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ABSTRACT

We develop a non-intrusive system for monitoring fatigue by
tracking eyelids with a single web camera. Tracking slow
eyelid closures is one of the most reliable ways to monitor
fatigue during critical performance tasks. The challenges
come from arbitrary head movement, occlusion, reflection
of glasses, motion blurs, etc. We model the shape of eyes
using a pair of parameterized parabolic curves, and fit the
model in each frame to maximize the total likelihood of the
eye regions. Our system is able to track face movement and
fit eyelids reliably in real time. We test our system with
videos captured from both alert and drowsy subjects. The
experiment results prove the effectiveness of our system.

Index Terms— fatigue detection, eyelid tracking

1. INTRODUCTION

Fatigue from chronic partial sleep deprivation, circadian mis-
alignment, and work overload is a risk factor for people driv-
ing vehicles or performing critical tasks. People in fatigue ex-
hibit certain visual behaviors observable from eyes and faces.
Typical visual characteristics of fatigue include slow eyelid
movement, smaller degree of eye openness, frequent nodding,
sluggish in facial expression, sagging posture, etc [1]. Among
them, tracking slow eyelid closures is one of the most reliable
ways to detect lapse of attention [2].

Tracking eyelids to monitor fatigue is a challenging task.
The challenge comes from the fact that the appearances of
eyes are significantly different when the eyes are closed or
half closed. A single template is insufficient to model eye
appearances. Head rotations, shadows, reflection of glasses,
motion blurs and image noises could also make this problem
more difficult. Therefore, reliable eyelid tracking using opti-
cal cameras is still not resolved.

In this paper, we propose a new framework for robust eye-
lid tracking for fatigue detection. Instead of directly tracking
the eyes, we first employ a robust face tracker, which could
track the facial landmarks with various poses in real time.
We use a deformable template to model the shapes of eye-
lids, and fit the model to maximize the total likelihood of the
eye regions. We propose an efficient algorithm to fit the eye
template and track the eyelids. Our system can successfully
be used in fatigue detection.

Fig. 1. System overview

The workflow of our system is shown in Fig. 1. We first
detect face region from the image captured by a web camera.
The facial features are detected and tracked by using our face
tracker based on Active Shape Models. The eye regions are
cropped, and a distance map is constructed by measuring the
distance of each pixel to the distribution of the skin colors.
We finally fit the deformable eye model to the distance map,
which gives the positions of eyelids.

2. RELATED WORK

Eye tracking and blink detection have been studied exten-
sively in recently years. The related work includes eye local-
ization, blink detection, and infrared spectrum based systems.

Eye localization. Accurate eye localization is a key com-
ponent of many computer vision systems. Previous methods
localize eye centers by using the eye geometry [3], appear-
ance features [4], and context information [5] [6].

Blink detection. Template based methods compare the
eye appearance with a template trained from open eyes. Mor-
ris et al. [7] proposed a real-time detection system based on
variance map and eye corners. Chau and Betke [8] devel-
oped a system by computing the correlation with an open eye
template. These methods could only distinguish between two
states (open or closed). The states in-between (e.g. half open)
cannot be acquired. The performance of these systems also
degrades with large head rotation.

The second group of methods uses statistical classifiers to
detect eye closure. Pan et al. [9] developed a boosted classi-



fier to detect the degree of eye closure. The changing of eye
states is modeled by a Hidden Markov Model. Examples of
typical eye motion are used for training the model, so that the
classifier could handle partial eye closure.

Optical flow based methods have also been explored for
blink detection. Sirohey et al. [10] proposed an approach for
determining eye blinks by estimating the iris and eyelid mo-
tion using the normal flow. Their system is good in accuracy,
but is not able to run in real-time. Divjak et al. [11] developed
a system using optical flow for blink detection. Their system
is able to work in realtime, since the optical flow calculation
is offloaded to GPU.

Infrared spectrum based systems. Images captured in
infrared spectrum can facilitate pupil localization and blink
detection. Ji et al. [12] designed a real-time system to mon-
itor driver’s vigilance. They designed hardware to use ac-
tive infrared illumination, and tracked eyes by combining the
bright-pupil-based Kalman filter tracker with a mean shift eye
tracker [13]. The degree of eye opening is characterized by
the shape of the pupil. These systems requires special cam-
eras or special illumination devices.

3. FACE TRACKING

Our face tracker is based on the Active Shape Models (ASMs)
[14] together with a novel nonlinear shape subspace method
to handle large head rotations. The need for this comes from
the fact that feature shapes differ significantly across poses of
varying tilt, pitch and yaw angles. The learned model allows
the complex, non-linear region of the facial shape manifold to
be approximated in a piecewise fashion, as a combination of
smaller linear sub-regions. Each sub-region defines a hyper-
ellipsoid on this manifold. Facial shapes of similar pose are
constrained to lie in the same linear subspaces.

The mechanism for the facial shape search iteratively
modifies the current shape by searching along the landmark
points and simultaneously constraining the overall shape to
lie on the shape manifold, so that the tracked shape is a valid
face shape. To perform tracking in realtime, we employ KLT
tracker [15] to track facial landmarks, then apply the shape
model to constrain the positions of individual landmarks with
the shape manifold. The algorithm automatically initializes
and continues tracking automatically. The face shape is dy-
namically adjusted over time to fit the shape model to current
target’s appearance.

4. EYELID FITTING

The eye region given by the face tracker is refined by an de-
formable eye contour template. The template is defined as
two parabolic sections intersecting at two points P1(x1, y1)
and P2(x2, y2), as shown in Fig. 2(a). The center points bi-
secting the parabolic sections are denoted as P3(x3, y3) and
P4(x4, y4). The objective is to deform the template to best

Fig. 2. Fitting eye contours. (a) Eye template. (b) Distance
map and initial positions of the curves. (c) Curves with over-
lapping images. (d) Curves after a few iterations.

fit the eye image. Since each parabola is uniquely defined by
three points. The objective becomes to place four landmarks
P1, ..., P4 to best fit the eye image.

The likelihood of the eye region is defined as

L(θ|I) =
∫ x2

x=x1

∫ y2(x)

y=y1(x)

s(x, y)dydx (1)

in which s(x, y) is pixel-wise likelihood function. We com-
pute the pixel-wise likelihood by clustering the color and tex-
ture descriptors for the first few frames, and then compute
the Mahalanobis distances to the distribution of the skin pix-
els. The parabolic sections are defined as quadratic func-
tions yi = aix

2 + bix + ci, (i = 1, 2) with coefficients
θi = [ai, bi, ci]

T . Let θ1 be the upper section, and θ2 be the
lower section. To maximize the likelihood L(θ|I), we take its
derivative to θi,

∂L

∂θi
= (−1)i


∫ x2

x1
yi(x)x

2dx∫ x2

x1
yi(x)xdx∫ x2

x1
yi(x)dx

 , (i = 1, 2) (2)

A parabolic curve can be uniquely defined by three points
located on it, in the form of the linear system:yi1yi2

yi3

 =

x
2
i1

xi1 1

x2i2 xi2 1

x2i3 xi3 1

 · θi (3)

Therefore, we have

dθi
dy

= A−1, and
dθi
dx

= −A−1B (4)

where

A =

x
2
i1

xi1 1

x2i2 xi2 1

x2i3 xi3 1

 , and B =

2xi1 1 0

2xi2 1 0

2xi3 1 0

 (5)



Therefore, the derivatives of L to xj and yj are

dL

dyj
=

2∑
i=1

∂L

∂θi
· dθi
dyj

, and
dL

dxj
=

2∑
i=1

∂L

∂θi
· dθi
dxj

(6)

In practice, since the two parabolic curves have 6 degrees
of freedom (DOF), and the 4 landmarks have 8 DOF, we fix
x2 and x4 to be the mean value of x1 and x3. The contour
fitting algorithm is summarized in Algorithm 1.

Algorithm 1 Fitting Eyelids
1: Build likelihood map for the eye region.
2: Initialize template using x0 and y0.
3: repeat

4: Update yj(j = 1, ..., 4): y(k+1)
j = y

(k)
j − c dL

dy
(k)
j

5: Update xj(j = 1, 3): x(k+1)
j = x

(k)
j − c dL

dx
(k)
j

and x2 = x4 = 0.5(x1 + x3)

6: until x and y converge.

5. EXPERIMENTS

We perform experiments on a fatigue database. In this
database, 28 healthy adult subjects (14 males and 14 fe-
males) completed a 3-night controlled laboratory experiment
and were randomized to either acute total sleep deprivation
(0 hour in bed) or no sleep deprivation (9 hours in bed) on the
second night. Subjects completed a 20-minute Psychomotor
Vigilance Task (PVT) every 2 hours while awake. Images
of the face were recorded during the PVT test by a digital
camera mounted above compute monitor.

The screenshots of our system are shown in Fig. 3. The
eye closure scores for the same subject is shown in Fig. 4.
The top two figures show the scores when the subject is alert,
and the bottom two figures show the scores when the subject
is drowsy. The scores generated by our system are shown in
blue curves, which closely match the ground truth (human an-
notations) shown in green lines. In addition, the scores clearly
reveal two typical characteristics of fatigue: frequent blinking
and long eye closure.

We perform quantitative evaluation of our method, using
two videos with human annotated ground truth. In the first
video, the subject is alert and performs a total of 167 blinks.
In the second video, the subject is drowsy and performs 411
blinks in total. The hit rate and false detection rate are sum-
marized in Table 1.

We also perform experiments to show the PERCLOS (per-
centage of slow eyelid closures), which is recognized to be the
most valid ocular parameter for monitoring fatigue. As shown
in Fig. 5. The top figure shows the scores of two videos cap-
tured of subject 1. In one video (shown in red) the subject

Fig. 3. Examples of the eyelid fitting. Top: when the eyes are
open. Bottom: when the eyes are closed.

Fig. 4. Eye closure scores evaluated by our system (blue) and
eye blinks labeled manually (green), for one subject in the
database. Top two: when the subject is alert. Bottom two:
when the subject is drowsy. Two typical characteristics of
fatigue, frequent blinking and long eye closure are illustrated.

Table 1. Accuracy of blink detection
Hit rate False detection rate

Alert 94.0% 7.3%
Drowsy 87.3% 10.6%



Fig. 5. PERCLOS scores of two subjects. Top: the scores
of two videos of subject 1. In one video (shown in red) the
subject is alert. And in the other video (shown in blue) the
subject is very drowsy. Bottom: the scores of two videos of
subject 2. The subject is drowsy in both videos.

is alert. And in the other video (shown in blue) the subject
is very drowsy. The bottom figure shows the scores of two
videos of subject 2. The subject is drowsy in both videos.
The PERCLOS scores computed by our system also effec-
tively detect fatigue from normal cases.

6. CONCLUSION

In this paper, we propose a new framework for robust eye-
lid tracking for fatigue detection. Instead of directly tracking
the eyes, we employ a robust face tracker, which could track
facial landmarks with large face rotations in real time. We
proposed a deformable eye template, and propose an efficient
algorithm to fit the template to the image. The experiments in
this paper prove the effectiveness of our method.
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