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Abstract— This paper addresses the problem of facial land-
mark localization on partially occluded faces. We proposes an
explicit occlusion detection based deformable fitting model for
occluded landmark localization. Most recent shape registration
methods apply landmark local search and attempt to simulta-
neously minimize both the model error and localization error.
However, if part of the shape is occluded, those methods may
lead to misalignment. In this paper, we introduce regression
based occlusion detection to restrict the occluded landmarks’
error propagation from passing to the overall optimization.
Assuming the parameter model being Gaussian, we propose a
weighted deformable fitting algorithm that iteratively approach-
es the optima. Experimental results in our synthesized facial
occlusion database demonstrate the advantage of our method.

I. INTRODUCTION

Landmark detection and localization is a key component
of many computer vision applicatons[5], [10]. Facial shape
registration aims to match a group of predefined landmarks
in a given facial image. There are a number of applications
of face alignment, i.e. face tracking[1], face modeling[2],
facial expression analysis[3], face animation[4], etc, all of
which require good precision of facial landmarks. Yet facial
landmark localization is a challenging problem because in
real world, human faces vary in a wide range due to different
reasons, i.e. age, races, expression, pose, lighting conditions,
etc, which increase the complexity of the optimization prob-
lem.

Many approaches have been proposed to deal with the
problem. One of the early methods is Active Shape Model
(ASM)[6]. In ASM, a Point Distribution Model (PDM)
controls the shape variance and gradient distributions of
a set of landmarks. The central idea is using landmarks
with certain neighborhood patches to represent an object.
By iteratively finding proper match in the neighborhood, the
shape is updated. With similar consideration, plenty of works
are developed[12], [13]. Another successful model, Active
Appearance Model (AAM)[7] considers the appearance as
the sum of mean appearance and certain linear combination
of basis of the appearance space. By local patch searching,
shape parameters are updated to achieve smallest appearance
error from the reference appearance. Also there are various
constrains[8], [9], [14] added to further improve the model.
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Fig. 1. Faces with occlusion

However, in many scenarios faces may be partially occlud-
ed by hands, sunglasses, clothes, etc, as shown in Fig.1. Most
of the above methods would fail in such cases. If part of the
face is invisible, the local patches inside occlusion can not
find proper neighborhood to best match pre-trained templates
for alignment. And further such incorrect matches yield
distorted shape results. Some improvements are proposed to
reduce the effects. Zhou et al.[18] proposed a Bayesian infer-
ence solution based on tangent shape approximation. Gu and
Kanade[17] proposed a generative model for maximizing a
posterior. Saragih et al.[19] introduce a robust error function
to control the unseen landmarks’ variation. The parametric
way is data-sensitive and can just deal with restrained region
of occlusions. Fei et.al[21] introduced a sparse shape error
term to compensate the occluded landmarks’ deviation. Such
error term may fit the model well. But it may still distort the
whole shape. And it can not tell whether the error term is
caused by the occlusion or the visible landmarks’ noise.

In this paper, we propose a new method that explicitly
estimate the likelihood of occlusion for each landmark.
The assumption is that occlusion is just a small portion
of the whole facial area. Then we run off-line training
with positive and negative sample patches to set up such
likelihood. For those landmarks which are detected invisible
with high probability, they do not participate in the local
patch searching. While in the integral deformable fitting, they
do not contribute to the global and local parameters’ update.
Without the influence of occluded patches, optimizing a
shape and model structure constrained likelihood is expected



to improve the approximation. To quantitatively evaluate the
proposed method, we built three face datasets with synthe-
sized occlusions which approaches natural occlusion. The
experimental results reveals the advantage of our method.

The following content in section 2 is the occlusion de-
tection and deformable fitting algorithms. Section 3 illus-
trates experimental results comparing with a state-of-the-art
method. Section 4 is the conclusion of our work.

II. OCCLUSION DETECTION AND DEFORMABLE
FITTING

Assuming a shape defined with n landmarks, we define
the shape vector S by concatenating the x and y coordinates
of all the landmarks. For simplicity, we take x to represent
its two dimensional coordinates.

S = [x1,x2, ...,xn] (1)

Proposed by Coots et al.[6], ASM captures variant face
shapes by a mean shape and a linear combination of k
selected shape basis.

S = S̄+Φu (2)

where S̄ is the mean shape vector, Φ = [φ1,φ2, ...,φk] the k
shape basis matrix, u ∈ Rk the basis coefficient vector.

The general Point Distribution Model (PDM) taking global
transformation into consideration. Our deformable fitting
model is based on the PDM. In (3), s is a scaling factor;
R represents rotation matrix; t is a translation vector; the
content in bracket is the ASM model.

xi = sR(x̄i +Φui)+ t (3)

Actually ASM is depicting the variation in shape, which is
non-rigid local deformation inside shape itself. While the
PDM considers not only such local deformation but also
the global affine transformation. Thus, any face in any pose
could be translated to a frontal predefined reference face.
The problem is to find the parameters.

P̆ = {s,R,u, t} (4)

A. Occlusion Detection

Occlusion is that comparing to fully observable facial
images, there are regions which is not consistent to the
normal facial appearance. The occlusion may be caused by
objects, such as books, scarf, etc. Or it may be caused by
parts of human body as well, i.e. hands, beards and so on.
We assume that the occluded region takes up only a portion
of the whole facial area. If most of the parts are occluded,
i.e. only a nose is not occluded, it has little significance
in facial applications. Since the initial landmarks are not
well aligned, the occlusion detection is not accurate in this
step. The way we take is firstly run our deformable fitting
method without occlusion information to get more accurate
landmarks positions. Then we raise the occlusion detection
to exclude certain occluded landmarks and run the fitting
method repetitively until shape is converged.

We set each landmark with a certain size rectangle
neighborhood. Since most of the rectangles are on facial

Fig. 2. Facial image positive and negative patches with HoG, Orientation
and LBP features

images, the task is becoming discriminating occluded patch
appearance from normal facial patches. We notice that some
of those facial landmarks have ample information of fixed
edges. While occluded patches may have few edge informa-
tion or the orientation of edges is not consistent to the normal
patches. In addition, occlusion texture appears different from
the facial texture.

As a result, we adopt Histogram of Gradient (HoG)[16],
Orientation[20] and Local Binary Pattern (LBP)[22] features
over each landmark patch, which is shown in Fig.2. Then we
normalize the three features and concatenate them to form
a fusion feature. Such feature combination is expected to
capture the magnitude and direction information of the edge
pattern and the facial texture pattern.

h(X , I) =
√

∆Ix
2 +∆Iy

2,X = (x,y) (5)

r(X , I) = arctan
∆Iy

∆Ix
,X = (x,y) (6)

b(X , I) = ∑
X ′∈N8(X)

2I{I(X)>I(X ′)}Idx(X ′),X = (x,y) (7)

In (7), the indicator function I{} returns 0 if the condition
is not satisfied and 1 otherwise. N8(X) is the 8-connection
neighborhood of X. Index function Idx(X ′) indicates the
index of the neighborhood position X ′, which is among
0 to 7. By collecting positive (aligned or misaligned but
not occluded) and negative (occluded) samples, we build a
logistic regression model in (8).

p(oi = 1|xi, I) =
1

1+ exp(a f + c)
, f = [h,r,b] (8)

Here p(oi = 1|xi, I) is the likelihood of occlusion given ith
landmark position xi and facial image I. f is the fusion
feature of normalized HoG, Orientation and LBP features.
Once each landmark likelihood is obtained, we form a
diagonal weighting matrix W for next shape fitting use.

W = diag{w1,w2, ...,wn} ,wi = p(oi = 0|xi, I) (9)



B. Deformable Fitting

From PDM model, our work should further focus on how
to optimize the parameters P̆. Suppose given n well-aligned
landmarks and a facial image. If some of the landmarks
are occluded, we are not expecting the occluded nodes to
be well-aligned. But the overall shape must be consistently
constrained by the PDM. And the alignment event should
be modulated by the occlusion event. In other words, if
occlusion is detected, the alignment likelihood of current
landmark should not contribute to the whole alignment
likelihood. We should choose such parameters P̆ to maximize
the likelihood in (10).

p(P̆|{vi = 1}n
i=1, I) ∝ p(P̆)

n

∏
i=1

[p(vi = 1|xi, I)]
wi (10)

vi is a binary discrete random variable indicating whether
ith landmark is aligned (vi = 1) or misaligned (vi = 0).
Each landmark’s alignment state is assumed independent
from other landmarks’ alignment states. Hence, the overall
shape’s probability of alignment is achieved by multiplying
each landmark’s alignment likelihood. Here we modulate
alignment likelihood by non-occlusion likelihood wi. If wi is
binary distributed, the meaning of (10) is straight forward.
When wi’s distribution becomes continuous, actually we are
modulating the likelihood in a continuous manner, not binary
decision any more. Consequently the right part of (10) is
derived by Bayesian rule.

The parameters P̆ are set from the PDM model which
applies PCA to a set of registered shapes. In common,
the distance in PCA subspace is measured by Mahalanobis
distance, which is a kernel l2-norm measurement. Thus, we
assume the prior confirms to Gaussian distribution.

p(P̆) ∝ N (µ;Λ),Λ = diag{[λ1, ...,λk]} (11)

where λi is the ith eigenvalue corresponding to the ith shape
basis in Φ from the nonrigid PCA approach, µ is the mean
parameter vector respectively.

In (10), eagle eyes may notice the aligned likelihood
p(vi = 1|xi, I) is similar to our previous defined occlu-
sion likelihood p(oi = 1|xi, I). From concept point of view,
occluded landmarks have no significance of alignment or
misalignment, which means aligned or misaligned ones may
not be occluded. Moreover, the alignment likelihood focuses
only on whether the landmarks are in proper positions or
not. While occlusion likelihood deals with not only the
aligned or misaligned (but not occluded) conditions but
also types of different occlusion conditions. One may also
notice that in occlusion detection training process, we picked
not only positive samples but also all kinds of occlusion
samples. The more we pick from the occlusion cases, the
less likely it is classified as non-occluded. In contrast, the
negative samples of misalignment could be any case except
the aligned condition.

For alignment likelihood, with similar consideration as
the occlusion likelihood, we could also establish logistic
regression way to attain the coefficients. The positive samples

could only be aligned patches while negative samples could
be any misaligned or occluded case.

p(vi = 1|xi, I) =
1

1+ exp(a′ f ′+ c′)
(12)

where f ′ is fusion of HoG and Orientation feature vector.
Generally given a near-optimal landmark xi, we would

search its neighborhood to get the optimal alignment like-
lihood. The possible optimal candidates yi form a region Ψi.
We assume yi confirms to Gaussian distribution with mean
xi and σi standard deviation. Hence, the alignment likelihood
can be modeled as a Gaussian Mixture Model (GMM) of the
candidates yi.

p(vi = 1|xi, I) = ∑
yi∈Ψi

p(vi = 1|yi, I)p(yi|xi, I)

= ∑
yi∈Ψi

πyiN (yi,σiI)
(13)

where πyi = p(vi = 1|yi, I). From (13), we rewrite (10) as
(14).

p(P̆|{vi = 1}n
i=1, I) ∝ p(P̆)

n

∏
i=1

[
∑

yi∈Ψi

πyiN (yi,σiI)

]wi

(14)

p(vi = 1,yi|xi, I) = p(vi = 1|xi, I)p(yi|vi = 1,xi, I) (15)

Further we notice in (15) p(vi = 1|xi, I) can be represented as
p(vi=1,yi|xi,I)
p(yi|vi=1,xi,I)

. An Expectation Maximization (EM) approach
is raised to solve the problem. The E step is to solve the
posterior probability of latent variable yi as p(yi|vi = 1,xi, I).
We denote it as αyi .

p(yi|vi = 1,xi, I) = αyi =
πyiN (yi,σiI)

∑
zi∈Ψi

πziN (zi,σiI)
(16)

With intermittent latent variable posterior probability, we
approximate p(vi = 1|xi, I) as shown in (17). And the M step
is to minimize the expectation of negative log likelihood in
(18).

Ep(yi|vi=1,xi,I) (p(vi = 1,yi|xi, I))→ p(vi = 1|xi, I) (17)

argmin
P̆,xi

Eq(y)

[
−log

{
p(P̆)

n

∏
i=1

[p(vi = 1,yi|xi, I)]
wi

}]
(18)

where q(y) =
n
∏
i=1

p(yi|vi = 1,xi, I). Equivalently, we simplify

(18) as (19) shows.

argmin
P̆,xi

(
||P̆−µ||2

Λ−1 +
n

∑
i=1

wi ∑
yi∈Ψi

αyi

σ2 ||xi− yi||2
)

(19)

Here we assume all the landmarks’ candidate distribution
with the same deviation σ . With property ∑

yi∈Ψi

αyi = 1, The

solution of the problem can be formulated as:

∆P̃ = (σ2Λ−1 +WJT J)−1[WJTU−σ2Λ−1(P̃−µ)] (20)



Algorithm 1 Occlusion Detection based Deformable Fitting.

1: Input: initial P̆, facial image I.
2: Output: optimized P̆.
3: Shape Fitting: W = I, run Deformable Fitting (16) and

(20)
4: P̆← P̆+∆P̆
5: repeat
6: Occlusion Detection: run (8) and (9) to obtain W
7: Shape Fitting: run Deformable Fitting (16) and (20)
8: P̆← P̆+∆P̆
9: until P̆ converges
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Fig. 3. Faces with ground truth landmarks and artificial occlusions. (a) a
face from AR[23] database with 22 blue dot ground truth[11] landmarks.
(b) a face with hat occlusion. (c) a face with hand occlusion. (d) a face with
scarf occlusion.

where J = [J1, ...,Jn] and U = [U1, ...,Un], Ji =
∂xi
∂ P̆ and

Ui =

 ∑
yi∈Ψi

πyiN (yi,σ
2I)

∑
zi∈Ψi

πziN (zi,σ2I)
yi

− xi (21)

The whole strategy is summarized in Algorithm.1.

III. EXPERIMENTAL RESULTS

To evaluate our method, we follow the approach in [21],
using face images from AR database[23]. The AR database
contains frontal face images of 126 people. Each person
has 26 images with different expressions, occlusions and
lighting conditions. We select 509 face images from section
1,2,3,5 and use the 22 landmark positions provided by
T.F.Cootes[11] as the ground truth. The landmark positions
are shown in Fig.3(a).

The occlusion masks are chosen to simulate the occlusions
most frequently seen in real world. As shown in Fig.3(b),(c)
and (d), there are three types of masks: (1) A hat mask is
located just above eyes but occludes all eyebrows;(2) A hand
mask is put on mouth which also occludes nose tip and part

(a) (b)

Fig. 4. Visual results of occlusion detection, landmark localization of
proposed method and CLM method. (a) result facial image of occlusion
detection, black regions indicate occlusions. (b) result facial image of
landmark localization, blue dots and lines are of CLM method and green and
magenta dots and lines are of proposed method (magenta indicates occluded
parts), red stars are the 22 ground truth landmarks.

of chins;(3) A scarf mask lies to occlude the mouth and chin
thoroughly. Since we know the ground truth for all occluded
landmarks, it is possible to raise quantitative evaluation over
the occlusion datasets.

To evaluate landmark precision, we adopt the normalized
error metric similar to Jesorsky et al.[26]. The normalized
error is the true Euclidean pixel error divided by the distance
between eye centers, which is scale invariant. We compare
our method with Constrained Local Model (CLM) based
method[19], which reports its advantages over ASM[6] and
GMM[17].

The visual registration result for one testing image is
shown in Fig.4. The ground truth positions are labeled
with red stars. The aligned landmarks of CLM is shown in
blue lines and the result of our method is shown in green
and magenta lines. Green lines show those non-occluded
shape registration results and magenta lines indicate occluded
landmarks. In the figure, our method correctly discriminate
the mouth and the bottom half contour as occluded parts,
which appears in magenta. Moreover, the mouth landmarks
are in the proper positions comparing with red star points.
While the mouth of CLM is pulled up by the edges of
nose, which indirectly pushes up the nose landmarks. The
CLM implementation is directly from the authors. Since
our face model is trained from MultiPIE database[24], there
are 66 landmarks as the face shape. Then we create a
unique mapping from 66 landmarks to 22 landmarks being
consistent with the ground truth labels.

For each of 22 landmarks, we calculate its normalized
deviation from true position and accumulate the average
error among each of the 3 occlusion datasets. Fig.5 plots
such average error for 22 landmarks of 3 occlusion datasets.
Blue lines with star dots are proposed result and red lines
with circles are CLM’s result. The horizontal axis represents
index of landmarks. The vertical axis is the normalized
error. From the plots, our method is consistently better than
CLM in all datasets, which shows the proposed method
significantly improves the alignment from one of the state-
of-the-art method.

The mean of the average errors for all 22 landmarks
is reported in Table.I. We could see for the 3 datasets
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Fig. 5. Normalized average alignment error on 22 landmarks of CLM and our proposed methods on 3 occlusion datasets from AR database[23]

Fig. 6. More visual results of facial landmark localization. The first and second rows are results with hat, hand and scarf occlusion. The third row are
results of occluded facial images from LFPW database[25]. Blue dots and lines are results of CLM method. Green and magenta dots and lines are results
of proposed method (magenta indicates occluded parts).

and their occluded regions, our proposed method achieves
smaller error than CLM’s result. We also notice that for
the occluded parts, error is in the same level as the whole
dataset’s alignment error with the proposed algorithm. Take
hat dataset for example. The average error is 4.25× 10−2

and the hat occluded area (landmarks 5,6,7,8) error is
4.74× 10−2, which increases just 0.49× 10−2. While for
CLM method, the average error is 5.79×10−2. But the hat
occluded region significantly increases to 8.10× 10−2. The

same thing happens to the other two datasets, which reflects
the effectiveness of our occlusion perception strategy.

Table.II shows average error level for different part-
s, i.e. contour (landmarks 9,14,20,21,22), eyes (landmarks
10,1,11,12,2,13), mouth (landmarks 3,4,18,19) etc. In hat
dataset, occluded part is only eyebrow; in hand dataset,
occluded parts are nose, mouth and partial contour (chin); in
scarf dataset, occluded parts are nose, mouth and the bottom
half of contour. From each part precision point of view, the



TABLE I
AVERAGE ALIGNMENT ERROR ON 3 DATASETS AND THEIR OCCLUDED

PARTS

Hat Hat Scarf Scarf Hand Hand
occluded occluded occluded

CLM (×10−2) 5.79 8.10 5.83 7.15 6.27 6.83

Proposed (×10−2) 4.25 4.74 4.31 4.92 4.34 5.33

TABLE II
FACIAL PART ALIGNMENT ERROR ON 3 OCCLUSION DATASETS

Contour Eyebrows Eyes Nose Mouth

hat (×10−2)
CLM 6.03 6.83 4.54 6.51 5.76

proposed 5.21 5.33 3.28 3.06 4.33

hand (×10−2)
CLM 6.61 5.85 3.92 8.12 8.44

proposed 5.58 4.89 3.04 3.83 4.60

scarf (×10−2)
CLM 7.15 5.70 3.58 6.90 6.88

proposed 5.04 4.73 3.23 4.29 4.62

proposed approach also demonstrates its advantage over the
CLM method.

Table.II further verifies that for those 3 datasets, for CLM
method, the occluded parts show more significant error than
the non-occluded parts. Take hand database for instance in
which nose and mouth are occluded, the nose and mouth’s
alignment errors are largest. However, the rule is not held for
our method. In hand database, the largest error is contour.
Nose and mouth’s errors keep in the same level as eyebrows
and eyes. The reason may be that we detect occlusion ahead
and restrict the error of occluded parts from taking into
optimizing the whole shape. Moreover, contour and mouth
indicate larger misalignment than other facial parts in our
method and eyes show the smallest error.

In addition, Fig.6 shows more visual results of the lo-
calization. The notations are the same as Fig.4. The first
and second rows are the results of the synthesized occlusion
facial images from AR database. The third row are the
results of challenging occluded facial images from LFPW
database[25]. The occlusion detector in natural scene may
fail as shown in the third row, especially for the cases with
occlusion which has similar appearance as the facial area.
Further, as we claimed, our method could deal with cases in
which a portion of the face is occluded. If more than half
of facial area is occluded, especially the contour and mouth
are invisible, the method possibly degrades its performance.

IV. CONCLUSIONS

In this paper, we propose a novel occlusion detection based
deformable fitting model for occluded facial landmark lo-
calization. By explicitly introducing the landmark occlusion
detection, our algorithm restricts the occluded landmarks’
error propagation from sending to the overall optimization
procedure and thus is more robust for landmark localiza-
tion. Experimental results in the synthesized face occlusion

database demonstrate the advantage of our method. Our
future work focuses on facilitating over different occlusions
and accelerating the whole pipeline.
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