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We consider the minimization of a smooth convex function regularized by the composite prior models.
This problem is generally difficult to solve even if each subproblem regularized by one prior model is con-
vex and simple. In this paper, we present two algorithms to effectively solve it. First, the original problem
is decomposed into multiple simpler subproblems. Then, these subproblems are efficiently solved by
existing techniques in parallel. Finally, the result of the original problem is obtained by averaging solu-
tions of subproblems in an iterative framework. The proposed composite splitting algorithms are applied
to the compressed MR image reconstruction and low-rank tensor completion. Numerous experiments
demonstrate the superior performance of the proposed algorithms in terms of both accuracy and compu-
tation complexity.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

The composite prior models have been used in many fields,
including sparse learning, computer vision and compressive sens-
ing. For example, in compressive sensing, the linear combination
of the total-variation (TV) norm and L1 norm is known as a power-
ful regularizer for the compressive Magnetic Resonance (MR)
imaging [1–3] and has been widely used in recovering MR images.
In practice, the constraints of these models are generally formu-
lated as energy terms (data fidelity terms), which can be repre-
sented as a smooth convex function f(x). The composite
regularization terms are often used to generate solutions with mul-
tiple properties according to the composite priors. They can be rep-
resented by the linear combination of multiple convex functions
{gi(x)}i=1,. . .,m, which are possibly non-smooth.

In this paper, we propose two composite splitting algorithms to
solve this problem which is formulated as the following equation:
min
x2Rp

FðxÞ � f ðxÞ þ
Xm

i¼1

giðBixÞ ð1Þ
where f is the loss function and {gi}i=1,. . .,m are the prior models, both
of which are convex functions; {Bi}i=1,. . .,m are orthogonal matrices. If
the function f and {gi}i=1,. . .,m are well-structured, there are two clas-
ses of splitting algorithms to solve it: operator splitting and variable
splitting algorithms.
ll rights reserved.
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The operator-splitting algorithm searches for an x to make that
the sum of the maximal-monotone operators equal to zero.
Forward–Backward schemes are widely used in operator-splitting
algorithms [4–6]. These algorithms have been applied in sparse
learning [7] and compressive MR imaging [2]. The Iterative Shrink-
age-Thresholding Algorithm (ISTA) and Fast ISTA (FISTA) [8] are
two important Forward–Backward methods. They have been suc-
cessfully used in signal processing [8,9], matrix completion [10]
and multi-task learning [11]. To handle the case of m > 1, Spingarn
[12] reduces the sum of multiple maximal monotone operators to
the sum of two maximal monotone operators by defining new sub-
spaces and operators, and then applies a Douglas-Rachford split-
ting algorithm to solve the new problem. The general projective
splitting methods are used to search for a point in the extended
solution set [13].

The variable splitting algorithm is another choice to solve (1)
based on the combination of alternating direction methods
(ADM) under an augmented Lagrangian framework: (1) splitting
the variable x into m + 1 variables by introducing m new variables,
where each new variable corresponds to one of {gi}i=1,. . .,m; (2)
applying the augmented Lagrangian method to this problem for
each variable; (3) minimizing the decomposed augmented-
Lagrangian function by using the ADMs to iteratively obtain the
solutions. It was firstly used to solve the numerical PDE problem
in Refs. [14,15]. Tseng [16] and He et al. [17]. extended it to solve
variational inequality problems. There has been significant interest
from the field of compressive sensing [18,19], where L1 regulariza-
tion is a key problem and can be efficiently solved by this type of
algorithms [20–22]. An algorithm based on variable splitting was
proposed for compound regularization problems [23]. Variable
ithms for convex optimization, Comput. Vis. Image Understand. (2011),
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splitting techniques are also used for the decoupling of deblurring
and denoising in image restoration [24]. Similar splitting tech-
niques are used in Refs. [23,24,3] with subtle differences. Despite
the small difference between the two splitting strategies, the latter
enables fast solutions that take advantage of the fast Fourier trans-
form (FFT) while the former two methods cannot [3]. Wang et al.
[25] incorporate the equality constraints into the objective func-
tion and apply an ADM to the new penalized function for obtaining
better image reconstruction, which shows that the ADMs are very
efficient for solving TV regularization problems. They were re-
cently proposed to solve semi-definite programming (SDP) prob-
lems and outperform previous interior-point methods on some
structured SDP problems [26,27]. They were also applied to solve
the sparse covariance selection problem [28] and matrix decompo-
sition problem [29]. The Multiple Splitting Algorithm (MSA) and
Fast MSA (FaMSA) have been recently proposed to efficiently solve
(1), while {gi}i=1,. . .,m are assumed to be smooth convex functions
[30].

However, none of these algorithms can efficiently solve (1) with
provable convergence complexity. Moreover, none of them can
provide the complexity bounds of iterations for their problems, ex-
cept ISTA/FISTA in Ref. [8] and MSA/FaMSA in Ref. [30]. Both ISTA
and MSA are first order methods. Their complexity bounds are
O(1/�) for �-optimal solutions. Their fast versions, FISTA and FaM-
SA, have complexity bounds O 1=

ffiffiffi
�
p� �

, which are inspired by the
seminal results of Nesterov and are optimal according to the con-
clusions of Nesterov [31,32]. However, both ISTA and FISTA are de-
signed for simpler regularization problems and cannot be applied
efficiently to the composite regularization problem in our formula-
tion. While the MSA/FaMSA in Ref. [30] are designed to handle the
case of m P 1 in (1), they assume that all {gi}i=1,. . .,m are smooth
convex functions. It makes them unable to directly solve (1) as
we would have to smooth the non-smooth function {gi}i=1,. . .,m first
before applying them. Since the smooth parameters are related to
�, the FaMSA with complexity bound O 1=

ffiffiffi
�
p� �

requires O(1/�) iter-
ations to compute an �-optimal solution, which makes it not opti-
mal for this problem.

In this paper, we propose two splitting algorithms based on
the combination of variable and operator splitting techniques.
We decompose the hard composite regularization problem (1)
into m simpler regularization subproblems by: (1) splitting the
function f(x) into m functions fi(x) (e.g., fi(x) = f(x)/m); (2) splitting
variable x into m variables {xi}i=1,. . .,m; (3) performing operator
splitting to minimize hi(xi) = fi(xi) + gi(Bixi) over {xi}i=1,. . .,m indepen-
dently and (4) obtaining the solution x by the linear combination
of {xi}i=1,. . .,m. The methods include function splitting, variable
splitting and operator splitting. We call them Composite Splitting
Algorithms (CSA) and fast CSA (FCSA). Compared to ISTA and
MSA, CSA is more general as it can efficiently solve composite
regularization problems with m (m P 1) non-smooth functions.
More importantly, our algorithms can effectively decompose the
original hard problem into multiple simpler subproblems and
efficiently solve them in parallel. Thus, the required CPU time is
not longer than the time required to solve the most difficult sub-
problem using current parallel-processor techniques. Finally, we
successfully apply the proposed algorithms in two practical appli-
cations: the compressed MR image reconstruction and low-rank
tensor completion.

The paper is organized as follows. Section 2 briefly reviews the
related algorithms. In Section 3, the composite splitting algorithm
and its accelerated version are proposed to solve (1) and then ap-
plied to the compressed MR image reconstruction and low rank
tensor completion. Numerous experiments and discussions are
presented in Section 4. Finally, we provide our conclusions in Sec-
tion 5.
Please cite this article in press as: J. Huang et al., Composite splitting algor
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2. Algorithm review

2.1. Notations

We provide a brief summary of the notation used throughout
this paper.

Matrix Norm and Trace:

1. Frobenius norm: kXkF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i;jX
2
i;j

q
.

2. Nuclear norm: kXkF and kXk⁄.
3. L1 and Total Variation norm: kXk1 and kXkTV.
4. Matrix inner product: hX, Yi = trace(XHY).

Gradient: rf(x) denotes the gradient of the function f at point x.
The proximal map: given a continuous convex function g(x) and

any scalar q > 0, the proximal map associated to function g is de-
fined as follows [9,8]:

proxqðgÞðxÞ :¼ arg min
u

gðuÞ þ 1
2q
ku� xk2

� �
ð2Þ

�-optimal Solution: Suppose x⁄ is an optimal solution to (1). x 2 Rp is
called an �-optimal solution to (1) if F(x) � F(x⁄) 6 � holds.

2.2. ISTA and FISTA

The ISTA and FISTA consider the following optimization prob-
lem [8]:

minfFðxÞ � f ðxÞ þ gðxÞ; x 2 Rpg ð3Þ

Here, they make the following assumptions:

1. g: Rp ? R is a continuous convex function, which is possibly
non-smooth;

2. f: Rp ? R is a smooth convex function of type C1,1 and the con-
tinuously differential function with Lipschitz constant Lf:
krf(x1) �rf(x2)k 6 Lfkx1 � x2k for every x1,x2 2 Rp;

3. Problem (3) is solvable.

Algorithm 1. ISTA

Input: q = 1/Lf, x0

repeat
for k = 1 to K do

xk = proxq(g)(xk�1 � qrf(xk�1))
end for

until Stop criterions
Algorithm 1 outlines the ISTA. Beck and Teboulle show that it
terminates in O(1/�) iterations with an �-optimal solution in this
case [9,8].
Theorem 2.1 (Theorem 3.1 in Ref. [8]). Suppose {xk} is iteratively
obtained by the algorithm of the ISTA, then, we have
FðxkÞ � Fðx�Þ 6 Lf kx0 � x�k2

2k
; 8x� 2 X�

Algorithm 2 outlines the FISTA. Compared to ISTA, the increased
computation costs come from the second step and third step in
each iteration, which are almost negligible in large scale applica-
tions. Because of these advantages, the key idea of the FISTA is re-
cently widely used in large scale applications, such as compressive
sensing [8], image denoising and deblurring [9], matrix completion
ithms for convex optimization, Comput. Vis. Image Understand. (2011),
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[10] and multi-task learning [11]. It has been proven that (Theorem
4.1 in Ref. [8]), with this acceleration scheme, the algorithm can
terminate in O 1=

ffiffiffi
�
p� �

iterations with an �-optimal solution instead
of O(1/�) for those of ISTA.
Theorem 2.2 (Theorem 4.1 in Ref. [8]). Suppose {xk} and {rk} are
iteratively obtained by the FISTA, then, we have

FðxkÞ � Fðx�Þ 6 2Lf kx0 � x�k2

ðkþ 1Þ2
; 8x� 2 X�
Algorithm 2. FISTA

Input: q = 1/Lf, r1 = x0, t1 = 1
repeat

for k = 1 to K do
xk = proxq(g)(rk � qrf(rk))

tkþ1 ¼ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ4ðtkÞ2
p

2

rkþ1 ¼ xk þ tk�1
tkþ1 ðxk � xk�1Þ

end for
until Stop criterions

The efficiency of the FISTA highly depends on the ability to
quickly solve the first step xk = proxq(g)(xg), where xg = rk � qrf(rk).
For simpler regularization problems in some special cases, it is pos-
sible. For example, in Ref. [8], the FISTA can rapidly solve the L1
regularization problem with cost Oðp logðpÞÞ (where p is the
dimension of x), since the second step xk = proxq(bkUxk1)(xg) has
a close form solution while the wavelet transform U and its inverse
can be computed with cost Oðp logðpÞÞ. In Ref. [9], the FISTA is also
used to quickly solve the TV regularization problem, since the step
xk = proxq(akxkTV)(xg) can be computed with cost OðpÞ in limited
iterations. However, the FISTA cannot efficiently solve the compos-
ite regularization problem (1), since no algorithm is available to
efficiently solve the step:

min
x

FðxÞ � 1
2
kx� xgk2 þ

Xm

i¼1

giðBixÞ ð4Þ

To solve (1), the key problem is thus to develop an efficient
algorithm to solve (4). In the following section, we will show that
a scheme based on composite splitting techniques can achieve
that.

3. Composite splitting algorithms

In this section, we first propose the CSA and its accelerated ver-
sion FCSA. They are then applied to the compressed MR image
reconstruction and low-rank tensor completion, respectively.

3.1. Problem definition

Let us consider the following minimization problem:

min
x2Rp

FðxÞ � f ðxÞ þ
Xm

i¼1

giðBixÞ ð5Þ

with the following assumptions:

1. gi: Rp ? R is a continuous convex function for each
i 2 {1, . . . , m}, which is possibly non-smooth;

2. f: Rp ? R is a smooth convex function of type C1,1 and the con-
tinuously differential function with Lipschitz constant Lf:
krf(x1) �rf(x2)k 6 Lfkx1 � x2k for every x1,x2 2 Rp;
Please cite this article in press as: J. Huang et al., Composite splitting algor
doi:10.1016/j.cviu.2011.06.011
3. {Bi 2 Rp�p}i=1,. . .,m are orthogonal matrices;
4. Problem (5) is solvable.

If m = 1, this problem degenerates to (3), which can be effi-
ciently solved by FISTA. However, it may be challenging to solve
(5) by ISTA/FISTA if m > 1. For example, let us assume m = 2,
g1(x) = kxk1 and g2(x) = kxkTV. When g(x) = g1(x) in (3), the first step
in Algorithm 2 has a closed form solution; When g(x) = g2(x), the
first step in Algorithm 2 can also be solved iteratively in a few iter-
ations [9]. However, if g(x) = g1(x) + g2(x), the first step in Algorithm
2 is not easy to solve, which makes the computational complexity
of each iteration too high to solve using FISTA in practice.

When {gi}i=1,. . .,m are smooth convex functions, this problem can
be efficiently solved by the MSA/FaMSA. However, in our case,
{gi}i=1,. . .,m may be non-smooth. Therefore, the MSA/FaMSA cannot
be directly applied to solve this problem. It may be possible to
smooth these non-smooth function first and then apply the FaMSA
to solve it. However, in this case, the FaMSA with complexity
bound O 1=

ffiffiffi
�
p� �

requires O(1/�) iterations to compute an �-optimal
solution, which makes it not optimal for the first order methods
[32].

In the following, we propose our algorithms that overcomes
these difficulties. Our algorithms decompose the original problem
(5) into m simpler regularization subproblems, where each of them
is easier to solve using the FISTA.

3.2. Building blocks

The above discussion shows that, if a fast algorithm is available
to solve (4), then the original composite regularization is efficiently
solved by the FISTA, which obtains an �-optimal solution in
O 1=

ffiffiffi
�
p� �

iterations. Actually, (4) can be considered as a denoising
problem. We use composite splitting techniques to solve it: (1)
splitting variable x into multiple variables {xi}i=1,. . .,m; (2) perform-
ing operator splitting over each of {xi}i=1,. . .,m independently and
(3) obtaining the solution x by a linear combination of {xi}i=1,. . .,m.
We call it Composite Splitting Denoising (CSD) method, which is
outlined in Algorithm 3. Its validity is guaranteed by the following
theorem:

Theorem 3.1. Let {xj} be the sequence generated by the CSD. If x⁄ is
the true solution of problem (4), xj will strongly converge to x⁄.

Since the CSD algorithm is a special case of Algorithm 3.1 in Ref.
[33], the reader can refer to Theorem 3.4 in Ref. [33] for the proof of
this theorem. Similar proofs can also be found in Ref. [34].

Algorithm 3. CSD

Input: q = 1/L, a, b, z0
i

� �
i¼1;...;m ¼ xg

for j = 1 to J do
for i = 1 to m do

xi ¼ arg minx
1

2mq kx� zj�1
i k

2 þ giðBixÞ
end for
xj ¼ 1

m

Pm
i¼1xi

for i = 1 to m do

zj
i ¼ zj�1

i þ xj � xi

end for
end for

It is worth mentioning that the decomposition techniques in
the CSD are similar to those in the dual decomposition methods
[35]. They are however still different. The CSD algorithm is a
proximal decomposition algorithm for solving a denoising prob-
lem with several non-smooth regularization functions. It fully
ithms for convex optimization, Comput. Vis. Image Understand. (2011),
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decomposes the original problem into several easier subproblems.
Then, it makes use of each function individually via its own prox-
imity operator and obtains the results of the original problem
from the average of solutions of subproblems in an iterative
framework.

It is also worth mentioning that the presence of the orthogonal
matrices Bi does not make the problem harder. It still has a closed
form solution for its proximity operator. Thus, each xi can be com-
puted from the proximity operator in a straightforward way easily.
For example,

x0 ¼ arg min
x

1
2q
kx� zk2 þ gðBxÞ

� �

where B is an orthogonal matrix. Suppose y = Bx, then, we know that

y0 ¼ arg min
y

1
2q
ky� Bzk2 þ gðyÞ

� �

This is a standard equation for the proximal operator
y0 = proxq(g)(Bz). Then x0 = BTy0 = BTproxq(g)(Bz). Thus, even with
the orthogonal matrix B, we are still able to compute each x with
a closed form solution.

3.3. Composite Splitting Algorithm (CSA)

Combining the CSD with ISTA, a new algorithm, CSA, is pro-
posed to solve the composite regularization problem (5). In prac-
tice, a small iteration number J in the CSD is enough for the CSA
to obtain good reconstruction results. Specifically, it is set as 1 in
our algorithm. Numerous experimental results in the next section
show that it is sufficient for real composite regularization
problem.

Algorithm 4 outlines the proposed CSA. In each iteration, Algo-
rithm 4 decomposes the original problem into m subproblems
and solve them independently. For many problems in practice,
these m subproblems are expected to be significantly easier to
solve than the original joint problem. Another advantage of this
algorithm is that the decomposed subproblems can be solved in
parallel. Given xk�1, the m subproblems to compute yk

i

� �
i¼1;...;m

are solved simultaneously in Algorithm 4. Although it assumes
the Lipschitz constant Lf is known, this can be relaxed by using
the backtracking technique in Ref. [8] to estimate Lf at each
iteration.

3.4. Fast composite splitting algorithms

A fast version of CSA named FCSA is also proposed to solve (5),
which is outlined in Algorithm 5. FCSA decomposes the difficult
composite regularization problem into multiple simpler subprob-
lems and solve them in parallel. Each subproblems can be solved
by the FISTA, which requires only O 1=

ffiffiffi
�
p� �

iterations to obtain
an �-optimal solution.

Algorithm 4. CSA

Input: q = 1/L, x0

repeat
for k = 1 to K do

for i = 1 to m do
yk

i ¼ proxqðgiÞ Bi xk�1 � 1
Lrfiðxk�1Þ

� �� �
end for

xk ¼ 1
m

Pm
i¼1B�1

i yk
i

end for
until Stop criterions
Please cite this article in press as: J. Huang et al., Composite splitting algor
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Algorithm 5. FCSA

Input: q = 1/L, t1 = 1 r1 = x0

repeat
for k = 1 to K do

for i = 1 to m do
yk

i ¼ proxqðgiÞ Bi rk � 1
LrfiðrkÞ

� �� �
end for

xk ¼ 1
m

Pm
i¼1B�1

i yk
i

tkþ1 ¼ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ4ðtkÞ2
p

2

rkþ1 ¼ xk þ tk�1
tkþ1 ðxk � xk�1Þ

end for
until Stop criterions

In this algorithm, if we remove the acceleration step by setting
tk+1 � 1 in each iteration, we obtain the CSA. A key feature of the
FCSA is its fast convergence performance borrowed from the FISTA.
From Theorem 2.2, we know that the FISTA can obtain an �-optimal
solution in O 1=

ffiffiffi
�
p� �

iterations.

Another key feature of the FCSA is that the cost of each iteration
may be Oðmp logðpÞÞ under the following conditions: (1) the step
yk

i ¼ proxqðgiÞ Bi rk � 1
LrfiðrkÞ

� �� �
can be computed with the cost

Oðp logðpÞÞ for some prior models gi if Bi can be computed with
Oðp logðpÞÞ; (2) the step xk ¼ 1

m

Pm
i¼1B�1

i yk
i can also be computed

with the cost of Oðp logðpÞÞ in these cases; and (3) other steps only
involve adding vectors or scalars, thus cost only OðpÞ or Oð1Þ.
Therefore, the total cost of each iteration in the FCSA can be
Oðmp logðpÞÞ in many practical cases.

With these two key features, the FCSA efficiently solves the
composite regularization problem (5) and obtains better results
in terms of both accuracy and computational complexity. The
experimental results in the next section demonstrate its superior
performance on compressed MR image reconstruction and low-
rank tensor completion.

3.5. Compressed MR image reconstruction

Specifically, we apply the CSA and FCSA to solve the compressed
MR image reconstruction problem in compressive sensing [1]:

min
x

FðxÞ � 1
2
kRx� bk2 þ akxkTV þ bkUxk1 ð6Þ

where R is a partial Fourier transform, U is the wavelet transform, b
is the under-sampled Fourier measurements, a and b are two posi-
tive parameters.

This model has been shown to be one of the most powerful
models for the compressed MR image recovery [1]. However, since
kxkTV and kUxk1 are both non-smooth in x, this problem is signifi-
cantly more difficult to solve than any of those with a single non--
smooth term such as the L1 regularization problem or a total
variation regularization problem. In this case, the FISTA can effi-
ciently solve the L1 regularization problem [8], since the first step
xk = proxq(kUxk1)(rk � qr f(rk)) has a closed form solution in
Algorithm 2. The FISTA can also efficiently solve the total variation
regularization problem [9], since the first step
xk = proxq(kxkTV)(rk � qrf(rk)) can be computed quickly with lim-
ited iterations in Algorithm 2. However, the FISTA cannot effi-
ciently solve the joint L1 and TV regularization problem (6), since
xk = proxq(akxkTV + bkUxk1)(rk � qrf(rk)) cannot be computed in a
short time.

The Conjugate Gradient (CG) [1] has been applied to problem
(6) and it converges very slowly. The computational complexity
ithms for convex optimization, Comput. Vis. Image Understand. (2011),
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has been the bottleneck that made (6) impractical in the past [1].
To use this model for practical MR image reconstruction, Ma
et al. propose a fast algorithm based on the operator splitting tech-
nique [2], which is called TVCMRI. In [3], a variable splitting meth-
od (RecPF) is proposed to solve the MR image reconstruction
problem. Both of them can replace iterative linear solvers with
Fourier domain computations, which provide substantial improve-
ment in terms of time complexity. To the best of our knowledge,
they are two of the fastest algorithms to solve problem (6) so far.
By contrast, the CSA and FCSA directly attack the joint L1 and total
variation norm regularization problem by transforming it to the L1
regularization and TV norm regularization subproblems, which can
be efficiently solved. Algorithm 6 outlines the proposed FCSA for
the compressive MR image reconstruction.

It is clear that the FCSA-MRI has the cost Oðn logðnÞÞ for each
iteration, as confirmed by the following observations. The steps
4–6 only involve adding vectors or scalars, thus cost only OðpÞ or
Oð1Þ. In step 1, rf(rk) = RT(R rk � b) since f ðrkÞ ¼ 1

2 kRrk � bk2 in this
case. Thus, this step only costsOðp logðpÞÞ. As introduced above, the
step x1 = proxq(2akxkTV)(xg) can be computed quickly in limited
iterations with cost OðpÞ [9]. The step x2 = proxq(2bkUxk1)(xg) has
a closed form solution and can be computed with cost Oðp logðpÞÞ.
Thus, the total cost of each iteration in the FCSA is Oðp logðpÞÞ.

In the next section, we compare our CSA and FCSA with other
reconstruction algorithms, such as the TVCMRI and RecPF [2,3].
The results show that the FCSA is significantly more efficient than
the TVCMRI and RecPF.

Algorithm 6. FCSA-MRI

Input: q = 1/L, a, b, t1 = 1, r1 = x0

for k = 1 to K do
xg = rk � qrf(rk)
x1 = proxq(2akxkTV)(xg)
x2 = proxq(2bkUxk1)(xg)
xk = (x1 + x2)/2

tkþ1 ¼ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4ðtkÞ2

q	 
�
2

rkþ1 ¼ xk þ tk�1
tkþ1 ðxk � xk�1Þ

end for
3.6. Low-rank tensor completion

In this section, we apply the proposed FCSA to the low rank ten-
sor completion problem. This problem has attracted attention re-
cently [36,37,10,38]. It is formulated as follows:

min
X

FðXÞ � 1
2
kAðXÞ � bk2 þ akXk� ð7Þ

where X 2 Rp�q is a unknown matrix, A : Rp�q ! Rn is the linear
map, and b 2 Rn is the observation. The nuclear norm is defined
as kXk� ¼

P
iriðXÞ, where ri(X) is the singular value of the matrix

X. The accelerated proximal gradient (APG) scheme in the FISTA
has been used to solve (7) in Ref. [10]. In most cases, the APG gains
the best performance compared with other methods, since it can
obtain an �-optimal solution in O 1=

ffiffiffi
�
p� �

iterations.
The tensor completion problem can be defined similarly. We

use the 3-mode tensor as an example for the low-rank tensor com-
pletion. It is straightforward to extend to the n-mode tensor com-
pletion. The 3-mode tensor completion can be formulated as
follows [39]:

min
X

FðXÞ � 1
2
kAðXÞ � bk2 þ

Xm

i¼1

aikBiXk� ð8Þ
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where X 2 Rp�q�m is the unknown 3-mode tensor, A : Rp�q�m ! Rn

is the linear map, and b 2 Rn is the observation. B1 is the ‘‘unfold’’
operation along the 1-mode on a tensor X , which is defined as
B1X :¼ Xð1Þ 2 Rp�qm; B2 is the ‘‘unfold’’ operation along the 2-mode
on a tensor X , which is defined as B2X :¼ Xð2Þ 2 Rq�pm; B3 is the ‘‘un-
fold’’ operation along the 3-mode on a tensor X , which is defined as
B3X :¼ Xð3Þ 2 Rm�pq. The opposite operation ‘‘fold’’ is defined as
BT

i Xi ¼ X where i = 1, 2, 3.
Generally, it is much harder to solve the tensor completion

problem than the matrix completion because of the composite reg-
ularization. The solvers in Ref. [10] cannot be used to efficiently
solve (8). In Ref. [39], a relaxation technique is used to separate
the dependant relationships and the block coordinate descent
(BCD) method is used to solve the low-rank tensor completion
problem. As far as we know, it is the best method for the low-rank
tensor completion so far. However, it converges very slowly due to
the convergence properties of the BCD.

The proposed FCSA can be directly used to efficiently solve (8).
Algorithm 7 outlines the proposed algorithm for the low-rank ten-
sor completion (LRTC). As opposed to the BCD method for LRTC
using relaxation techniques [39], the FCSA directly attacks the
composite matrix nuclear norm regularization problem by trans-
forming it to multiple matrix nuclear norm regularization subprob-
lems, which can be efficiently solved in parallel. In the following,
we compare the proposed FCSA and BCD for the low rank tensor
completion. They are named FCSA-LRTC and CBD-LRTC respec-
tively. The results show that the FCSA is more efficient than the
BCD for the LRTC problem.

Algorithm 7. FCSA-LRTC
Input: q ¼ 1=Lf ; R1 ¼ X0; t1 ¼ 1
repeat

for k = 1 to K do
for i = 1 to m do

Xk
ðiÞ ¼ proxqðaikXðiÞk�ÞðR

k
ðiÞ � qA�ðAðRk

ðiÞ � bÞÞÞ
end for

Xk ¼ 1
m

Pm
i¼1BT

i Xk
ðiÞ

tkþ1 ¼ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ4ðtkÞ2
p

2

Rkþ1 ¼ Xk þ tk�1
tkþ1 ðXk �Xk�1Þ

end for
until Stop criterions
4. Experiments

The reproducible code for the experiments in this paper can be
downloaded from http://paul.rutgers.edu/jzhuang/Submission/
CVIUCode.rar.

4.1. Compressed MR image reconstruction

4.1.1. Experimental setup
Suppose a MR image x has n pixels, the partial Fourier transform

R in problem (6) consists of m rows of a n � n matrix corresponding
to the full 2D discrete Fourier transform. The m selected rows cor-
respond to the acquired b. The sampling ratio is defined as m/n. The
scanning duration is shorter if the sampling ratio is smaller. In MR
imaging, we have certain freedom to select rows, which corre-
spond to certain frequencies. In the following experiments, we se-
lect the frequencies in the following manner. In the k-space, we
randomly obtain more samples in lower frequencies and less sam-
ples in higher frequencies. This sample scheme has been widely
ithms for convex optimization, Comput. Vis. Image Understand. (2011),
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Fig. 2. Cardiac MR image reconstruction from 20% sampling (a) original image; (b–f) are the reconstructed images by the CG [1], TVCMRI [2], RecPF [3], CSA and FCSA. Their
SNR are 9.86, 14.43, 15.20, 16.46 and 17.57 (db). Their CPU time are 2.87, 3.14, 3.07, 2.22 and 2.29 (s).

Fig. 3. Brain MR image reconstruction from 20% sampling (a) original image; (b–f) are the reconstructed images by the CG [1], TVCMRI [2], RecPF [3], CSA and FCSA. Their SNR
are 8.71, 12.12, 12.40, 18.68 and 20.35 (db). Their CPU time are 2.75, 3.03, 3.00, 2.22 and 2.20 (s).

Fig. 1. MR images: (a) Cardiac. (b) Brain. (C) Chest. (d) Artery.
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Fig. 4. Chest MR image reconstruction from 20% sampling (a) original image; (b–f) are the reconstructed images by the CG [1], TVCMRI [2], RecPF [3], CSA and FCSA. Their SNR
are 11.80, 15.06, 15.37, 16.53 and 16.07 (db). Their CPU time are 2.95, 3.03, 3.00, 2.29 and 2.234 (s).

Fig. 5. Artery MR image reconstruction from 20% sampling (a) original image; (b–f) are the reconstructed images by the CG [1], TVCMRI [2], RecPF [3], CSA and FCSA. Their
SNR are 11.73, 15.49, 16.05, 22.27 and 23.70 (db). Their CPU time are 2.78, 3.06, 3.20, 2.22 and 2.20 (s).
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used for compressed MR image reconstruction [1–3]. Practically,
the sampling scheme and speed in MR imaging also depend on
physical and physiological limitations [1].

All experiments are conducted on a 2.4 GHz PC in Matlab envi-
ronment. We compare the CSA and FCSA with the classic MR image
reconstruction method based on the CG [1]. We also compare them
with two of the fastest MR image reconstruction methods,
TVCMRI1 [2] and RecPF2 [3]. For fair comparisons, we download
1 http://www.columbia.edu/sm2756/TVCMRI.htm.
2 http://www.caam.rice.edu/optimization/L1/RecPF/.

Please cite this article in press as: J. Huang et al., Composite splitting algor
doi:10.1016/j.cviu.2011.06.011
the codes from their websites and carefully follow their experiment
setup. For example, the observation measurement b is synthesized as
b = Rx + n, where n is the Gaussian white noise with standard devi-
ation r = 0.01. The regularization parameter a and b are set as
0.001 and 0.035. R and b are given as inputs, and x is the unknown
target. For quantitative evaluation, we compute the Signal-to-Noise
Ratio (SNR) for each reconstruction result.
4.1.2. Visual comparisons
We apply all methods on four 2D MR images: cardiac, brain,

chest and artery respectively. Fig. 1 shows these images. For
ithms for convex optimization, Comput. Vis. Image Understand. (2011),
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Fig. 6. Performance comparisons (CPU time vs. SNR) on different MR images: (a) Cardiac image. (b) Brain image. (C) Chest image. (d) Artery image.

Table 1
Comparisons of the SNR (db) over 100 runs.

CG [1] TVCMRI [2] RecPF [3] CSA FCSA

Cardiac 12.43 ± 1.53 17.54 ± 0.94 17.79 ± 2.33 18.41 ± 0.73 19.26 ± 0.78
Brain 10.33 ± 1.63 14.11 ± 0.34 14.39 ± 2.17 15.25 ± 0.23 15.86 ± 0.22
Chest 12.83 ± 2.05 16.97 ± 0.32 17.03 ± 2.36 17.10 ± 0.31 17.58 ± 0.32
Artery 13.74 ± 2.28 18.39 ± 0.47 19.30 ± 2.55 22.03 ± 0.18 23.50 ± 0.20

Table 2
Comparisons of the CPU time (s) over 100 runs.

CG [1] TVCMRI [2] RecPF [3] CSA FCSA

Cardiac 2.82 ± 0.16 3.16 ± 0.10 2.97 ± 0.12 2.27 ± 0.08 2.30 ± 0.08
Brain 2.81 ± 0.15 3.12 ± 0.15 2.95 ± 0.10 2.27 ± 0.12 2.31 ± 0.13
Chest 2.79 ± 0.16 3.00 ± 0.11 2.89 ± 0.07 2.21 ± 0.06 2.26 ± 0.07
Artery 2.81 ± 0.17 3.04 ± 0.13 2.94 ± 0.09 2.22 ± 0.07 2.27 ± 0.13

Fig. 7. MR images: (a) Window. (
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comparison purposes, they have the same size of 256 � 256. The
sample ratio is set to be approximately 20%. To perform fair
comparisons, all methods run 50 iterations, except that the CG
runs only 8 iterations due to its higher computational
complexity.

Figs. 2–5 show the visual comparisons of the reconstructed
2results by different methods. The FCSA always obtains the best vi-
sual effects on all MR images in less CPU time. The CSA is always
b) Cherry. (C) Sheep. (d) Fish.

ithms for convex optimization, Comput. Vis. Image Understand. (2011),
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Fig. 8. Comparisons in terms of visual effects. Color images are: (1) Window. (2) Cherry. (3) Sheep. (4) Fish. Columns (a–d) correspond to the images before completion, the
obtained results by the CGD-LRTC [39], APG-LRMC [10] and FCSA-LRTC, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

Table 3
Comparisons of the CPU time and RSE for random missing.

CGD-LRTC [39] APG-LRMC [10] FCSA-LRTC

Time (s) RSE Time (s) RSE Time (s) RSE

Window 129.79 0.4917 105.08 0.1031 132.82 0.0641
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inferior to the FCSA, which shows the effectiveness of acceleration
steps in the FCSA for the MR image reconstruction. The classical CG
[1] is worse than the others because of its higher cost in each iter-
ation, the RecPF is slightly better than the TVCMRI, which is consis-
tent with observations in Refs. [2,3].
Cherry 135.23 0.6154 102.81 0.3613 133.39 0.1014
Sheep 130.28 0.6137 101.37 0.1534 128.03 0.0908
Fish 139.11 0.7009 101.47 0.1566 129.21 0.0883
4.1.3. CPU time and SNRs

Fig. 6 gives the performance comparisons between different
methods in terms of the CPU time over the SNR. Tables 1 and 2 tab-
ulate the SNR and CPU Time by different methods, averaged over
100 runs for each experiment, respectively. The FCSA always ob-
tains the best reconstruction results on all MR images by achieving
the highest SNR in less CPU time. The CSA is always inferior to the
FCSA, which shows the effectiveness of the acceleration steps in
the FCSA for the MR image reconstruction. While the classical CG
[1] is worse than others because of its higher cost in each iteration,
the RecPF is slightly better than the TVCMRI, which is consistent
with observations in Refs. [2,3].
Please cite this article in press as: J. Huang et al., Composite splitting algor
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4.2. Low-rank tensor completion

4.2.1. Experiment setup
Suppose a color image X with low rank has the size of

h � w � d, where h, w, d denote its height, width and color channel
respectively. When the color values of some pixels are missing in
the image, the tensor completion is conducted to recover the
missed values. Suppose the color values of q pixels are missing in
the image, the sampling ratio is defined as (h � w � d � q � d)/
ithms for convex optimization, Comput. Vis. Image Understand. (2011),
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(h � w � d). The known color values in the image are called the
samples for tensor completion. We randomly obtain these samples
or designate the samples before the tensor completion [39].
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Fig. 9. comparisons in terms of RSE and CPU time. Color images are: (1) Window. (2) Che
iterations vs. RSE and iterations vs. CPU time (s), respectively. (For interpretation of the
this article.)

Please cite this article in press as: J. Huang et al., Composite splitting algor
doi:10.1016/j.cviu.2011.06.011
All experiments are conducted on a 2.4 GHz PC in Matlab envi-
ronment. We compare the proposed FCSA-LRTC with the CGD-LRTC
[39] for the tensor completion problem. To show the advantage of
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rry. (3) Sheep. (4) Fish. Column (a and b) correspond to the comparisons in terms of

references to color in this figure legend, the reader is referred to the web version of
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Fig. 10. Comparisons in terms of visual effects. Color images are: (1) Window. (2) Cherry. (3) Sheep. (4) Fish. Columns (a–d) correspond to the images before completion, the
obtained results by the CGD-LRTC [39], APG-LRMC [10] and FCSA-LRTC, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

Table 4
Comparisons of the CPU time and RSE for occlusion missing.

CGD-LRTC [39] APG-LRMC [10] FCSA-LRTC

Time (s) RSE Time (s) RSE Time (s) RSE

Window 133.21 0.3843 100.98 0.0962 133.56 0.0563
Cherry 134.39 0.5583 102.43 0.3201 134.65 0.1069
Sheep 134.96 0.5190 101.33 0.1784 131.23 0.1017
Fish 136.29 0.5886 99.89 0.2234 135.31 0.1056
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the LRTC over the low rank matrix completion (LRMC), we also
compare the proposed FCSA-LRTC with the APG based LRMC meth-
od (APG-LRMC) [10]. As introduced in the above section, the APG-
LRMC is not able to solve the tensor completion problem (8) di-
rectly. For comparisons, we approximately solve (8) by using the
APG-LRMC to conduct the LRMC in d color channels independently.
For quantitative evaluation, we compute the Relative Square Error
(RSE) for each completion result. The RSE is defined as
kX c �XkF=kXkF , where X c and X are the completed image and
ground-truth image respectively.
Please cite this article in press as: J. Huang et al., Composite splitting algor
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We apply all methods on four color images: window, cherry,
sheep and fish respectively. Fig. 7 shows these images. For conve-
nience, they have the same size of 256 � 256. The regularization
parameter a are set as [100, 100, 0] in all three methods for these
images.

4.2.2. Random missing
We apply three methods on four 2D color images respectively.

The missing samples are random and have white color in the
images. The sample ratio is set to be approximately 50%. To per-
form fair comparisons, all methods run 50 iterations. Fig. 8 shows
the visual comparisons of the completion results. The visual effects
obtained by the FCSA-LRTC are better than those of the CGD-LRTC
[39] and slightly better than those obtained by the APG-LRMC [10].
Table 3 tabulates the RSE and CPU Time by different methods on
different color images. The FCSA-LRTC always obtains the smallest
RSE in all color images, which illustrates its good performance for
low-rank tensor completion.

Fig. 9 gives the performance comparisons among different
methods in terms of iterations vs. RSE and CPU time. To test the
ithms for convex optimization, Comput. Vis. Image Understand. (2011),
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Fig. 11. Performance comparisons in terms of CPU Time and RSE: (a) Window image. (b) Cherry image. (c) Sheep image. (d) Fish image.
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completion accuracy, all three methods are run over 300 iterations.
The FCSA-LRTC always obtains the best completion results on all
color images by achieving the lowest RSE, which shows the effec-
tiveness of the composite splitting techniques in the FCSA for LRTC
on color images. The CGD-LRTC [39] is worse than the FCSA-LRTC
in terms of the convergence performance because of the slow con-
vergence property of the CBD method, although the former can still
obtain similar completion results with enough iterations. The APG-
LRMC converges quickly because of the effective acceleration
scheme. However, the completion accuracy is worse than those
of the FCSA-LRTC and CGD-LRTC even with enough iterations,
which shows the advantages of the LRTC over the LRMC for the
tensor data. The reason is that, the APG-LRMC solves the tensor
completion problem by conducting the LRMC independently in dif-
ferent color channel, which ignores the dependency between dif-
ferent color channels in color images.

4.2.3. Occlusion missing
In this experiment, the missing samples are not randomly dis-

tributed. We apply three methods on four 2D color images respec-
tively. To perform fair comparisons, all methods run over 50
iterations. Fig. 10 shows the visual comparisons of the completion
results. In this case, the visual effects obtained by the FCSA-LRTC
are also better than those of the CGD-LRTC [39] and slightly better
than those obtained by the APG-LRMC [10]. Table 4 lists the RSE
and CPU Time by different methods on different color images.
The FCSA-LRTC always obtains the smallest RSE in all color images,
which shows its good performance for the low-rank tensor
completion.

Fig. 11 gives the performance comparisons in terms of the CPU
time over the RSE for different methods on four color images. To
test the completion accuracy, all 3 methods run 300 iteration.
Please cite this article in press as: J. Huang et al., Composite splitting algor
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The FCSA-LRTC always obtains the best completion results on all
color images by achieving the lowest RSE in the least CPU Time,
which shows the effectiveness of the composite splitting tech-
niques in the FCSA for LRTC on color images. The CGD-LRTC [39]
is worse than the FCSA-LRTC in terms of the convergence perfor-
mance because of the slow convergence property of the CBD meth-
od, although the former can also obtain good completion results
with enough iterations. The APG-LRMC converges quickly because
of the effective acceleration scheme. However, the completion
accuracy is worse than those of the FCSA-LRTC and CGD-LRTC even
with enough iterations. These results further show the effective
scheme of the composite splitting and the advantages of the LRTC
over the LRMC for the tensor data. The reconstruction performance
of the FCSA-LRTC is the best in terms of both completion accuracy
and computational complexity, which further demonstrates the
effectiveness and efficiency of the FCSA for the low rank tensor
completion.

4.3. Discussion

All of the above experimental results have validated the effec-
tiveness and efficiency of the proposed composite splitting algo-
rithms for convex optimization. Our main contributions are as
follows:

� We propose a general scheme to solve the composite regulari-
zation problem. It transforms the original harder composite reg-
ularization problem into multiple simpler subproblems, which
leads to higher accuracy and lower computation complexity.
Due to its general properties, it can be widely used in different
applications for convex optimization and is well adapted for
large scale data in practice.
ithms for convex optimization, Comput. Vis. Image Understand. (2011),
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� The proposed FCSA can be used to efficiently reconstruct the
compressed MR images. It minimizes a linear combination of
three terms corresponding to a least square data fitting, total
variation (TV) and L1 norm regularization. The computational
complexity of the FCSA is only Oðn logðnÞÞ in each iteration. It
also has strong convergence properties. It has been shown to
signigicantly outperform the classic CG methods [1] and two
state-of-the-art methods (TVCMRI [2] and RecPF [3]) in terms
of both accuracy and complexity.
� The proposed FCSA can also be efficiently applied to conduct

low rank tensor completion. It minimizes a linear combination
of a least square data fitting term and a composite nuclear norm
regularization. Experiments are conducted on several color
images with different sample schemes. It has been shown to
significantly outperform the state-of-the-art low-rank tensor
completion method [39] in terms of both accuracy and compu-
tation complexity. Its completion accuracy is also better than
that of the APG-LRMC [10]. These results further show the effec-
tive scheme of the composite splitting and the advantages of
the LRTC over the LRMC for the tensor data.
� The step size in the ISTA and the FISTA is designed according to

the inverse of the Lipschitz constant Lf. Actually, using larger
values is known to be a way of obtaining faster versions of
the algorithm [40]. Future work will study the combination of
this techniques with the CSD or FCSA together. It is expected
to further accelerate the optimization for this kind of problems.

5. Conclusion

In this paper, we proposed the composite splitting algorithms
based on splitting techniques and accelerated gradient descent.
The proposed algorithms decompose a hard composite regulariza-
tion problem into multiple simpler subproblems and efficiently
solve them. This is well adapted for practical applications involving
large-scale data optimization. The computational complexities of
the proposed algorithms are very low in each iteration. The prom-
ising numerical results for the compressed MR image reconstruc-
tion and low-rank tensor completion validate the advantages of
the proposed algorithms. Future work will include using the pro-
posed algorithms on more application and on large scale data.
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