, 4, 5, 6, 7, k = 2, 4, 5, 6, 8, 10 and k = 2, 3, 4, 5, 6, re-
spectively. We set these numbers of k according to the size of the original data
sets and also for convenient presentation. All results are shown in Table 2. No-
tice that for greedy search, if k > 2, there is no way to calculate the objective
function values defined in Eq. (3).

In Table 2, when the data set is simple (i.e. k is small), the accuracy of the
two methods is close to each other. However, if the data is complex (i.e. when k
is large), our method has much better clustering results than greedy search. For
example, in AT&T, when k = 10, our approach remains high (78%) in clustering
accuracy, while greedy search only achieves 38%. Also we can see that when k
is large, our algorithm obtains much lower values in both objective and Cheeger
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(a) AT&T (b) MNIST

(c) UMIST (d) YALEB

Fig. 1. Embedding results on four image data sets using the second and third eigen-
vectors of p-Laplacian as x-axis and y-axis, respectively, where p = 1.2. Different colors
indicate different groups according to ground truth. In (b) the highlighted are images
which are visually far away from other images in the same group.

cut than greedy search. One should notice that the setting of MNIST data used
in our experiment is different from the one used in previous research [18].

6 Conclusions

Spectral data analysis is important in machine learning and data mining areas.
Unlike other relaxation-based approximation techniques, the solution obtained
by p-Laplacian can approximate the global solution arbitrarily tight. Meanwhile,
Cheeger cut favors the solutions which are more balanced. This paper is the first
one to offer a full eigenvector analysis of p-Laplacian. We proposed an efficient
gradient descend approach to solve the full eigenvector problem. Moreover, we
provided new analysis of the properties of eigenvectors of p-Laplacian. Empirical
studies show that our algorithm is much more robust in real world data sets clus-
tering than the previous greedy search p-Laplacian spectral clustering. There-
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(c) PIE
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(d) UMIST
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(e) ECOLI
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(g) YALEB
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(h) DERMATOLOGY

Fig. 2. Comparisons of confusion matrices of GSCC (left in each panel) and our CCE
(right in each panel) on 8 data sets. Each column of the matrix represents the instances
in a predicted class, and each row represents the instances in an actual class.

fore, both theoretical and practical results proposed by this paper introduce a
promising direction to machine learning community and related applications.
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