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ABSTRACT

In this paper we present a dynamic texture based motion seg-
mentation approach to address the challenging problem of
heart localization and segmentation in 4D Spatio-temporal
cardiac images. Our approach introduces time-dependent dy-
namic constraints into model-based segmentation, and it has
the advantage of producing segmentation results that are both
spatially and temporally consistent. Compared with previous
methods that segment cardiac contours, our method offers the
following advantages: 1) with distinct dynamic signatures,
the heart can be quickly localized in 4D cardiac images; 2)
heart dynamics are learned online and adaptively by analyz-
ing the dynamic texture from the video sequence of a cardiac
cycle and then incorporated in the segmentation process; and
3) the proposed dynamic features can be easily integrated with
model-based segmentation methods. We illustrate our frame-
work through combining the new dynamic constraints with
active contour models, and demonstrate its performance on
sequences of 4D MRI and tagged MRI images of the heart.
We also validate the accuracy of the segmentation results by
comparing with ground truth marked by experts.

1.INTRODUCTION

Cross-sectional imaging techniques such as ultrasound, CT,
conventional MRI, and tagged MRI can provide non-invasively
tomographic images of the heart at different times in the car-
diac cycle. For instance, a typical 4D spatial-temporal MRI
data set has cross-sectional images of the heart at18 locations
over 24 time points in the cardiac cycle. Given such large
amount of data, quantitative analysis of the heart wall motion
using these images becomes attractive. Systematic quantita-
tive analysis of heart-wall motion and blood flow often re-
quires accurate localization and segmentation of the epicar-
dial and endocardial surfaces on 4D images from large groups
of population with high efficiency. Since manual drawing of
cardiac contours is very time-consuming, there has been vig-
orous research on methods to automate the cardiac segmenta-
tion [1, 2, 3, 4, 5] and motion estimation [6, 7] process.

These methods largely fall into four categories: Morpho-
logical [1, 2], Deformable Model based [3, 6, 7], Statisti-
cal Shape and Appearance Model based [4, 8], and Alge-
braic based [9]. The morphological approaches [1, 2] apply

a hierarchical series of image processing steps to locate, seg-
ment and track the Left Ventricle (LV). It is more difficult for
them to handle the Right Ventricle (RV) since some RV cross
sections are too thin to be reliably detected by morpholog-
ical operations. Model-based methods for cardiac segmen-
tation are gaining popularity because they comine high-level
knowledge with low-level image features to achieve robust-
ness against noise, image artifacts, cluttered objects andcom-
plext heart geometry and motion. The models being used are
either active contour (or deformable) models [3, 6, 7] that de-
form under the influence of internal smoothness and external
image forces toward heart boundary, or statistical shape and
appearance models [10, 4, 8] that are learneda priori from
examples to capture variations in shape and appearance of
the heart in images of a particular modality. The deformable
models do not require learning and can estimate boundary
with smooth curves/surfaces that bridge over boundary gaps,
but their accuracy highly depends on initialization. Some re-
cent works have introduced region and appearance constraints
[11, 12] into traditional deformable models to alleviate the re-
quirement of manual initializations. Statistical shape and ap-
pearance models [10, 4, 8] can encode high-level knowledge
about shape and appearance of the heart in a more specific
manner and are hence more robust in boundary segmenta-
tion. The main concerns related to these models are that the
data collection, annotation and training processes are often
time-consuming, and prior models learned on images from
one imaging facility may not be useful on images from other
facilities with different imaging parameters. Algebraic based
method [9] exploits Polysegment and spatial Generalized Prin-
cipal Component Analysis (GPCA) to segment beating hearts
based on techniques of dynamic texture analysis developed in
[13]. This algebraic technique is less computationally inten-
sive, and good qualitative results in [9] demonstrate the ad-
vantage of dynamic texture analysis. However, the algorithm
does not output the final cardiac contours and there were no
quantitative results to confirm its accuracy on large datasets.

In this paper, we observe that, while deformable-model
based methods [3, 7] do not requirea priori learning and tend
to be more efficient, previous methods do not utilize fully the
dynamic information in a video sequence to facilitate heart
localization and segmentation. On the other hand, Algebraic



based method [9], shows the advantages of dynamic texture
analysis [13], but its accuracy is not validated through quan-
titative results. In this paper, we adapt the technique of dy-
namic texture analysis [13] to make it easy to be coupled with
deformable-model framework. After obtaining dynamic pa-
rameters learned from a single image sequence, we can au-
tomate heart localization in the sequence, then augment ac-
tive contour models using the derived dynamic information
to achieve robust and temporally-consistent segmentationand
output smooth cardiac contours. Both qualitative and quanti-
tative results show the power of our method in heart localiza-
tion and segmentation.

2.BACKGROUND AND OUTLINE
2.1.Dynamic texture segmentation

Dynamic textures are sequences of images of moving scenes
that exhibit certain stationary properties over time [13][14],
which can be modelled by a linear dynamical system. The
dynamics is represented as a time-dependent state process
xt ∈ RN , and the appearance of the image frame at time
t, yt ∈ RM , can be modelled as follows:

x(t + 1) = Ai ∗ x(t) + Bi ∗ v(t) (1)

yi(t) = Ci ∗ x(t) + Di ∗ w(t) (2)

In the equation,i = 1, ...,K represents that there are K par-
titions, {Ωi}i=1,...,K , in the image sequence domain, where
each region has distinct dynamic signatures.Ai ∈ RN×N

andCi ∈ RMi×N are dynamic parameter matrices. As intro-
duced in [13],with the obtainedAi andCi, we can compute
an observation matrixOi:

Oi = [C
′

i , A
′

i ∗ C
′

i , ..., (A
′

i)
N ∗ C

′

i ]
′ (3)

The observation matrix at every pixel,x̄ ⊂ Ω, O(x̄), can be
derived from its neighboring pixelsNeigh(x̄) ⊂ Ω. Then,
the quantitative dynamic signature of each pixel can be com-
puted as:

S(x̄) = (cos γ1(x̄), ..., cos γN (x̄)) (4)

where{γj(x̄)}j=1,...,N is the principle angle between the sub-
spaces of the observation modelO(x̄) and a reference model
O(x̄0). These dynamic signatures offer high-dimensional dis-
tance measures that are powerful. Thus, they can help robust
image segmentation under challenging conditions.

2.2.Proposed improvements and outline of our approach

The dynamic textures introduced above is a recently-developed
motion segmentation technique that is particularly usefulin
image sequences that capture moving scenes with underlying
stationary properties. However, a linear dynamical systemis
assumed in the original technique. In this paper, we adapt this
technique to cardiac motion analysis by extending its linear
dynamics assumption to piece-wise linear since cardiac mo-
tion is nonlinear and periodic.

Our overall heart localization and segmentation frame-
work is outlined by the flow-chart in Figure 1. The major
algorithmic steps include: 1) subtracting background of the
input image sequence; 2) computing dynamic signatures of
the input using dynamic texture analysis; 3) fast K-mean clus-
tering according to the dynamic signatures of each pixel [15];
4) localizing the interested object; 5) combining the dynamic
constraints with shape and appearance information in an ac-
tive contour model-based framework to segment the inter-
ested object.

Cardiac image sequence

Fast K-mean clustering according

to the dynamic signatures

Dynamic texture analysis in each
small region

Background subtraction

Dynamic metric map

DMM based Heart localization

Previous active contour constrains

The external force comes from both dynamic metric map and

the force used in previous method

Run this new deformable model to

obtain  the final segmentation results

Dynamic signatures of each pixel

Fig. 1. The flow chart of our approach

(a) (d)(b) (c) (e)

Fig. 2. Localization example. (a) one example frame, (b)
background subtraction, (c) Dynamic Metric Map, (d) K-
means clustering, (e) heart localization.

3.METHODOLOGY
3.1.Dynamic metric map

SupposeP (X, t) represents a cardiac image sequence.X de-
notes the position(x, y) and t ∈ T denotes the time axis.
Before dynamic analysis, we first exclude those non-moving
pixels by subtracting the background of the image sequence :

V ar(X) = V ar(P (X, t), 2) (5)

V ar(X) > TH (6)

Here,V ar(P (X, t), 2) represents the difference or subtrac-
tion operation between two consecutive frames, andTH is
a threshold value below which we consider as non-moving
background. This step is similar to ground-figure separation
based on motion differences. Figure 2 (a) shows one of the
frames from a cardiac image sequence. In this sequence,
the heart is deforming due to heart beating; the chest cav-
ity moves due to breathing and image noise; and there also
exists the nearly non-moving image background. Figure 2 (b)
shows the separation result after subtracting the non-moving
background.

To perform dynamic texture analysis, we retrieve anl × l

window centered atP (X) on each frame. Let us denote the



retrievedl2 × T volume asV (X), whereT is the number of
the image frames. With dynamic analysis, we can generate
a local spatio-temporal signatureS(X) by Eq. 4 using pixel
dynamics in the regionV (X). Now having computed the dy-
namic signature for each pixel, we can compute the dynamic
metric map for the whole image sequence. For each pixelX,
we compute the Martin’s distanceD(X) to combine together
all elements in a dynamic signatureS(X) [13].

Now, each pixel has one dynamic value based onD(X).
We can then build the Dynamic Metric Map (DMM) for each
image sequence using the pixels’ dynamic metric values:

DMM(X) = D(X) (7)

Figure 2 (c) shows the derived Dynamic Metric Map for the
example cardiac sequence. From the result, we can see that
the dynamic metric value within the heart region is very dif-
ferent from those in the chest wall region in the Dynamic Met-
ric Map. The difference is much more distinctive compared
with the intensity difference between these regions as shown
in Figure 2 (a). This indicates that it is more advantageous to
use dynamic information for heart localization and segmenta-
tion than using appearance information alone.

3.2.DMM based heart localization

Deformable Model based segmentation methods are usually
sensitive to the initialization condition to some extent. Hence
fast and robust heart localization and initialization is very im-
portant for achieving good final segmentation results.

Based on the dynamic metric map introduced above, a ro-
bust heart localization method is developed as follows. Sup-
pose we have computed the Dynamic Metric MapDMM(X)
of a cardiac image sequenceP (X, t).

We also acquire the result of background subtractionV ar(X)
for each pixelX using Eq.6. Then, each pixelX has two
kinds of feature values,V ar(X) andDMM(X) respectively.
They can be combined together to form a feature vector for
heart localization:Feature(X) = [V ar(X),DMM(X)].
Based on these features, the fast K-means clustering method
[15] can be used to separate pixels in the heart region from
those in other regions. The algorithm avoids unnecessary dis-
tance calculations by applying the triangle inequality andac-
celerated k-means method. Figure 2 (d) shows the clustering
result in the example images. We can see that the heart re-
gion consists of mostly white pixels while the chest cavity
region consists of mostly gray pixels. This results from the
very different dynamic signatures in these two regions. After
we obtained the clustered pixels in the heart region, we get
the final result of heart localization as shown in Figure 2 (e).

3.3.DMM based segmentation model

During heart localization, we useT number of consecutive
image frames to build the Dynamic Metric Map (DMM) for
final pixel clustering. It is robust for localizing the heartre-
gion. However, whenT is large, the dynamic signatureS(X)

can not accurately represent the dynamics in every individual
frame. With the Gauss-Markov model theory, fortunately, we
can assume the dynamics of each pixelP (X, t0) is smooth
in a piecewisel × l × t volume centered atP (X, t0), where
t ≪ T . Thus, we can acquireDMM(X, t0) of each frame
by computing dynamic metric values of all pixels in al× l× t

volume, then applying DMM computation (see Sec. 3.1) on
this volume.

To integrate the DMM in model-based segmentation, we
compute the Gradient Vector Flow (GVF) of the DMM, and
add it into traditional active contour models as a new external
image force. Then, the energy functional to minimize for the
new dynamic contour model becomes:

E =

∫
1

0

(Eint(C(s)) + Eimg(C(s)) + EDMM (C(s)))ds (8)

Figure 3 shows improvements in the gradient vector flow forces
based on DMM.

(a) (b) (c) (d)

Fig. 3. (a) an image, (b) DMM, (c) Gradient based external
forces, (d) DMM based external forces

The initialization for this new deformable model can be
obtained from the heart localization result. And the added
“dynamic” image forces increase the model’s attraction range
and make it insensitive to noise that are only present in image
appearance but not in dynamic motion.

4.EXPERIMENTAL RESULTS
We conduct experiments on both tagged and un-tagged MRI
4D cardiac images to verify the effectiveness of the proposed
segmentation algorithm. We present our validation resultsus-
ing five sequences of 4D spatio-temporal short-axis tagged
MR images. Each sequence consists of 24 phases, with 16
slices (images) per phase. Since we do not use the first and
last four phases in the sequences, we have 256 images for test-
ing from each sequence. An expert is also asked to draw the
epicardium (Epi) contours in these testing images.

Fig. 4. DMM based localization results

In order to test the performance of the proposed DMM
based localization method, we let it run on the validation im-



age sequences. We then manually check all localization re-
sults in the data set including256 × 5 images. The correct-
localization rate is100%. Moreover, most localization re-
sults bound tightly around the heart regions. We show some
example localization results in Figure 4. They demonstrate
that the proposed method can robustly localize the heart even
in cardiac images with low contrast, high noise and tagging
lines. The DMM based heart localization process takes0.288
seconds for each slice sequence including 24 images on a
1.5GHz laptop PC in MATLAB environment.

After localization, the final segmentation can be obtained
using DMM-augmented deformable models introduced in sec-
tion 3.3. The segmentation process takes less than 4 seconds
for each image on a1.5GHz laptop PC in MATLAB envi-
ronment. Some example segmentation results are shown in
Figure 5.

Fig. 5. DMM based segmentation results

Quantitative validation is performed by comparing the au-
tomated epicardiac segmentation results with expert solutions.
Here, we will not deal with endocardiac segmentation. After
good epicardiac segmentation, it can be easily done with the
existing method [3] as there exist distinct appearance due to
blood flow and less tagged line noises. Comparatively, epi-
cardiac segmentation is very hard due to complex appearance,
low contrast, tagged lines and noises.

Denote the expert segmentation in the images asltrue,
and the results from our method aslDMM . We define the
false negative fraction (FNF) to indicate the fraction of tis-
sue that is included in the true segmentation but missed by
our method:FNF = |ltrue−lDMM |

ltrue

. The false positive frac-
tion (FPF) indicates the amount of tissue falsely identified
by our method as a fraction of the total amount of tissue in
the true segmentation:|lDMM−ltrue|

ltrue

. And the positive frac-
tion (TPF) describes the fraction of the total amount of tissue
in the true segmentation that is overlapped with our method:
|lDMM∩ltrue|

ltrue

. On the validation datasets, the proposed method
achieved encouraging segmentation results:FNF , FPF and
TPF are2.7%, 5.6% and97.3% respectively.

5.DISCUSSIONS AND CONCLUSIONS

In this paper, we have presented a new cardiac image segmen-
tation approach that fully exploits dynamic analysis to achieve
temporally-consistent segmentation results. Our main contri-
butions are three folds. First, we introduce and improve the

dynamic texture based motion segmentation method to com-
pute dynamic signatures of image regions with different mo-
tion patterns. Second, the clustering of dynamic signatures
gives us the distinctively-moving heart region, which is the
heart localization result acquired without manual interaction
or any prior atlas information. Third, we introduce the Dy-
namic Metric Map, from which we can derive dynamic in-
formation to be integrated into deformable models to achieve
temporally-consistent segmentation results.
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