
COMPRESSED MAGNETIC RESONANCE IMAGING BASED ON WAVELET SPARSITY AND
NONLOCAL TOTAL VARIATION

Junzhou Huang

University of Texas at Arlington
Department of Computer Science and Engineering

Fei Yang

Rutgers University
Department of Computer Science

ABSTRACT

This paper introduces an efficient algorithm for the com-
pressed MR image reconstruction problem, which is formu-
lated as the minimization of a linear combination of three
terms corresponding to a least square data fitting, nonlocal
total variation (NLTV) and wavelet sparsity regularization.
In our method, the original minimization problem is decom-
posed into wavelet sparsity and NLTV norm regularization
subproblems respectively. Then, these two subproblems are
efficiently solved by existing techniques. Finally, the re-
constructed image is obtained from the weighted average of
solutions from two subproblems in an iterative framework.
Experiments with improved performance over previous meth-
ods demonstrate the superior performance of the proposed
algorithm for compressed MR image reconstruction.

Index Terms— Compressive Sensing, MRI, Wavelet
Sparsity, Nonlocal Total Variation

1. INTRODUCTION

Recent developments in compressive sensing theory[1] show
that it is possible to accurately reconstruct the Magnetic Res-
onance (MR) images from highly undersampled K-space data
and therefore significantly reduce the scanning time [2]. Sup-
pose x is a MR image and R is a partial Fourier transform,
the sampling measurement b of x in K-space is defined as
b = Rx. The compressed MR image reconstruction problem
is to reconstruct x giving the measurement b and the sam-
pling matrix R. Motivated by the compressive sensing theory,
Lustig et al. [2] proposed their pioneering work for the MR
image reconstruction. In their work, this problem is formu-
lated as follows:

x̂ = argmin
x

{1
2
∥Rx− b∥2 + α∥x∥TV + β∥Φx∥1} (1)

where α and β are two positive parameters, b is the un-
dersampled measurements of K-space data, R is a partial
Fourier transform and Φ is a wavelet transform. It is based
on the fact that the piecewise smooth MR images of organs
can be sparsely represented by the wavelet basis and should
have small total variations. The TV was defined discretely as

∥x∥TV =
∑

i

∑
j((∇1xij)

2 + (∇2xij)
2) where ∇1 and ∇2

denote the forward finite difference operators on the first and
second coordinates, respectively. This can be denoted as the
local TV.

It is a difficult optimization problem because both L1 and
TV norm regularization terms are nonsmooth. The conjugate
gradient (CG) and PDE were used to attack this problem in
[2][3]. However, they are very slow for real MR images. Ma
et al. proposed an operator-splitting algorithm (TVCMRI) to
solve this problem [4]. A variable splitting method (RecPF)
was also proposed for the same formulation [5]. Both of them
can replace iterative linear solvers with Fourier domain com-
putations, which can gain substantial time savings. Recently,
the Fast Composite Splitting Algorithm was proposed to effi-
ciently solve this problem in [6, 7]. It decomposed the orig-
inal problem into two easier subproblem: L1 regularization
and TV regularization subproblems respectively and obtained
the reconstructed results by iteratively averaging the solutions
of two subproblems. It has been proved to be the best al-
gorithm so far for compressed MR image reconstruction in
terms of reconstruction accuracy and computational complex-
ity.

In this paper, a novel method is proposed for compressed
MR imaging based on the wavelet sparsity and periodic non-
local total variation regularization. Followed the FCSA [6, 7],
we decompose the hard composite regularization problem (1)
into two simpler regularization subproblems: L1 norm reg-
ularization subproblems and nonlocal total variation regular-
ization subproblem. Here, we use the NLTV instead of TV in
FCSA [6, 7] because the NLTV is far better than total vari-
ation for improving the signal-to-noise ratio in practical ap-
plication. Considering that the computational complexity of
NLTV is higher, we do not perform it in each iteration but pe-
riodically. We call it the NLTV-MRI. Numerous experiments
have been conducted on real MR images to show the advan-
tages of the proposed method over previous methods in terms
of reconstruction accuracy and computation complexity.

2. NONLOCAL TOTAL VARIATION

Nonlocal total variation regularization [8, 9, 10, 11, 12, 13]
has been studied to address the issue of blocky effect by em-



ploying nonlocal pixels for calculating the gradients in the
regularization term. It has been thought as an effective tool
instead of total variation for improving the signal-to-noise ra-
tio in practical application. Recently, it has been successfully
used for 4D computed tomography reconstruction from few-
projection data [14]. The NLTV regularization is formulated
as:

x̂ = argmin
x

{1
2
∥x− x0∥2 + α∥x∥NLTV } (2)

Here, ||x||NLTV is defined as nonlocal total variation norm
and computed from:

∥x∥NLTV =
∑
u

√∑
v

[x(u)− x(v)]w(u, v) (3)

where w(u, v) is the graph weight function, x(u) and x(v)
are the image values in pixel u and v. The graph weight func-
tion w(u, v) denotes how much the difference between pixels
u and v is penalized in the images. The more similar the
neighborhoods of u and v are, the more the difference should
be penalized, and vice versa. Given an image x, the graph
weight function is calculated by:

w(u, v) =
1

Zx
exp

−∥qx(u)−qx(v)∥2

2σ2 (4)

where qx(u) denotes a small patch in image x centering at
the coordinate u, qx(v) denotes a small patch in image x cen-
tering at the coordinate v and Zx is a normalization factor.
The scale parameter σ controls to what extent similarity be-
tween patches is enforced. Many recent works have shown
that the NLTV is far better than previous TV for improving
the signal-to-noise ratio in practical application [8, 9, 13].

3. ALGORITHM

In this section, we use the NLTV instead of TV for com-
pressed MR image reconstruction to address the issue of
blocky effect with TV-regularization. In other applications,
the NLTV has demonstrated its superior performance to the
TV [8, 9, 13, 14]. In NLTV, the gradient for the regularization
term is calculated with pixels belonging to the whole image,
instead of only the nearest neighboring pixels as used in TV
regularization. In addition, a weighted graph between the
current pixel and all image pixels is used in calculating the
gradient. These differences allow the NLTV regularization to
effectively remove noise without destroying the salient fea-
tures of the original image. Our in vivo results demonstrate
that the proposed NLTV regularization is able to preserve
more details and fine structures than the existing regular-
ization methods while suppressing noise in applications of
compressed MR image reconstruction.

The compressed MR image reconstruction is formulated
as follows:

x̂ = argmin
x

{1
2
∥Rx− b∥2 + α∥x∥NLTV + β∥Φx∥1} (5)

where α and β are two positive parameters, b is the under-
sampled measurements of K-space data, R is a partial Fourier
transform and Φ is a wavelet transform. The only different
between it and Equation 1 is that we use the NLTV instead
of the TV. We will show that this change is very important
and deserved for improving the image reconstruction perfor-
mance.

Before proposing our algorithm, we introduce some nota-
tions:

Gradient: ∇f(x) denotes the gradient of the function f
at the point x.

The proximal map: given a continuous convex function
g(x) and any scalar ρ > 0, the proximal map associated to
function g is defined as follows [15][16]:

proxρ(g)(x) := argmin
u

{g(u) + 1

2ρ
∥u− x∥2} (6)

Instead of the TV term with the NLTV in the FCSA [6, 7],
a new algorithm, NLTV-FCSA, is proposed for MR image re-
construction problem. In practice, we found that a small iter-
ation number in the NLTV regularization is enough to obtain
good reconstruction results. Numerous experimental results
in the next section will show that it is good enough for real
MR image reconstruction.

Algorithm 1 outlines the proposed algorithm for problem
5. A key feature of the NLTV-FCSA is its fast convergence
performance borrowed from the FCSA. As shown in [6, 7],
the FCSA can obtain an ϵ-optimal solution in O(1/

√
ϵ) it-

erations. In the step xk = project(xk, [l, u]), the function
x = project(x, [l, u]) is defined as: 1) x = x if l ≤ x ≤ u;
2)x = l if x < u; and 3) x = u if x > u, where [l, u] is
the range of x. For example, in the case of MR image recon-
struction, we can let l = 0 and u = 255 for 8-bit gray MR
images.

Another key feature of the proposed algorithm is that the
cost of each iteration is approximately O(p log(p)) where
p is the pixel number of the reconstructed image. It can
be confirmed by the following observations. The step 4, 5
and 6 only involve adding vectors or scalars, thus cost only
O(p) or O(1). In step 1, ∇f(rk = RT (Rrk − b) since
f(rk) = 1

2∥Rrk − b∥2 in this case. Thus, this step only
costs O(p log(p)). The step xk = proxρ(2β∥Φx∥1)(xg)
has a close form solution and can be computed with cost
O(p log(p)). As introduced above, the step can be solved
iteratively xk = proxρ(2α∥x∥NLTV )(xg) [8]. Although it
generally has higher costs, we only need to run it for lim-
ited O(1) times. Thus, the total cost of each iteration in the
FCSA is approximately O(p log(p)). Compared to the TV in
previous methods, the proposed NLTV step can effectively
avoid the blocky effects and preserve the fine structures while
removing the artifacts.

With these two key features, the NLTV-FCSA efficiently
solves the MR image reconstruction problem (1) and obtains
better reconstruction results in terms of both the reconstruc-



Algorithm 1 NLTV-FCSA

Input: ρ = 1/L, t1 = 1, x0 = r1, s = 0, τ
for k = 1 to K do
s = s+ 1, xg = rk − ρ∇f(rk)
if s = τ then
x1 = proxρ(2α∥x∥NLTV )(xg), s = 0

end if
x2 = proxρ(2β∥Φx∥1)(xg)
xk = (x1 + x2)/2; xk=project(xk, [l, u])

tk+1 =
1+

√
1+4(tk)2

2

rk+1 = xk + tk−1
tk+1 (x

k − xk−1)
end for

tion accuracy and computation complexity. The experimen-
tal results in the next section demonstrate its superior perfor-
mance compared with all previous methods for compressed
MR image reconstruction.

4. EXPERIMENTS
4.1. Experiment Setup

For fair comparisons, we follow the experimental setup used
in previous work [6, 7][4][5]. Suppose a MR image x has p
pixels, the partial Fourier transform R in problem (1) consists
of m rows of a p × p matrix corresponding to the full 2D
discrete Fourier transform. The m selected rows correspond
to the acquired b. The sampling ratio is defined as m/p. The
scanning duration is shorter if the sampling ratio is smaller.
In MR imaging, we have certain freedom to select the rows,
which correspond to certain frequencies. In the k-space, we
randomly obtain more samples in low frequencies and less
samples in higher frequencies. This sample scheme has been
widely used for compressed MR image reconstruction and the
same of those used in [2][4][5][6, 7].

All experiments are conducted on a 2.4GHz PC in Matlab
environment. We compare the proposed NLTV-FCSA with
the fastest methods FCSA [6, 7]. We also compare it with the
classic MR image reconstruction method based on the CG [2],
TVCMRI [4] and RecPF [5]. For fair comparisons, we down-
load the codes from their websites and carefully follow their
experiment setup. For example, the observation measurement
b is synthesized as b = Rx + n, where n is Gaussian white
noise with standard deviation σ = 0.01. The regularization
parameter α and β are set as 0.001 and 0.035. R and b are
given as inputs, and x is the unknown target. For quantitative
evaluation, we compute the Signal-to-Noise Ratio (SNR) for
each reconstruction result.

4.2. Visual Comparisons

We apply all methods on four 2D MR images: cardiac, brain,
chest and artery respectively. They have been used for vali-

dation in [6, 7]. For convenience, they have the same size of
256× 256. The sample ratio is set to be approximately 20%.
To perform fair comparisons, all methods run 100 iterations
except that the CG runs only 20 iterations due to its higher
computational complexity. The NLTV-FCSA obtains the best
visual effects on all MR images in less CPU time. Figure 1
shows the visual comparisons of the reconstructed results by
different methods in the brain image. The classical CG [2] is
far worse than others because of its higher cost in each itera-
tion. The FCSA is better than the TVCMRI and RecPF. These
results are consistent with observations in [4, 5, 6, 7].

(a) (b) (c)

(d) (e) (f)

Fig. 1: Brain MR image reconstruction from 20% sampling
(a) Original image; (b), (c), (d), (e) and (f) are the recon-
structed images by the CG [2], TVCMRI [4], RecPF [5],
FCSA [6, 7] and proposed method. Their SNR are 9.19,
12.23, 13.35, 15.42 and 17.90 (db). Their CPU time are 6.52,
5.65, 5.58, 4.70 and 4.76 (s).

4.3. CPU Time and SNRs

Our experiments in the last subsection confirmed the conclu-
sion in [6, 7] that the FCSA is better than the TVCMRI [4]
and RecPF [5] and far better than the classic CG [2]. Since
the CG method is far less efficient than other methods, we
will not include it in this experiment. We gives the perfor-
mance comparisons between different methods in terms of
the CPU time over the SNR. To reduce the randomness, we
run each experiments 100 times for each parameter setting of
each method. The NLTV-FCSA always obtains the best re-
construction results on all MR images by achieving the high-
est SNR in less CPU time. Figure 2 gives the performance
comparisons between different methods in terms of the CPU
time over the SNR. The FCSA is always inferior to the NLTV-
FCSA, which shows the effectiveness of NLTV in the pro-
posed algorithm for the MR image reconstruction. While the
RecPF is slightly better than the TVCMRI, both of them is
inferior to the FCSA. This is consistent to observations in
[6, 7], [4] and [5]. In Figure 2(b), we may find that the FCSA



obtains reconstructed results with higher SNR compared to
the NLTV-FCSA. This is not strange because the NLTV has
higher computational complexity although it can obtain re-
sults with higher SNR in each iteration. However, the NLTV-
FCSA is always better than the FCSA with more iterations.
Note that the NLTV regularization is not required to run for
each iteration in the NLTV-FCSA. We only runs the NLTV
regularization periodically. From the above experiments, we
can easily find that the NLTV-FCSA is better than all previous
method for compressed MR image reconstruction in terms of
both reconstruction accuracy and computational complexity.
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Fig. 2: Performance comparisons: a) Iterations vs. SNR on
Brain image; (b) CPU Time vs. SNR on Brain image; (C)
Iterations vs. SNR on Chest image and (d) CPU Time vs.
SNR on Chest image.

5. CONCLUSION

An efficient algorithm is proposed for the compressed MR
image reconstruction based on wavelet sparsity and periodic
nonlocal total variation regularization. Our work has the fol-
lowing contributions. First, the proposed NLTV-FCSA can
efficiently solve a composite regularization problem includ-
ing both NLTV term and wavelet sparsity based L1 norm
term, which can effectively avoid blocky artifacts caused by
traditional TV regularization. Second, it inherits the strong
convergence properties of the FCSA and its computational
complexity is also approximately O(n log(n)) for each itera-
tion due to the periodic scheme. Finally, we conduct numer-
ous experiments to compare different reconstruction methods.
Our method is shown to impressively outperform the classic
methods and the fastest method so far in terms of both accu-
racy and complexity.
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