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Shape deformation and editing are important for animation and game design. Laplacian sur-
face based methods have been widely investigated and used in many works. In this paper we
propose a robust mesh editing framework which improves traditional Laplacian surface edit-
ing. It consists of two procedures: skeleton based as-rigid-as-possible (ARAP) shape model-
ing and detail-preserving mesh optimization. Traditional ARAP shape modeling relies on the
mesh quality. Degenerated mesh may adversely affect the deformation performance. A pre-
processing step of mesh optimization can alleviate this problem. However, skinny triangles
can still be generated during deformation, which adversely affect the editing performance.
Thus our method performs Laplacian mesh deformation and optimization alternately in each
iteration, which ensures mesh quality without noticeably increasing computational com-
plexity or changing the shape details. This approach is more robust than those solely using
Laplacian mesh deformation. An additional benefit is that the skeleton-based ARAP modeling
can approximately preserve the volume of an object with large-scale deformations. The vol-
ume is roughly kept by leveraging the skeleton information and employing a carefully
designed energy function to preserve the edge length. This method does not break the man-
ifoldness of traditional ARAP methods or sacrifice speed. In our experiments, we show that (1)
our method is robust even for degenerated meshes, (2) the deformation is natural in terms of
recovering rotations, and (3) volumes are roughly kept even under large-scale deformations.
The system achieves real time performance for surface meshes with 7k vertices.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction polation. Sorkine et al. [24] showed that the similarity
Shape deformation is widely used in many applications
such as animation, game design and virtual reality. During
the past decade, people have put a lot of effort in as-rigid-
as-possible (ARAP) shape modeling to obtain natural defor-
mations. ARAP deformation means that the shape should
be locally preserved, and the deformations are locally sim-
ilar. This principal originates from the classical elastic en-
ergy that measures the difference between two shapes,
or shell energy [25].

2D shape manipulation: Previous works try to constrain
transformation matrices to achieve the ARAP effect. In
2D, there have been many excellent methods. Alexa et al.
[1] successfully applied ARAP deformation to shape inter-
. All rights reserved.

g).
transformation in 2D can be completely characterized with
a linear expression. Igarashi and Moscovich [10] presented
a two-step closed form algorithm to deform 2D shapes. The
first step allows translation, rotation and uniform scaling.
The second step adjusts the scaling locally. Schaefer et al.
[18] devised a moving least squares framework for 2D
space warping, where each element of the space grid de-
forms ARAP, and the warping is controlled by positional
constraints on several grid points. These methods have
shown promising performance on 2D ARAP deformations.

Differential mesh editing: 3D ARAP deformation is more
challenging because of the nonlinearity of similarity trans-
formations. Botsch and Kobblet [5] formulated a linearized
system to represent ARAP deformation. It allows an effi-
cient optimization, but causes artifacts such as local details
and general shape distortions for large deformations. Zorin
et al. [34] and Guskov et al. [7] proposed a multi-resolution
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technique to deform low-frequency components of the
surface first, followed by adding back high-frequency de-
tails as local displacements. However, this solution leads
to local self-intersections when the deformation intro-
duces bending. Sorkine et al. [24] proposed Laplacian sur-
face editing (LSE), which uses a first-order approximation
of similarity transformations. It works well when only
moderate rotations are involved in the deformation. Dual
LSE [2] starts with naive Laplacian editing as an initial
guess and iteratively adjusts the local Laplacian coordi-
nates to refit the surface geometry to those Laplacians.
Propagating transformation [13,30,31] can also alleviate
the rotation related problems. However, such editing
methods are insensitive to translations and may lead to
unintuitive shape distortions. Nonlinear ARAP approaches
were also proposed, such as the volumetric graph Lapla-
cian (VGL) [33], Laplacian constraints [8], PriMo [6], mov-
ing frames [12] and ARAP surface modeling [22], all of
which produce compelling results. Particularly, ARAP Sur-
face modeling uses an iterative scheme to minimize its
carefully designed energy formulation, which is easy-to-
implement and closely related to the widely used LSE.
The rotations are natural and edge lengths are preserved,
even for large-scale deformations. Its results are compared
with those of Poission mesh editing [28,30], and the defor-
mations are more natural.

The main shortcomings of existing ARAP surface modeling
[22] are twofold. First, the performance relies on the mesh
quality. The mesh may be degenerated in the beginning or
during deformation, which adversely affects the robustness
of the ARAP methods. Second, there is no volume preserving
constraint in these surface modeling methods, which may
cause undesired artifacts for large-scale deformation.

In this paper we propose a robust mesh editing frame-
work based on Laplacian coordinates. This two-step frame-
work consists of (1) a skeleton-based ARAP modeling, and
(2) a detail-preserving mesh optimization. The first step is
an efficient and easy-to-implement method to approxi-
mately preserve the volume by leveraging skeleton infor-
mation. The energy formulation of [22] is adopted to
generate natural rotations and to preserve edge lengths.
In addition, a skeleton is generated and points on the skel-
eton are correlated with vertices on the surface. The con-
nectivity of each cross section is defined as skeleton edges
and is added into the traditional linear ARAP system as
additional rows. Using the edge-length preserving prop-
erty, the cross section area and volume can be roughly pre-
served. The second step is a remeshing technique to
improve the mesh quality without affecting the shape de-
tails. Similar ideas of remeshing during deformation ap-
pear in stretch-based mesh manipulation [20], which
incorporates the mesh quality metrics into the formula-
tion. In our work, the Laplacian mesh optimization is di-
rectly used as a regularization step during deformation.
Since both deformation and remeshing procedures require
the solutions to similar large-scale sparse linear systems,
sparse Cholesky factorization [26] is used as an initializa-
tion. Then the two linear systems are solved efficiently
using back substitution. Using these two procedures alter-
nately during deformation allows robust and efficient
deformations of the mesh.
Volume preserving editing: Since there are similar ap-
proaches dealing with volume preservation or large-scale
deformation, we first discuss the differences between our
method and others, before listing our contributions.
Volumetric graph Laplacian (VGL) [33] first constructs a
graph representing the volume inside the input mesh.
The Laplacian of this graph encodes the volumetric details
as the difference between each vertex in the graph and its
neighbors. Preserving such detail imposes a volumetric
constraint. This model works well for large scale deforma-
tion and does not create intersection artifacts. However, a
preprocessing step is needed to generate this graph, and
the computation complexity is increased when introducing
this relatively complex interior structure. Huang et al. [9]
developed a subspace method that builds a coarse control
mesh around the original one, and projects linear or non-
linear deformation constraints onto the control mesh using
mean value interpolation. Using this subspace formed by
this control mesh, the minimization is both fast and stable.
Mesh Puppetry [19] is a variational approach which uses
cascading optimization and inverse kinematics to perform
large-scale mesh deformation. New poses are created by
specifying constraints on the vertex positions, the balance
of the character length, the rigidity preservation and the
joint limits. Since many of these constraints are nonlinear,
a novel cascading optimization procedure is proposed to
solve the system in realtime (50K+vertices). The weights
of these constraints are important factors and altering
the weights can produce designed results or partially solve
some issues. Au et al. [3] proposed an effective approach
using handle-aware isolines for scalable shape editing.
The isolines act as a generalized skeletal structure and
are independent of mesh sampling. Thus this reduced
model achieves detail-preserving deformation with resolu-
tion-independent cost per iteration, fast convergence rate
and linear memory cost, and has excellent scalability.
Our volume preservation method differs from the methods
listed above, in that it maintains the volume magnitude by
combining the benefits of an internal structure and the
edge-length preserving property of the energy function of
the ARAP surface modeling [22]. Thus it is compatible with
theories of LSE or ARAP surface modeling methods, and can
be easily built upon their existing systems.

Contributions: The contributions of our method are as
follows: (1) We propose a two-step framework to robustly
deform the mesh. Since both procedures rely on Laplacian
coordinates, most of computations can be reused. This
makes our method both robust and computationally effi-
cient. (2) We propose an approach to integrate the skeleton
information with ARAP surface modeling to approximately
preserve the volume without breaking its manifoldness or
adversely affecting the computation speed; (3) In terms of
implementation, our approach is straightforward to add to
existing modeling frameworks relying on LSE or ARAP sur-
face modeling.

The rest of the paper is organized as follows. Section 2
details our algorithm, including a skeleton-based ARAP
modeling method and a detail-preserving optimization
technique. Section 3 shows the experimental results,
which demonstrate the robustness and volume preserving
property of our method. Section 4 concludes this paper.
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Fig. 2. Left: the skeleton points (black spheres) are inside the cylinder.
Each point is connected to surface vertices by skeleton edges. Right: a
cross section view, corresponding to a grey disk on the left. The skeleton
edges are represented by dashed lines. Surface vertices, shown as the red
spheres on the edges of the polygon, are on the cylinder’s surface. Wij is
the cotangent weight of the skeleton edge below it, calculated as
Wij ¼ 1

2 ðcotaþ cot bÞ [14].
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2. Algorithms

2.1. Framework

Our algorithm framework consists of two procedures:
(1) mesh deformation and (2) optimization. The mesh
deformation recovers natural rotations and preserves the
volume magnitude even under large-scale deformations.
The optimization improves the mesh quality without
changing the shape details. The two procedures are alter-
nated in each iteration. The deformations gain in stability
from the improved mesh quality, while the optimization
procedure does not noticeably increase the computational
complexity. The remaining sections detail the mesh defor-
mation and optimization, and discuss implementation and
acceleration considerations.

2.2. Mesh deformation

Linear LSE: Laplacian coordinates represent each point
as the weighted difference between itself and its neighbor-
hoods. Given the original coordinates (V = [v1, . . . ,vn]T), the
connectivity, and m control points, the coordinates of the
reconstructed object (V0 ¼ ½v 01; . . . ;v 0n�

T ) can be obtained
by minimizing the quadratic energy function:

kLV0 � Dk2
2 þ Rm

i¼1jv 0ci
� vci

j2 ð1Þ

where L represents the discrete Laplace–Beltrami operator
(Fig. 1) using uniform (Lu) or cotangent weights (Lc)
[17,14], D = LcV (computed beforehand), and vc denotes
the control points. The first term penalizes the shape dif-
ference after reconstruction, and the second term penalizes
the change of positions of the control points. With m
control points, (1) can be minimized as the (n + m) � n
overdetermined linear system:

L
Ic

� �
V0 ¼

D

Vc

� �
ð2Þ

where Ic is the index matrix of Vc, which maps each V0c to
Vc. The reconstructed shape looks generally natural when
rotations are small.

Rotation and edge constraints: Sorkine and Alexa [22]
introduced a nonlinear approach to find natural rotations,
which consists of two-steps. In the first step, an initial
guess is calculated by linear LSE (or defined as the previous
vj

vi

Fig. 1. Vertex vi and its 1-ring neighbors. The red arrow (center) is the
vector obtained from the uniform weights, which points to the centroid.
The green arrow (to the right) is the vector obtained from the cotangent
weights (1

2 ðcot aþ cot bÞ), which approximates the normal.
frame). In the second step, a rotation matrix Ri is computed
for each vertex by minimizing:

Rj2NðiÞkðv 0i � v 0jÞ � Riðv i � v jÞk2
2 ð3Þ

where NðiÞ represents the set of neighbors of the ith vertex
and Ri is the rotation matrix for the ith vertex and depends
on its neighbors. Minimizing (3) amounts to minimizing
the change of edge lengths. Denoting the edge eij = vi � vj,
one can write the covariance matrix Si as:

Si ¼ Rj2NðiÞðwijeijeT0
ij Þ ð4Þ

where wij is the cotangent weight of eij, and e0ij is the edge
after reconstruction. The rotation matrix Ri of the ith vertex
is derived from the singular value decomposition (SVD) of
the covariance matrix Si ¼ UiRiV

T
i , and Ri ¼ ViU

T
i [22,21]. A

new linear system is then obtained by plugging Ri into the
righthand side of (2) based on the derivative of (3) that en-
sures convergence [22]. The two procedures can be alter-
nately performed to recover natural rotations when there
is no large stretching. However, there is no volume pre-
serving constraint in this method.

Skeleton and volume constraints: Volume preservation is
important in many real-world applications. By using the
volumetric mesh, the volume magnitude can be preserved
to some degree. However, the volumetric mesh conflicts
with traditional ARAP and Laplacian methods, which are
designed for 2D manifolds. Furthermore, it increases the
computation complexity. In our method, the skeleton
information is incorporated to approximately keep the vol-
ume without breaking the manifoldness or significantly
increasing the computational complexity.

To initialize the model, two-steps are needed. In the
first step, a skeleton is manually defined or automatically
generated using mesh contraction [4], and points are
evenly generated from the skeleton (black spheres in
Fig. 2). Since our focus is on the deformation, robust and
automatic skeleton extractions are left for future investiga-
tion. In the second step, each skeleton point is correlated
with vertices on the surface (red1 points in Fig. 2). In this
1 For interpretation of color in all figures, the reader is referred to the
web version of this article.
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step, rays perpendicular to the skeleton segment are emit-
ted from each skeleton point and intersected with the sur-
face. The surface vertices closest to these intersections are
connected to that skeleton point. The connections between
skeleton points and surface vertices are defined as skeleton
edges (dashed lines in Fig. 2). Skeleton edges corresponding
to the same skeleton point define a cross section (grey
disks in Fig. 2). Although the object’s topology changes
after adding skeleton edges, the surface and each cross sec-
tion are still 2D manifolds, which can be easily added to
the ARAP framework. Note that there is no skeleton edge
between skeleton points, since this would break the
manifoldness.

By minimizing (3), the optimization strives to converge
to a state where the edge length error is small if the mod-
eling constraints do not impose large stretching on the sur-
face. Because of the length preservation of both skeleton
and surface edges, the areas of triangles consisting of these
edges are kept when skeleton edges are relatively dense.
Thus areas of cross sections consisting of these triangles
are approximately the same. By combining the areas with
surface edges connecting two cross sections, the volume
in-between can be roughly kept unchanged. Based on the
same idea, the volume of the main object is approximately
preserved during deformations, to the extent allowed by
the constraints (3). To add these skeleton edges as new
constraints, we append additional rows to (2):

L j 0
Ic j 0

Ls

2
64

3
75 V0

V0s

" #
¼

D

Vc

Ds

2
64

3
75 ð5Þ

where Ls;V
0
s and Ds are the uniform Laplace–Beltrami oper-

ator, cartesian coordinates and Laplacian coordinates of
skeleton points, respectively. Assuming there are l skeleton
points and m control points, then (5) is a (n + m + l) � (n + l)
overdetermined linear system. Since Ls depends on the con-
nectivity and relative positions between skeleton points and
surface vertices, it is multiplied by both V0 and V0s to compute
Ds, while L is only multiplied by V0 when computing D. In
other words, V0s is coupled to V0, but not vice versa. This
setting ensures that the first (n + m) rows are the same as
(2), with l additional zero columns. Thus the shape and con-
trol point constraints are the same. The newly added l rows
naturally incorporate the volume preserving constraint
without breaking the original system. In the same way in
which (2) corresponds to (1), solving (5) amounts to -mini-
mizing the following energy function:

kLV0 � Dk2
2 þ kLsV

0
all � Dsk2

2 þ Rm
i¼1jv 0ci

� vci
j2 ð6Þ

where V0all contains all surface vertices and skeleton points.
Thus adding these new constraints corresponds to append-
ing a new term to the energy function.

Weighted least square can be used to adjust the impor-
tance among surface vertices, control points and skeleton
points. In this case, the linear system (5) is rewritten as:

WLL j 0
WcIc j 0

WsLs

2
64

3
75 V0

V0s

" #
¼

WLD

WcVc

WsDs

2
64

3
75 ð7Þ
where WL, Wc and Ws are diagonal weight matrices for sur-
face vertices, control points and skeleton points,
respectively.

The whole optimization framework is extended from
that of [22]. An initial guess is obtained by solving (7). Then
rotation matrices are computed by using SVD, and are
plugged into the righthand side of (7) based on the deriv-
ative of (3). The two procedures are alternately performed
until convergence. This approach computes a natural rota-
tion for each vertex and approximately preserves the edge
length and the volume. In addition, the computational
complexity of (7) is similar to that of (2) since (7) only ap-
pends l rows and columns. Because the skeleton is gener-
ally 1D, l is much smaller than the number of surface
vertices. Thus the new system does not significantly de-
crease the efficiency.

Limitation of this framework: Our volume preservation
method is seamlessly built upon the ARAP surface model-
ing framework. Since its carefully designed framework of
energy minimization only directly preserves edge length,
our model relies on a fundamental assumption to work
properly: the skeleton of the model (or its part that we
are interested in) can be approximately represented as
one straight line. Thus the volume can be divided into
sub-volumes, and the sub-volume between two cross
sections can be roughly kept by preserving areas of cross
sections and lengths of edges on the surface. This is the
reason we are using perpendicular rays to generate the
cross sections. In practice, many models or their main
bodies have this property, especially models from natural
objects. Such examples are provided in the experiment
section.

2.3. Mesh optimization

Mesh quality is crucial to many mesh editing
algorithms, such as ARAP surface modeling. When using
cotangent weights, this method is especially sensitive to
the mesh quality. Degenerated triangles may result in
unstable deformation. Preprocessing the mesh for smooth-
ness can alleviate this problem. However, meshes may be
also degenerated during the deformation. Thus it is desir-
able to perform mesh optimization during deformation,
without significantly increasing the computational
complexity. This can be done by re-using intermediate
results.

Least squares mesh: Least square mesh [23] is an
algorithm to improve triangle quality of a surface mesh.
The inputs are anchor points and an initial surface mesh.
The output is an optimized surface mesh. Using a small
subset of m anchor points, a mesh can be reconstructed
from connectivity information alone by minimizing the
quadratic energy:

kLuV0k2
2 þ Rm

i¼1jv 0ai
� vai

j2 ð8Þ

where the va are anchor (landmark) points. kLuV0k2 tries to
smooth the object by minimizing the difference among
neighbors, and Rm

i¼1jv 0ai
� vai

j2 keeps anchor points un-
changed. In practice, with m anchors, it is minimized by
solving the (n + m) � n overdetermined linear system:
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Lu

Ia

� �
V0 ¼

0
Va

� �
ð9Þ

The first n rows are the Laplacian constraints, corre-
sponding to kLuV0k2, while the last m rows are the posi-
tional constraints, corresponding to Rm

i¼1jv 0ai
� vai

j2. Ia is
the index matrix of Va, which maps each V0a to Va. The
reconstructed shape is generally smooth, with the possible
exception of small areas around anchor vertices. The min-
imization procedure moves each vertex to the centroid of
its 1-ring, since the uniform Laplacian Lu is used, resulting
in good inner fairness.

Detail-preserving optimization: One limitation of the
least square mesh is that the shape details and sharp fea-
tures may be smoothed out. Minimizing kLuV0k2 means
that each vertex moves toward the centroid of its neigh-
bors (along the red arrow in Fig. 1). This approach can
effectively improve the mesh quality but would sacrifice
the shape details. Another Laplacian coordinate based ap-
proach is called detail-preserving optimization [15,14]. The
underlying idea is that instead of moving each vertex to-
wards the centroid of its neighbors, it is moved along the
tangential direction. This approach removes the difference
between the uniform and cotangent weights (red and
green arrows in Fig. 1). The linear system to solve now is
designed as:

Lu

Ia

� �
V0 ¼

D

Va

� �
ð10Þ

By setting the LuV0 = D in the first n rows, where D = LcV,
the system actually eliminates the difference between Lu

and Lc. In other words, each vertex moves along the tan-
gential plane until the uniform and cotangent weights
(red and green arrows in Fig. 1) are colinear. This approach
improves the mesh quality while also preserving shape
details.

A significant issue is the choice of anchor points. Nealen
et al. [14] show that all vertices can be employed as posi-
tional constraints using weighted least square. Then the
2n � n linear system to solve is defined as:

WLLu

WaI

� �
V0 ¼

WLD

WaV

� �
ð11Þ

where WL and Wa are diagonal matrices defining the
weights of the Laplacian coordinates and positional con-
straints, respectively. This setting does not require any
heuristic or user input. The computational complexity of
solving system (11) is similar to that of (10), even though
the size of the system is almost doubled.

Mesh quality: Since most meshes are represented as or
can be converted to sets of triangles, we use the radius ra-
tio [16] to measure the mesh quality. It is defined as:

ti ¼ 2
r
R

ð12Þ

where R and r are the radii of the circumscribed and in-
scribed circles respectively. The radius ratio takes values
within [0,1], and ti = 1 indicates a well shaped triangle.
The mean and minimal values of ti are crucial for the
robustness of many deformable models. The goal of mesh
optimization is to increase these two values.
2.4. Implementation and acceleration considerations

In each iteration, our system needs to solve two sparse
linear systems, (7) and (11), and find the rotation matrix Ri

for each vertex. Both linear systems have the similar for-
mat AV0 = b, where A consists of the Laplacian matrix L
and indicator matrices. Theoretically, it can be solved ana-
lytically by V0 = (ATA)�1ATb, whose computational com-
plexity is O(n3), where n is the size of A. However, A is
extremely sparse (4–7 nonzero elements in each row)
and does not change during deformation. As a result,
sparse Cholesky factorization [26] can be used as an initial-
ization. The solution can be rapidly computed by updating
b and using forward and backward substitution during
interaction. Since the factorized matrices are approxi-
mately banded sparse, the computational complexity of
solving the two systems is decreased to O(n).

The other computational cost comes from finding the
rotation matrix Ri for each vertex with SVD. In this step,
since the weights wij are constant during deformation, they
are calculated once and stored. Pre-allocating memory
space to all Ri can also improve the efficiency. Another
acceleration method is that during the mesh deformation
procedure, the previous frame is used as the initial guess
instead of solving (7).

When implementing the skeleton-based ARAP method,
the skeleton edge information can be stored as a separate
data structure, which can be a link list maintaining the
connectivity among skeleton points and surface vertices.
Thus the surface mesh in our method is exactly the same
as the one of other ARAP methods. In the mesh deforma-
tion step, the vertices on the surface and the skeleton
points are updated together, while in the mesh optimiza-
tion step, only the surface mesh is considered.

3. Experiments

3.1. Experimental settings

In this section we evaluate our algorithm in terms of
volume preserving property and robustness. The volume
preserving property comes from the deformation proce-
dure. It is validated in Section 3.2. The robustness benefits
from alternately employing mesh deformation and optimi-
zation, whose evaluation is in Section 3.3. The C++imple-
mentation was run on a Intel Core2 Quad 2.40 GHz CPU
with 8G RAM. Fig. 3 shows the seven models used in the
experiments. Table 1 displays the statistics of these mod-
els, including the number of vertices and faces, the mini-
mal and mean values of the radius ratio.

3.2. Evaluation of volume preservation

Five models are used for evaluation, namely the cylin-
der, the spiky plane, the cactus, the horse and the armadillo
model. To fairly compare our deformation procedure with
ARAP surface modeling [22], these models are smoothed
and simplified, since ARAP surface modeling may result
in corrupted meshes for complex models (Section 3.3).

Without skeleton information, our method works in the
same way as ARAP surface modeling. Fig. 4 demonstrates



Fig. 3. Models used in our experiments. First row: cylinder, plane with spikes, Cactus, Horse. Second row: Armadillo, Tweety, Hand. Note that the mesh
qualities of the tweety model and the hand model are very low.

Table 1
Statistics of models used in experiments, including the number of vertices
and faces, the minimal and mean values of radius ratio.

Model #Vertices #Faces Tmin Tmean

Cylinder 240 448 0.742 0.742
Plane with spikes 441 800 0.104 0.821
Cactus 620 1236 0.377 0.842
Horse 2482 4960 0.036 0.744
Armadillo 2703 5402 0.033 0.835
Tweety 7053 14,102 1.6e � 4 0.665
Hand 7609 15,214 6e � 11 0.602
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the rotation recovery and the edge-length preservation.
The plane with spikes is a typical scenario. When using
linear methods and only allowing translations, the normals
Fig. 4. Cylinder and spiky plane. (a and c) Linear LSE, (b and d) ARAP surface mo
bottom and translating the top. Note that only translations are involved.
of spikes always point to the original direction (Fig. 4c).
Multi-resolution can alleviate the problem, but it cannot
avoid self-intersections. ARAP surface modeling can find
natural rotations for spikes in three iterations (Fig. 4d).

Fig. 5 compares the linear LSE, ARAP surface modeling
and our skeleton-based ARAP mesh modeling. The cactus
model is a challenging test case due to its long protruding
features. With enough iterations, ARAP surface modeling
can recover rotations for these features. However, when
rotations are large, the bent volume is shrunk. Skeleton
constraints can alleviate this problem. The regions marked
by black boxes show the volume differences using two
methods. Fig. 6 compares ARAP surface modeling with
our method on a horse model. Using our method, the vol-
ume of the main body is mostly preserved. Fig. 7 shows
one more deformation example using an armadillo model.
deling (three iterations). The deformations are achieved by anchoring the



Fig. 5. Dancing cactus. (a) Linear LSE, (b) ARAP surface modeling (100 iterations), (c) using skeleton-based ARAP mesh modeling (100 iterations),
(d) skeleton edges and wire frames of (c). The deformations are achieved by anchoring the bottom and translating the top. The black boxes show volume
differences between traditional ARAP surface modeling and skeleton based method. Note that only translations are involved.

Fig. 6. Running horse. (a) original model with skeleton edges displayed, (b) ARAP surface modeling (three iterations), (c) using skeleton based ARAP mesh
modeling (three iterations), (d) skeleton edges and wire frames of (c). The deformations are achieved by anchoring the front legs and translating the rear
legs. Only translations are involved.

Fig. 7. Armadillo deformation. (a and b) Armadillo shot put. This deformation is obtained by translating and rotating the right arm using our skeleton based
method. (b) Displays the skeleton (black lines inside of the body) and the object’s wire frame. Volumes are mostly preserved. (c) ARAP surface modeling; (d)
skeleton-based ARAP mesh modeling using the same settings as (a) and (b). The deformations are achieved by anchoring the feet and translating the hand.
Only translations are involved.

Table 2
Errors and processing times of Figs. 5 and 6. RRMS-E stands for relative root
mean square errors of edge lengths. RE-V means the relative error of
volume magnitudes: abs(original volume � current volume)/(original vol-
ume). ‘‘Times’’ is the calculation time (s) for each iteration.

Editing sessions RRMS-E RE-V Times

Fig. 5a 0.126 0.453 0.017
Fig. 5b 0.074 0.131 0.024
Fig. 5c 0.075 0.056 0.025
Fig. 6b 0.068 0.356 0.117
Fig. 6c 0.040 0.125 0.121
Fig. 7c 0.027 0.063 0.132
Fig. 7d 0.021 0.014 0.137
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Table 2 shows the relative root mean square errors of
edge lengths and volume magnitudes. As expected, the
skeleton based method performs much better in terms of
volume preservation. It also shows the calculation time
for each iteration of different methods. Our method only
increases the processing time by about 3% compared to
ARAP surface modeling.

Multiple branches: As we discussed in Section 2.2, the
skeleton is preferred to be a straight line. However, some-
times the skeleton is complex and has branches. Our model
can be extended to handle such multiple-branch cases by
applying the above algorithms on each branch and its



Fig. 8. Cactus deformation. The skeleton has multiple branches and is extracted using the method in [4]. Then our method is applied on each branch. The
other settings are the same as Fig. 5.
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sub-branches. One more difficulty is how to generate such
multiple branches from a surface model. Manually interac-
tion can be tricky and time consuming. We used mesh con-
traction based skeleton extraction [4] to generate them.
We did preliminary experiments on multiple-branch mod-
els, such as the Cactus model (Fig. 8). There are five
branches or sub-branches in this model, i.e., one in the
main body and two in each arm. Compared to the results
in Fig. 5, this multiple-branch model also keeps the shape
and the volume magnitude of the arms of the Cactus. The
Fig. 9. Armadillo deformation. The skeleton has multiple branches and is extracte
other settings are the same as Fig. 7.

Fig. 10. The thumb of the hand is rotated, and the bottom part (inside of the cub
modeling without mesh optimization. The triangles on the tail and wings are d
robust, and the shape details are preserved when introducing mesh optimizatio
relative error of volume magnitude is 0.041 in this case.
Fig. 9 shows one more example, i.e., the Armadillo model.
It contains more than 10 branches, which are in the main
body, the tail, the arms and legs of the Armadillo model.
Its relative error of volume magnitude is 0.011.

One limitations of this skeleton-based ARAP mesh mod-
eling method, is that self-intersection may happen (Figs. 5
and 6), so the cross sections may cross, which makes the
model less stable. Mechanisms to prevent self-intersection
are a valuable addition.
d using the method in [4]. Then our method is applied on each branch. The

oid) is fixed. (a and b) Original model. (c and d) Result from ARAP surface
egenerated. (e and f) Result from our method. The deformation is more

n.



Fig. 11. The head of the tweety is rotated, and the foot is fixed. (a and b) Original model. (c) Result from ARAP surface modeling without mesh optimization.
The triangles on the finger and bottom are degenerated. (d and e) Result from our method. The deformation is more robust, and the shape details are
preserved when introducing mesh optimization.
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3.3. Evaluation of robustness

Two complex meshes are used to evaluate the robust-
ness of our method, the hand and the tweety models.
Fig. 10 shows the deformation results of our method and
ARAP method without mesh optimization using the hand
model, when the thumb of the hand is rotated. Since the
model contains many skinny triangles (low value of radius
ratio), using classical ARAP surface modeling [22] results in
a corrupted mesh. Artifacts can be observed on the tip of
the fingers and the bottom of the hand, which all contain
many skinny triangles. Since our method employs mesh
deformation and optimization alternately in each iteration,
the mesh quality is ensured during deformation, making
the model more stable. Because detailed preserving mesh
optimization is employed, the shape details are kept
(Fig. 10a and e). Fig. 11 shows other deformation results
using the Tweety model. Its head is rotated and its foot is
anchored. Artifacts are observed on the tail and wing, both
of which contains many skinny triangles, when using ARAP
surface modeling without the optimization procedure. Our
method improves the robustness while not affecting the
shape details.

Table 3 provides quantitative comparisons between our
method and ARAP method without mesh optimization.
Since the resulting meshes from the ARAP method are
degenerated, the differences of the edge length and volume
magnitude compared with the original meshes are very
large. Interestingly, the relative root mean square errors
of edge lengths (RRMS-E) of our method are also notice-
able. The reason is that the mesh optimization affects edge
lengths, especially for skinny triangles. These tiny edges
can be elongated to improve the mesh quality. Thus the
Table 3
Comparisons between our method and ARAP method without mesh
optimization. RRMS-E, RE-V Times have the same meanings as Table 2.
Tmin and Tmean are the same as Table 1.

Editing sessions RRMS-E RE-V Times Tmin Tmean

Fig. 10c >5 >5 0.390 8e �16 0.536
Fig. 10e 1.178 0.041 0.431 5e � 4 0.773
Fig. 11c 1.143 0.414 0.383 1e �6 0.565
Fig. 11e 0.736 0.047 0.409 6e � 4 0.793
differences compared to the original mesh are increased,
i.e., RRMS-E is increased. However, the shape details are
preserved, and the volume magnitudes are kept. Thus
slightly increased RRMS-E is acceptable here. Our method
also produces larger radius ratio because of the benefit of
mesh optimization. Although the minimal value of radius
ratio is still very small, the overall mesh quality is notice-
ably improved. One limitation is that our method needs
more processing time in each iteration because of the extra
optimization step. However, because of the pre-factoriza-
tion, the computational overhead is only around 10%.

Generally our method is more robust. This additional
optimization step in each iteration does not adversely af-
fect the shape details or computational complexity.
4. Discussions

We proposed a framework to robustly perform mesh
editing. It includes two procedures in each iteration, mesh
deformation and optimization, both of which are based
on Laplacian coordinates. The deformation procedure
uses skeleton information to approximately preserve the
volume magnitude without breaking the manifoldness of
traditional ARAP or increasing the computational complex-
ity. The optimization procedure improves the mesh quality,
which ensures more robust mesh editing. Our method is
easy-to-implement and may be useful to systems relying
on ARAP techniques.

There are some limitations in our proposed method.
First, the skeleton generation is not fully solved. We
provided a simple interface to generate one skeleton by
user input, and also an automatic approach to obtain
multiple branches. However, neither of them is robust
enough to handle all models. Since our method focuses
on the deformation, we would like to refine the skeleton
generation part in the future work. The second limitation
is that the skeleton or the branch of the skeleton has to
be a straight line. Our volume preserving property is based
on the assumption that the volume can be divided into
sub-volumes, and the sub-volume between two cross sec-
tions can be roughly kept by preserving areas of cross sec-
tions and lengths of edges on the surface. Thus it is
preferred that the sub-volume is similar to a cylinder. Then
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it can be approximated by the straight line (the skeleton or
its branch) and perpendicular rays which generate the
cross sections.

In the future we would like to incorporate the content-
aware deformation [29,11] into our algorithms, to produce
more natural results. We are also interested in combining
real skeleton-based animation methods. By editing the
skeleton, the surface can be deformed automatically. GPU
based acceleration is also a promising source of optimiza-
tion, since most computations come from the matrix
manipulations. This method can also be applied to other
applications like medical image analysis [32,27].
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