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ABSTRACT a hierarchical series of image processing steps to locage, s

1ent and track the Left Ventricle (LV). It is more difficultifo

In this paper we present a dynamic texture based motion se X . )
mentation approach to address the challenging problem em to handle the Right Ventricle (RV) since some RV cross
ajections are too thin to be reliably detected by morpholog-

heart localization and segmentation in 4D Spatio-tempor , )
al operations. Model-based methods for cardiac segmen-

cardiac images. Our approach introduces time-dependent dy = - . ;

namic constraints into model-based segmentation, andsit h&21I0N are gaining popularity because they comine higktlev
the advantage of producing segmentation results that e bo<"owledge with low-level image features to achieve robust-
spatially and temporally consistent. Compared with presio ness against noise, image artifacts, cluttered objects@mel

methods that segment cardiac contours, our method offers tip/€xt heart geometry and motion. The models being used are

following advantages: 1) with distinct dynamic signatyres ither active contour (or deformable) models [3, 6, 7] treat d

the heart can be quickly localized in 4D cardiac images: Zform under the influence of internal smoothngs; and external
heart dynamics are learned online and adaptively by analyzMage forces toward heart boundary, or statistical shage an
ing the dynamic texture from the video sequence of a cardia@PPearance models [10, 4, 8] that are learaguiiori from

cycle and then incorporated in the segmentation processs; af*@mMPles to capture variations in shape and appearance of
3) the proposed dynamic features can be easily integrated Withe heart in images Qf a parupular modality. The deformable
model-based segmentation methods. We illustrate our fram@'0d€ls do not require leaming and can estimate boundary
work through combining the new dynamic constraints withWith smooth curves/surfaces that bridge over boundary,gaps

active contour models, and demonstrate its performance dt their accuracy highly depends on initialization. Some r

sequences of 4D MRI and tagged MRI images of the heargentworks have introduced region and appearance coristrain
1, 12] into traditional deformable models to alleviate tl-

We also validate the accuracy of the segmentation results kﬂl e >
comparing with ground truth marked by experts. dquirement of manual initializations. Statistical shapd ap-
pearance models [10, 4, 8] can encode high-level knowledge

1INTRODUCTION about shape and appearance of the heart in a more specific

Cross-sectional imaging techniques such as ultrasound, Cfanner and are hence more robust in boundary segmenta-
conventional MRI, and tagged MRI can provide non-invayivelt'on' The main concerns related to these models are that the
tomographic images of the heart at different times in the ca/dat@ collection, annotation and trlal?mg processes ameft
diac cycle. For instance, a typical 4D spatial-temporal MRIiMe-consuming, and prior models learned on images from

data set has cross-sectional images of the heastlatations ~©N€ imaging facility may not be useful on images from other
over 24 time points in the cardiac cycle. Given such Iargefac'“t'es with different imaging parameters. Algebra@sed

amount of data, quantitative analysis of the heart wall aroti rr_1ethod [9] exploits Pon;egment and spatial Generglizéd Pr
using these images becomes attractive. Systematic carantiCiP@ Component Analysis (GPCA) to segment beating hearts
tive analysis of heart-wall motion and blood flow often re- based on techniques of dynamic texture analysis developed i

quires accurate localization and segmentation of the epical13]- This algebraic technique is less computationallgimt

dial and endocardial surfaces on 4D images from large groupVe: and good qualitative results in [9] demonstrate the ad
of population with high efficiency. Since manual drawing of Vantage of dynamic tgxture ar!aIyS|s. However, the algarith
cardiac contours is very time-consuming, there has been Viéjoes not output the final cardiac contours and there were no

orous research on methods to automate the cardiac segmerff@ntitative results to confirm its accuracy on large dasase

tion[1, 2, 3, 4, 5] and motion estimation [6, 7] process. In this paper, we observe that, while deformable-model
These methods largely fall into four categories: Morpho-based methods [3, 7] do not requieriori learning and tend
logical [1, 2], Deformable Model based [3, 6, 7], Statisti- to be more efficient, previous methods do not utilize fullg th
cal Shape and Appearance Model based [4, 8], and Algedynamic information in a video sequence to facilitate heart
braic based [9]. The morphological approaches [1, 2] applyocalization and segmentation. On the other hand, Algebrai



based method [9], shows the advantages of dynamic texture Our overall heart localization and segmentation frame-
analysis [13], but its accuracy is not validated throughrgqua work is outlined by the flow-chart in Figure 1. The major
titative results. In this paper, we adapt the technique ef dyalgorithmic steps include: 1) subtracting background ef th
namic texture analysis [13] to make it easy to be coupled witlinput image sequence; 2) computing dynamic signatures of
deformable-model framework. After obtaining dynamic pa-the input using dynamic texture analysis; 3) fast K-meas-clu
rameters learned from a single image sequence, we can aering according to the dynamic signatures of each pixdt [15
tomate heart localization in the sequence, then augment a4} localizing the interested object; 5) combining the dyiam
tive contour models using the derived dynamic informationconstraints with shape and appearance information in an ac-
to achieve robust and temporally-consistent segmentatidn tive contour model-based framework to segment the inter-
output smooth cardiac contours. Both qualitative and quantested object.

tative results show the power of our method in heart localiza
tion and segmentation.

| Cardiac image sequence | *
2.BACKGROUND AND OUTLINE | ¥ | [ oMM based Heartiocatzaton |
. . Background subtraction
21 Dynamlc teXture %gmenta“on | Dynamic metric map ” Previous active contour constrains |
. . . Dynamic texture analysis in each
Dynamic textures are sequences of images of moving scenes smal region |
that exhibit certain stationary properties over time [13]] (o sgmmes e ] | L th e usedimpevs menad |
which can be modelled by a linear dynamical system. The _____ t# S !
. . . ast K-mean clustering accordin: Run this new deformable model to
dynamics is represented as a time-dependent state procescj mmeuyw‘% btain the inal segmentation results |
xz; € RY, and the appearance of the image frame at time
t,y: € RM, can be modelled as follows: Fig. 1. The flow chart of our approach
x(t+1) = A; xx(t) + B; xv(t) (1)
yi(t) = Cix a(t) + D; x w(t) 2

In the equation; = 1, ..., K represents that there are K par- | s
titions, {€2;};—1... k, in the image sequence domain, where @ ®)
each region has distinct dynamic signatures. ¢ RNV*N
andC; € RM:*N are dynamic parameter matrices. As intro-
duced in [13],with the obtained; and C;, we can compute
an observation matrig);:

Fig. 2. Localization example. (a) one example frame, (b)
background subtraction, (c) Dynamic Metric Map, (d) K-
means clustering, (e) heart localization.

0; = [C’;A; % C’;’ s (A;)N " C';]' ©) 3.METHODOLOGY

The observation matrix at every pixel,C €2, O(z), can be 3.1 Dynamic metric map o
derived from its neighboring pixeldeigh(z) C Q. Then, SUPPose’(X,t) represents a cardiac image sequetCele-

the quantitative dynamic signature of each pixel can be confiotes the positiorfz, y) and¢ € T' denotes the time axis.
puted as: Before dynamic analysis, we first exclude those non-moving

pixels by subtracting the background of the image sequence :
S(z) = (cosy1(Z), ...,cos YN (T)) 4)
Var(X) =Var(P(X,t),2) 5)

where{~,(z)};=1,...,~ is the principle angle between the sub- Var(X)>TH (6)
spaces of the observation mod#{z) and a reference model
O(zp). These dynamic signatures offer high-dimensional disHere, Var(P(X,t),2) represents the difference or subtrac-
tance measures that are powerful. Thus, they can help robugin operation between two consecutive frames, add is
image segmentation under challenging conditions. a threshold value below which we consider as non-moving

background. This step is similar to ground-figure sepamatio
2.2.Proposed improvements and outline of our approach based on motion differences. Figure 2 (a) shows one of the
The dynamic textures introduced above is a recently-deeelo frames from a cardiac image sequence. In this sequence,
motion segmentation technique that is particularly useful the heart is deforming due to heart beating; the chest cav-
image sequences that capture moving scenes with underlyiiiy moves due to breathing and image noise; and there also
stationary properties. However, a linear dynamical syseem exists the nearly non-moving image background. Figure 2 (b)
assumed in the original technique. In this paper, we ad&pt thshows the separation result after subtracting the non+mgovi
technique to cardiac motion analysis by extending its lineabackground.
dynamics assumption to piece-wise linear since cardiac mo- To perform dynamic texture analysis, we retrieve anl
tion is nonlinear and periodic. window centered aP(X) on each frame. Let us denote the



retrieved/? x T volume asV (X), whereT is the number of can not accurately represent the dynamics in every indalidu
the image frames. With dynamic analysis, we can generatiteame. With the Gauss-Markov model theory, fortunately, we
a local spatio-temporal signatutg X) by Eq. 4 using pixel can assume the dynamics of each piR&LX, ¢) is smooth
dynamics in the regiofr (X ). Now having computed the dy- in a piecewisé x [ x t volume centered aP (X, ty), where
namic signature for each pixel, we can compute the dynamit <« 7. Thus, we can acquir® M M (X, t,) of each frame
metric map for the whole image sequence. For each pixel by computing dynamic metric values of all pixels ihal x ¢

we compute the Martin’s distande(X) to combine together volume, then applying DMM computation (see Sec. 3.1) on
all elements in a dynamic signatuséX) [13]. this volume.

Now, each pixel has one dynamic value based X ). To integrate the DMM in model-based segmentation, we
We can then build the Dynamic Metric Map (DMM) for each compute the Gradient Vector Flow (GVF) of the DMM, and
image sequence using the pixels’ dynamic metric values: add it into traditional active contour models as a new extern

image force. Then, the energy functional to minimize for the
DMM(X) = D(X) (7)  new dynamic contour model becomes:

Figure 2 (c) shows the derived Dynamic Metric Map for the ,
example cardiac sequence. From the result, we can see that
the dynamic metric value within the heart region is very dif-
ferent from those in the chest wall region in the Dynamic Met-
ric Map. The difference is much more distinctive compare

with the intensity difference between these regions as sBhow
in Figure 2 (a). This indicates that it is more advantageous t
use dynamic information for heart localization and segent

tion than using appearance information alone.

/0 (Eint(C()) + Eimg(C(5)) + Eparat(C(s)))ds (8)

Figure 3 shows improvements in the gradient vector flow ferce
ased on DMM.

3.2.DMM based heart localization

Deformable Model based segmentation methods are usua
sensitive to the initialization condition to some extenénde
fast and robust heart localization and initialization ispen- The initialization for this new deformable model can be
portant for achieving good final segmentation results. obtained from the heart localization result. And the added

Based on the dynamic metric map introduced above, a rd'dynamic” image forces increase the model’s attractiorgean
bust heart localization method is developed as follows.- Supand make it insensitive to noise that are only present in @nag
pose we have computed the Dynamic Metric Map/ M (X)  appearance but not in dynamic motion.

of a cardiac image sequent¥ X t). 4. EXPERIMENTAL RESULTS

We also acquire the result of background subtractien(X) We conduct experiments on both tagged and un-tagged MRI

for each pixelX using Eq.6. Then, each pixél has two S . ;
kinds of feature value$/ar(X ) andDM M (X ) respectively. 4D cardlac. Images to verify the effec'uvenes§ of'the progose
segmentation algorithm. We present our validation resisits

They can be combined together to form a feature vector folrn five sequences of 4D spatio-temporal short-axis taaged
heart localization: Feature(X) = [Var(X),DMM(X)]. 2 g P P 99

Based on these features, the fast K-means clustering metht'yI IMages. Each sequence consists of 24 phases, .W'th 16
Slices (images) per phase. Since we do not use the first and

[15] can be used.to separate p|>_<els N th_e heart region fromast four phases in the sequences, we have 256 images for test
those in other regions. The algorithm avoids unnecessary di.

tance calculations by applying the triangle inequality and ing from each sequence. An expert is also asked to draw the

celerated k-means method. Figure 2 (d) shows the clusterin%chardlum (Epi) contours in these testing images.

result in the example images. We can see that the heart re-
gion consists of mostly white pixels while the chest cavity §
region consists of mostly gray pixels. This results from the
very different dynamic signatures in these two regionseAft
we obtained the clustered pixels in the heart region, we get
the final result of heart localization as shown in Figure 2 (e)

ig. 3. (a) an image, (b) DMM, (c) Gradient based external
ches, (d) DMM based external forces

3.3.DMM based segmentation model

During heart localization, we usé number of consecutive
image frames to build the Dynamic Metric Map (DMM) for
final pixel clustering. It is robust for localizing the heagt In order to test the performance of the proposed DMM
gion. However, whefT is large, the dynamic signatufg X) based localization method, we let it run on the validation im

Fig. 4. DMM based localization results



age sequences. We then manually check all localization relynamic texture based motion segmentation method to com-
sults in the data set includirgp6 x 5 images. The correct- pute dynamic signatures of image regions with different mo-
localization rate isl00%. Moreover, most localization re- tion patterns. Second, the clustering of dynamic signature
sults bound tightly around the heart regions. We show somgives us the distinctively-moving heart region, which is th
example localization results in Figure 4. They demonstrat@eart localization result acquired without manual intéoac
that the proposed method can robustly localize the heant eveor any prior atlas information. Third, we introduce the Dy-
in cardiac images with low contrast, high noise and taggingramic Metric Map, from which we can derive dynamic in-
lines. The DMM based heart localization process tdke838  formation to be integrated into deformable models to achiev
seconds for each slice sequence including 24 images ontemporally-consistent segmentation results.
1.5G H z laptop PC in MATLAB environment.

After localization, the final segmentation can be obtained
using DMM-augmented deformable models introduced in sec{1] J. Goutsias and S. Batman, “Morphological methods for bio-
tion 3.3. The segmentation process takes less than 4 seconds medical image analysis3PIE Handbook of Medical Imaging,
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In this paper, we have presented a new cardiac image segmé?‘f—”
tation approach that fully exploits dynamic analysis toiexé

temporally-consistent segmentation results. Our mairtrizon
butions are three folds. First, we introduce and improve the



