
Optimal Object Matching via Convexification and Composition

Hongsheng Li1 Junzhou Huang2 Shaoting Zhang3 Xiaolei Huang1

1 Department of Computer Science & Engineering, Lehigh University, USA
2 Department of Computer Science & Engineering, University of Texas at Arlington, USA

3 Department of Computer Science, Rutgers University, USA
h.li@lehigh.edu, jzhuang@uta.edu, shaoting@cs.rutgers.edu, xih206@lehigh.edu

Abstract

In this paper, we propose a novel object matching method
to match an object to its instance in an input scene image,
where both the object template and the input scene image
are represented by groups of feature points. We relax each
template point’s discrete feature cost function to create a
convex function that can be optimized efficiently. Such con-
tinuous and convex functions with different regularization
terms are able to create different convex optimization mod-
els handling objects undergoing (i) global transformation,
(ii) locally affine transformation, and (iii) articulated trans-
formation. These models can better constrain each tem-
plate point’s transformation and therefore generate more
robust matching results. Unlike traditional object or fea-
ture matching methods with “hard” node-to-node results,
our proposed method allows template points to be trans-
formed to any location in the image plane. Such a prop-
erty makes our method robust to feature point occlusion or
mis-detection. Our extensive experiments demonstrate the
robustness and flexibility of our method.

1. Introduction
An object template in an image can be represented by a

group of template feature points (Fig. 1.(a)). Each feature
point has a location (x, y) in the 2D image domain and a
feature vector describing the local appearance around that
location. Object matching can be referred as locating such
a template in an input scene image represented by thousands
of detected feature points (Fig. 1.(b)). It has extensive uses
in object classification [1], detection and tracking [8], shape
matching [8], and image retrieval [15].

Most feature point matching methods aim at recovering
node-to-node correspondences between two feature point
sets. The family of RANSAC methods [3] has shown its ef-
fectiveness in various matching tasks. However, these meth-
ods are restricted to matching objects undergoing only glob-
al transformations. Graph matching methods are proposed
to handle more complex local transformations, where fea-
ture points are modeled as graph nodes, and geometric rela-
tions between pairs of feature points are modeled as graph

Figure 1. (Left) A group of feature points representing the objec-
t template. (Right) Thousands of feature points representing the
input scene image.

edges. Berg et al. [1] modeled the problem as a quadratic in-
teger programming model, where affine terms and quadratic
terms of the objective function represent node-to-node and
edge-to-edge similarities between the two graphs, respec-
tively. The model was relaxed into a continuous domain,
solved, and mapped back into the original solution space.
Leordeanu and Hebert [9] encoded all the above similari-
ty information into a matrix. The correspondences are then
obtained by mapping the principal eigenvector of the ma-
trix to the discrete solution space using a greedy algorith-
m. To automatically set the weights of different terms in
the similarity matrix, supervised [2] and unsupervised [10]
learning methods optimizing the weights were proposed.
Cour et al. [4] proposed a spectral relaxation method for
the graph matching problem that incorporates one-to-one
or one-to-many mapping constraints, and presented a nor-
malization procedure for existing graph matching scoring
functions that can dramatically improve the matching accu-
racy. Most recently, Liu and Yan [13] proposed an algorith-
m to discover all common visual patterns within two sets
of feature points. It optimizes the same objective function
as that of [9] but with different constraints. It showed its
effectiveness in recovering visual common patterns no mat-
ter the matchings between them are one-to-one or many-to-
many. However, one major limitation of the graph match-
ing methods is that order-2 edges can only provide rota-
tional invariance. Zass and Shashua [16] extended ordinary
graphs to hypergraphs, whose high-order edges can encode
more complex geometric invariances. The method’s out-
put is a probabilistic (“soft”) result rather than traditional
“hard” node-to-node results. In this way, they were able to

1



model the problem as a convex optimization problem and
obtained a global minimum. Duchenne et al. [5] encoded
similarities between two hypergraphs into a tensor and pro-
posed a power iteration method to effectively recover the
tensor’s principal eigenvector with sparse prior.

The feature point matching problem is also modeled as
linear programming models, where geometric invariances
are expressed as affine functions and constraints. Jiang et
al. [7] proposed a linear programming framework for fea-
ture point matching. It models each node-to-node corre-
spondence as a binary variable and uses vectors specified by
each point and its neighbors as geometric invariances. Such
geometric invariance terms can only tolerate global transla-
tions and local deformations. Jiang and Yu [8] followed this
framework and explicitly solved for rotation and scaling to
achieve similarity invariance. Li et al. [11] represented each
template point by an affine combination of its neighbors.
Locally-affine invariance can be obtained by reconstructing
matched points using the same affine combination coeffi-
cients. One disadvantage of this type of methods is that
their geometric regularization terms must be affine func-
tions and cannot be easily combined. Therefore, this frame-
work would have difficulties modeling objects undergoing
complex transformations, e.g., articulated transformation.

In this paper, we propose a novel object matching
method. For each template feature point, we create a con-
vex matching function based on its feature similarities to all
scene points. Based on such convex functions, we propose
a convex optimization framework and solve for all points’
globally optimal transformation parameters simultaneous-
ly. Compared with existing feature matching methods, it
has two major advantages. (i) Our proposed framework can
provide multiple levels of degrees of freedom on transfor-
mation and therefore can better constrain transformations of
different types of object templates. For instance, if an ob-
ject undergoes articulated transformation, we can then ex-
plicitly model a template consisting of moving rigid parts
and junction points connecting these parts. (ii) Unlike tra-
ditional methods seeking “hard” node-to-node results, our
new method no longer requires each template point being
matched to only scene feature point locations but the en-
tire image plane. This “soft” result can provide more ro-
bust matching performance in real world applications where
some corresponding feature points in the scene image might
not be detected. However, when a “hard” result is desired,
our method still can obtain it through a subsequent step.

2. Feature Cost Functions
2.1. Feature Matching Costs

As we mentioned above, both the template and the in-
put scene image can be represented by groups of feature
points (Fig. 1). Let nt and ns represent the number of
feature points in the template and in the input scene im-
age, respectively. Let pi = [xpi , ypi ]

T , i = 1, · · · , nt, and
qj = [xqj , yqj ]T , j = 1, · · · , ns, denote the position of

the ith feature point in the template, and the position of jth
feature point in the scene image, respectively.

Usually, feature vectors are invariant to certain geomet-
ric transformation, e.g., SIFT [14] feature vectors are rota-
tional and scaling invariant. The feature cost of matching
two such feature points can be calculated as the L2 dis-
tance between their feature vectors. Even if some type of
features does not have geometrical invariance (e.g., Shape
Context [1]), one can still exhaustively search for all geo-
metric transformations for one feature vector and calculate
theL2 distances between the transformed feature vector and
another one. The matching cost between the two feature
points can then be defined as the minimum among all the
L2 distances. Let Ci,j denote the feature cost of matching
the ith template feature point to the jth scene feature point.
Such discrete feature costs are all pre-calculated before the
matching is performed.

2.2. Discrete Feature Cost Functions

For each template point pi, i = 1, · · · , nt, we can define
a discrete feature cost function ci : Q→ R as follows:

ci

(
[xq1

, yq1
]
T
)

= Ci,1,

ci

(
[xq2

, yq2
]
T
)

= Ci,2,

...

ci

([
xqns

, yqns

]T)
= Ci,ns , (1)

where Q = {q1, · · · ,qns
} is the set containing all scene

points’ positions. This function denotes that the template
point pi can only be matched to scene feature point loca-
tions, qj = [xqj

, yqj
]T , j = 1, · · · , ns, with a feature cost

determined by function ci(·). This is because only the fea-
ture costs of matching pi to scene points’ positions are de-
fined as Ci,j , j = 1, · · · , ns. Minimization of ci(·) results
in the best matched scene point for the ith template point
pi. One example of this discrete function is shown in Fig.
2.(a). Those ci(·) functions are discrete and non-convex.
Directly optimizing the summation of a series of ci(·) func-
tions with geometric regularization terms is NP-hard, and
no algorithm can optimize it in polynomial time.

2.3. Convex Feature Cost Functions

To solve this problem, we relax each ci(·) function and
create a continuous and convex feature cost function c̃i(·)
which can be efficiently optimized. The above discrete
functions are viewed as 3D point clouds. For the template
point pi, all scene feature points’ locations, and the costs
of matching pi to all scene points can be viewed as a 3D
(ns × 3) point cloud (Fig. 2.(a)), where the 3rd dimension



0
200

400
600

0
200

400
600

0

0.2

0.4

0.6

0.8

1

xy

c i
(·)

0
200

400
600

0
200

400
600

0

0.2

0.4

0.6

0.8

1

xy

c̃ i
(·)

(a) (b)

Figure 2. (a) An example discrete feature cost function ci(·). (b)
The convex feature cost function c̃i(·) obtained from (a).

represents the matching cost:
xq1

yq1
Ci,1

xq2
yq2

Ci,2

...
...

...
xqns

yqns
Ci,ns

 (2)

One way to create the convex feature cost function c̃i(·) is to
define it as the lower convex hull of the ith 3D point cloud
with respect to the matching cost dimension. The lower
convex hull can be mathematically defined as facets in the
convex hull whose normal vectors’ 3rd components are less
than 0 (i.e., those facets’ normal vectors point downward
along the matching cost dimension). One example of this
convex feature function is shown in Fig. 2.(b). Let nf de-
note the number of facets on the lower convex hull, and
zk = rkx+sky+tk, k = 1, · · · , nf , be the plane functions
defined by these facets, where rk, sk, and tk are coefficients
of the kth plane function. The convex feature cost function
c̃i : R2 → R can be defined as

c̃i
(
[x, y]T

)
= max

k
(rkx+ sky + tk) . (3)

It denotes that the ith template point now can be assigned
to any location [x, y]T in the 2D image domain with a
matching cost c̃i

(
[x, y]T

)
. Minimization of c̃i(·) no longer

matches the ith template point to only scene point locations
but any location in the 2D image domain. Note that the con-
vex functions c̃i(·) are not limited to the lower convex hulls,
any other types of convex functions obtained by relaxing the
discrete feature cost functions (1) can also be used.

The lower convex hull technique has an intuitive inter-
pretation (Fig. 2). The lower convex hulls are lower bounds
of the discrete feature cost functions. However, when fea-
tures are not distinctive, this technique may not generate
satisfactory lower bounds. We will introduce an iterative
technique to gradually provide more accurate lower bounds
in Section 4.

Instead of directly searching for an optimal matching po-
sition for each template point, we prefer deforming template
points with some geometric transformation models and de-
termining their feature costs using (3). In this way, we can
better constrain all template points’ transformations as well

as neighboring points’ geometric relationships. We deform
the template point pi with affine transformation

T a
i (Θ) =

[
α β
γ δ

] [
xpi

ypi

]
+

[
φ
ϕ

]
, (4)

or similarity transformation

T s
i (Θ) =

[
α β
−β α

] [
xpi

ypi

]
+

[
φ
ϕ

]
, (5)

where T a
i : R6 → R2 and T s

i : R4 → R2 denote the affine
and similarity transformations of the template point pi with
parameters Θ respectively. Θ = [α, β, γ, δ, φ, ϕ]T ∈
R6 represent affine transformation parameters, and Θ =
[α, β, φ, ϕ]T ∈ R4 the similarity transformation parame-
ters. We further denote Ti(Θ) = Api + b as a generally
transformed template point pi with parameters Θ. Note that
xpi and ypi are not variables but coefficients of the function
Ti(Θ). The final feature cost of the ith transformed template
point can then be determined by using its position, Ti(Θ),
as the variables of c̃i(·), i.e.,

fi(Θ) = c̃i (Ti(Θ)) . (6)

fi(Θ) can be viewed as the ith template point’s feature
matching cost under a transformation specified by Θ. Be-
cause both (4) and (5) are affine functions, and (3) is a con-
vex function, the composition of them, fi(Θ), is also con-
vex.

Consequently, fi(Θ) can be efficiently and globally op-
timized by convex optimization. The gradients of fi(Θ) can
be easily obtained by the chain rule:

∇fi(Θ) = ∇c̃i(Ti(Θ))∇Ti(Θ). (7)

2.4. The Overall Objective Function
Since each feature cost function fi(Θ) is convex, the

summation of all feature cost functions,
∑nt

i fi(Θ), is also
convex and therefore can be efficiently optimized. The op-
timal transformation parameters for all points p1, · · · ,pnt

are denoted as Θ̂1, · · · , Θ̂nt
. They can be obtained by opti-

mizing the following overall objective function,

arg min
Θ1,··· ,Θnt

(
nt∑
i

fi(Θi) + Regularization Terms

)
, (8)

where Θi denotes pi’s transformation parameters, and the
regularization terms represent geometric constraints that d-
ifferent transformation models should maintain.

One major advantage of the above objective function is
that it no longer requires template points being matched to
only scene point locations, instead it can be matched to
any position in the image plane. For each template point,
our method calculates its optimal transformation parame-
ters. This property is very useful when a small part of the



Global
Transformation

pi

pj

pk

Template Transformed Template

A, b

di

dj

dk

Api + b

Apk+ b
Apj + b

Figure 3. Illustration of the global transformation model. After the
global transformation with parameters A and b, the three points in-
dividually translate for di, dj , and dk to better fit the input image.

object is occluded in the scene image. Those occluded fea-
ture points can be “interpolated” from the unoccluded ones.
Even if the object is not occluded, this property is still use-
ful because some corresponding feature points might not be
detected in the scene image.

However, if a “hard” node-to-node result is desired, we
can search for the best matched scene point for the template
point pi after its optimal transformation parameters Θ̂i is
obtained from (8):

ĵi = arg min
j

(
ci (qj) + wh

∥∥∥qj − Ti(Θ̂i)
∥∥∥2

2

)
, (9)

The above function means the best matched scene point qĵi
of pi should have a small feature matching cost as well as
be close to the optimal “soft” matching result obtained from
(8). wh is the parameter that weighs the feature matching
cost and the squared distance to the optimal “soft” result.

3. Transformation Models
For objects undergoing different transformations, differ-

ent regularization terms should be used in (8). In this sec-
tion, we introduce three different transformation models
with multiple levels of degrees of freedoms: (i) the global
transformation model, (ii) the locally affine transformation
model, and (iii) the articulated transformation model. Note
that transformation models are not limited to the ones we
mention here, combinations of the above models or other
models can also be used in our proposed framework.

Unlike existing methods, where geometric constraints
are implicitly expressed as edge weight differences [1], [9],
[16], [5] or affine functions [7], [8], [11], our method explic-
itly optimizes and constrains each template point’s transfor-
mation parameters. Therefore, it can better constrain geo-
metric relationships between transformed points.

3.1. The Global Transformation Model
Our global transformation model assumes objects under-

going globally affine or similarity transformation, and smal-
l local deformations. Therefore, all points should share a
common set of global transformation parameters. To mod-
el the local deformations and to better fit the input image

p1

p2 p3

p4

G1 G1

G2 G2

Affine
Transformation

Template Transformed Template

ΘG1

ΘG2

T1(ΘG1)

T4(ΘG2)

T2(ΘG1)
= T2(ΘG2)

T3(ΘG1)
= T3(ΘG2)

Figure 4. Illustration of the locally affine transformation model
using 4 points (p1, p2, p3, and p4) in 2 triangles (G1 and G2).
To maintain the mesh topology after transformation, the equality
constraints (12) on p2 and p3 should be satisfied as T2(ΘG1) =
T2(ΘG2), and T3(ΘG1) = T3(ΘG2).

locally, each point is also allowed to translate individually
for a small distance. We make small changes to the Ti(Θ)
function and transform the template point pi as

Ṫi(Θi) = Api + b+ di, (10)

where A represents the 2 × 2 global transformaton matrix,
and b the 2 × 1 global translation vector as in (4) and (5).
di = [φi, ϕi]

T is pi’s local translation vector. The tem-
plate point pi’s transformation parameters Θi consist of
common global transformation parameters, A and b, and a
local translation vector di (Fig. 3). To penalize local defor-
mations that are too large, the squared distance each point
translates locally, ‖di‖22, should be regularized. The above
transformation model and regularization terms result in the
following optimization model

minimize
A,b,d1,··· ,dnt

nt∑
i

{
c̃i(Api + b+ di) + wg‖di‖22

}
, (11)

wherewg is the parameter that weighs the feature cost terms
and the local translation regularization terms. The above
optimization model provides more robust matching results
when the object is known to undergo mostly global transfor-
mation. Experiments demonstrating this model are shown
in Section 5.1 and 5.3.

3.2. The Locally Affine Transformation Model
If an object undergoes complex transformations that can-

not be described by globally affine or similarity transforma-
tion models, we propose to approximate the object’s trans-
formation with a locally affine transformation model.

This model achieves locally affine invariance by trans-
forming every three neighboring template points together.
We first use Delaunay Triangulation to obtain a triangu-
lated mesh from the 2D template points. Then each three
points defining a triangle on the mesh are transformed to-
gether, in other words, every three template points in a tri-
angle share a common set of affine transformation parame-
ters (Fig. 4). Let m denote the number of triangles in the
triangulated mesh, G1, G2, · · · , Gm denote the m sets con-
sisting of the points in the 1st, 2nd, · · · , mth triangles, and



Template Transformed Template

Global
Transformationo12

G1
G1

G2 G2

ΘG1

ΘG2

To12(ΘG1) − To12(ΘG2) 2

To12(ΘG1)

To12(ΘG2)

Figure 5. Illustration of the articulated transformation model with
a 2-part object. o12 is the junction point between parts G1 and G2.
The distance between the transformed junction points To12(ΘG1)
and To12(ΘG2) is used for regularization.

ΘGu
∈ R6 denote the affine transformation parameters for

template points in the uth triangle. If the uth and the vth tri-
angles share a common edge, we call them two neighboring
triangles and denote them as u ∈ Nv, v ∈ Nu.

To make sure one template point in several triangles be-
ing transformed to a single position, the following equality
constraints need to be added in the optimization model:

Ti(ΘGu
) = Ti(ΘGv

) for all i = 1, · · · , nt, (12)
for all u, v = 1, · · · ,m,

where pi ∈ Gu and pi ∈ Gv,

The above equality constraints are illustrated in Fig. 4
with 4 points, p1,p2,p3,p4, in two triangles, where G1 =
{p1,p2,p3} and G2 = {p2,p3,p4}. The equality con-
straints should be applied to p2 and p3 as T2(ΘG1) =
T2(ΘG2), T3(ΘG1) = T3(ΘG2).

We also would like the transformed mesh to maintain
its smoothness. The differences between neighboring tri-
angles’ transformation parameters are penalized as regular-
ization terms in the optimization model. The final objective
function for the locally affine model can be expressed as

minimize
ΘG1

,··· ,ΘGm

 m∑
u=1

∑
pi∈Gu

c̃i(Ti(ΘGu
))

+wl

m∑
u=1

∑
u∈Nv

‖ΘGu
−ΘGv

‖22,
)

(13)

subject to The Equality Constraints in (12),

where wl is the parameter that weighs the feature cost terms
and the mesh smoothness regularization terms. The above
model can approximate very complex transformations. Ex-
periments demonstrating this model are shown in Section
5.2 and 5.3.

3.3. The Articulated Transformation Model
There are also many types of objects, e.g., human bodies,

undergoing articulated transformations. These objects have
several connected rigid parts which undergo global trans-
formations separately. We reuse the notations in Section
3.2 without causing confusion. Let m denote the number of

rigid parts in an object, G1, G2, · · · , Gm denote the m sets
consisting of the points in the 1st, 2nd, · · · , mth parts, and
ΘGu

∈ R6 or R4 denote the affine or similarity transfor-
mation parameters for template points in the uth part.

For every pair of connected parts u and v, we mod-
el a junction point ouv denoting the connecting point be-
tween the two parts. During the matching process, it is de-
formed according to both parts’ transformation parameters
to Touv

(ΘGu
) and Touv

(ΘGv
), where Touv

(Θ) is the trans-
formed position of ouv after a transformation with parame-
ters Θ and is defined similarly as Ti(Θ). To maintain con-
nectivity of the two parts u and v, the squared distance be-
tween the two transformed junction points, ‖Touv

(ΘGu
) −

Touv
(ΘGv

)‖22, should be minimized and is used as a regu-
larization term. The articulated transformation model for a
two-part object is illustrated in Fig. 5. The final optimiza-
tion model for an object undergoing generally articulated
transformation is then defined as

minimize
ΘG1

,··· ,ΘGm

 m∑
u=1

∑
pi∈Gu

c̃i(Ti(ΘGu
)) (14)

+wa

∑
ouv

‖Touv
(ΘGu

)− Touv
(ΘGv

)‖22

)
,

wherewa is the parameter that weighs the feature cost terms
and the part connectivity regularization terms. Experiments
demonstrating this model are shown in Section 5.4.

4. Implementation and Performance
The convex feature cost functions c̃i(·) are created by

relaxing the discrete functions ci(·). When features are dis-
tinctive, i.e., most template points have relatively low costs
when being matching to their corresponding scene points,
the lower convex hull relaxation provides satisfactory lower
bounds to the discrete functions ci(·). However, when fea-
tures are not distinctive, the relaxation may generate func-
tions with “large” low-cost regions. To solve this problem,
we use a technique similar to that proposed in [7]. We it-
eratively create these convex feature functions using fewer
and fewer scene feature points and gradually obtain more
accurate lower bounds.

In the first iteration, for each template point, we use all
scene feature points and their feature costs as (2) to cre-
ate the convex feature cost function. Those convex func-
tions were then used in our proposed optimization models,
and template points are transformed according to the ob-
tained optimal transformation parameters. In the second it-
eration, for each template point, we set a “trust region” cen-
tered at the first iteration’s transformed template point posi-
tion. Each trust region is smaller than the entire image and
therefore includes fewer scene points. We then can generate
feature cost functions using fewer scene points and obtain
more accurate lower bounds for the discrete ci(·) functions.
Similar operations are performed in the following iterations,



0 200 400 600
0

100

200

300

400

500

50% Outliers & 50% Occlusion

0 200 400 600
0

100

200

300

400

500

Averange Distance = 5.0e−14

Figure 6. An example point matching case using Shape Context [1]
as features (left) before matching and (right) after matching. Blue
dots and red circles represent template and scene feature points.

Our Proposed Method The Previous Method [8]
h% = 10% 0.00± 0.00 1.34± 4.06
h% = 20% 0.10± 1.08 4.37± 11.29
h% = 30% 0.53± 2.03 6.59± 13.01
h% = 40% 3.27± 6.23 10.23± 13.88
h% = 50% 18.72± 17.81 19.94± 21.66

Table 1. The mean and standard deviation of point matching cases’
errors under different outlier and occlusion levels. L2 distances
between known corresponding points are used as errors.

where feature cost functions are created based on smaller
trust regions centered at the previous iterations’ resulting
transformed template points.

Our optimization models (11), (13), and (14) are asymp-
totically faster than the previous methods [8], [11] because
our models have significantly fewer variables and con-
straints. For each matching case with a 100-node template,
our method needs no more than 3 iterations and each iter-
ation takes no more than 1.5s using a MATLAB and CVX
[6] implementation on a computer with a 3.0GHz CPU.

5. Experiments
In this section, we present extensive experiments to

demonstrate the effectiveness and robustness of our method.
Except for the experiments in Section 5.1, where Shape
Context [1] is used as features, SIFT [14] feature points are
used for all other experiments. For each case, we tested
three weights, 0.2, 1 and 5 for our method; the weight re-
sulting in the best matching result was chosen. In all our
experiments, we let our method run for three iterations. In
the 1st iteration, the trust region for each template point is
set as the entire image. In the 2nd and 3rd iterations, the
trust region is set as a 151×151 square and a 25×25 square
centered at the previous iterations’ results, respectively.

5.1. Synthetic Data
For experiments on synthetic data, we slightly changed

the experiment setup in [8] and created random-point
matching cases with Shape Context [1] as features. To gen-
erate each matching case, we first used points randomly
spread in the region [100, 500]× [100, 500] as template fea-
ture points. Then, to generate scene points from the tem-
plate points, we randomly scaled the template points in the
range [0.5, 2.0] and rotated them for an angle in [−π, π]. Fi-
nally, we randomly deleted h%×nt number of points from

the template point set to simulate the effects of occlusion or
failure of feature point detection, and added h%× nt num-
ber of randomly spread points in [0, 600] × [0, 600] as out-
liers. The L2 distances between the transformed template
points and their known corresponding scene positions are
calculated as matching errors for each matching case. One
matching case with 50% outliers and 50% occlusion using
our method is shown in Fig. 6. For each 10%, 20%, 30%,
40% and 50% outlier and occlusion level, we created 100
matching cases and matched them using our global similar-
ity model (11) and the method in [8]. The statistics of errors
on the matching cases using the two methods are compared
in Table 1. Our global similarity model (11) provides more
constraints than [8] does, and is able to “interpolate” miss-
ing template points caused by occlusion or failure of feature
point detection.

5.2. Static Image Pairs

We obtained 4 static image pairs from [12] and matched
them using SIFT [14] points and our locally affine optimiza-
tion model (13). The first three objects in Fig. 7 are surfaces
undergoing perspective or very complex local deformation-
s. By approximating them using the locally affine model
(13), our method satisfactorily matched them, with some s-
mall errors near the boundaries of objects where features are
more degenerated. The last case in Fig. 7 shows matching
an object in a blurry image to its instance after some defor-
mations in a sharp scene image. The body and belt parts
of the object were successfully matched although they have
undergone large deformations.

5.3. Objects Undergoing Global and Locally Affine
Transformations

We obtained 3 video clips from the website of the au-
thors of [11] and matched object templates to the instances
of objects in the videos frame by frame. Fig. 8.(a) shows
the three object templates, and Fig. 8.(c) shows example
matching results from the three videos.

For different video clips, we chose the most appropriate
optimization model from (11), (13), and (14), which best
describes that object’s transformation and provides as much
geometric constraint as possible. The previous method [11]
was used for comparison. The first object (Fig. 8.(1)) is an
IEEE Spectrum magazine mainly undergoing global trans-
formation. We chose to model its transformation using the
global affine transformation model (11), i.e., Θ ∈ R6. The
second object is a Computers magazine undergoing mostly
similarity transformation in the first half of the video and
local deformations in the second half. We chose to use the
locally affine model (13) to match this object. The third
object is a bee working on a flower. This real-world object
undergoes complex transformations, and therefore we again
used the locally affine model to approximate its transforma-
tions. Figs. 8.(c) and 8.(d) show the comparison between
our results and the results obtained by [11]. It is obvious



(a) (b) (c) (d) (e)
Figure 7. Our method’s matching results on four image pairs obtained from [12]. (a) Template images. (b) Template SIFT feature points.
(c) Scene images. (d) Scene SIFT feature points. (e) Matching results in scene images.

(1)

(2)

(3)

(a) (b) (c) (d)
Figure 8. Example matching results from the three videos by our proposed method and the previous method [11]. (a) Template feature
points. (b) The scene images. Dots represent all detected feature points. (c) The matching results by our proposed method. (d) The
matching results by the previous method [11].



Figure 9. Four example frames’ matching results from the toy worm video by our proposed method. Yellow dots on the background
represent all detected feature points.

(a)

(b)

Figure 10. (a) The template image of the toy worm. (b) 4 parts’
template feature points are colored differently. Boxes are drawn
for better visualization in the matching results.

that our results are much more robust to object occlusion
and feature point mis-detection.

5.4. Objects Undergoing Articulated Transforma-
tion

We also obtain another video from [11], which record-
s a toy worm being bent by a person. We chose to use
the articulated transformation model (14) to approximate it-
s complex transformations. We modeled the toy worm as a
template consisting of four connected parts undergoing sep-
arate affine transformations, i.e., ΘGu

∈ R6, u = 1, · · · , 4.
Fig. 10.(b) shows template feature points belonging to the
four parts. For better visualization, we only show the four
parts’ bounding boxes in the results. Fig. 9 shows 4 exam-
ple matching results from the video sequence. Although the
toy undergoes very complex transformations, our proposed
articulated model (14) was able to match it satisfactorily.

6. Conclusion and Discussion
In this paper, we present a novel object matching method

based on convex optimization techniques. Convex feature
cost functions are created by relaxing the original discrete
feature cost functions. Such convex functions result in con-
vex optimization models that allow multiple levels of de-
grees of freedom on transformation. These models can
better constrain transformations of different types of object
templates to generate more accurate matching results. Our
method’s “soft” matching results are also more robust to
feature point occlusion or mis-detection. Extensive experi-
ments and comparison with previous methods demonstrate
the effectiveness and robustness of our proposed method.

Because of the convex relaxation, the optimal solution
obtained in our method does not always correspond to the
true optimal matching solution. When the feature points
are distinctive, the relaxation using the lower convex hull is

tight, whereas the relaxation could bring large errors if fea-
ture points are very indistinctive. In real-world application-
s, feature points usually have distinctive power, thus having
large errors due to the relaxation is very rare as demonstrat-
ed by extensive experiments.
Acknowledgments. This research was supported in part by
the NSF grant IIS-0812120. The authors would like to thank
Dr. Chenyang Xu (Siemens) for stimulating discussions on
the transformation models.

References
[1] A. C. Berg, T. L. Berg, and J. Malik. Shape matching and ob-

ject recognition using low distortion correspondences. Proc.
CVPR, pages 26–33, 2005.

[2] T. S. Caetano, J. J. McAuley, L. Cheng, Q. V. Le, and
A. J. Smola. Learning graph matching. IEEE Trans. PAMI,
10:2349–2374, 2009.

[3] S. Choi, T. Kim, and W. Yu. Performance evaluation of
ransac family. Proc. BMVC, 2009.

[4] T. Cour, P. Srinivasan, and J. Shi. Balanced graph matching.
Proc. NIPS, pages 313–320, 2006.

[5] O. Duchenne, F. Bach, I. Kweon, and J. Ponce. A tensor-
based algorithm for high-order graph matching. Proc. CVPR,
2009.

[6] M. Grant and S. Boyd. CVX: Matlab software
for disciplined convex programming, version 1.21.
http://cvxr.com/cvx, Feb. 2011.

[7] H. Jiang, M. S. Drew, and Z. Li. Matching by linear pro-
gramming and successive convexification. IEEE Trans. PA-
MI, 29:959–975, 2007.

[8] H. Jiang and S. X. Yu. Linear solution to scale and rotation
invariant object matching. Proc. CVPR, 2009.

[9] M. Leordeanu and M. Hebert. A spectral technique for corre-
spondence problems using pairwise constraints. Proc. ICCV,
pages 1482–1489, 2005.

[10] M. Leordeanu and M. Hebert. Unsupervised learning for
graph matching. Proc. CVPR, 2009.

[11] H. Li, E. Kim, X. Huang, and L. He. Object matching with
a locally affine-invariant constraint. Proc. CVPR, 2010.

[12] H. Ling and D. W. Jacobs. Deformation invariant image
matching. Proc. ICCV, 2005.

[13] H. Liu and S. Yan. Common visual pattern discovery via
spatially coherent correspondences. Proc. CVPR, 2010.

[14] D. G. Lowe. Distinctive image features from scale-invariant
keypoints. Int’l J. Comp. Vis., 60:91–110, 2004.

[15] C. Schmid and R. Mohr. Local grayvalue invariants for im-
age retrieval. IEEE Trans. PAMI, 19:530–535, 1997.

[16] R. Zass and A. Shashua. Probabilistic graph and hypergraph
matching. Proc. CVPR, 2008.


