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ABSTRACT

The Metamorphs model is a robust segmentation method
which integrates both shape and appearance in a unified
space. The standard Metamorphs model does not encode
temporal information. Thus it is not effective in segmenting
time series data, such as a cardiac cycle from MRI. Further-
more, it needs manual interaction to initialize the model,
which is time consuming for temporal data. In this paper,
we proposed a model to seamlessly couple both spatial and
temporal information together in the Metamorphs method.
It is also able to automatically initialize the model instead
of manual initialization. We model energy terms as proba-
bility maps, then different energy terms can be easily fused
by multiplying them together. Temporal Spectral Residual
(TSR) is employed to rapidly generate a probability map
in temporal data. Compared to traditional Metamorphs, the
computational overhead of our model is very light due to
the efficiency of the TSR method and the ease of coupling
different energy functions by using probability maps. We val-
idate this algorithm in a task of segmenting the left ventricle
endocardium from 2D MR sequences, and our method shows
performance superior to the traditional Metamorphs.

Index Terms— Segmentation, spatio-temporal, Meta-
morphs, cardiac MRI

1. INTRODUCTION

Automated object segmentation is a fundamental problem in
medical image analysis. It is challenging to robustly seg-
ment objects because of the common presence of cluttered ob-
jects, object texture, image noise, and various other artifacts
in medical images. In recent decades, deformable model-
based segmentation methods have been extensively studied
and achieved considerable success [7, 2, 9], because of their
ability to integrate high-level knowledge with low-level im-
age processing. One of the seminal works in this area, the
“Snakes” [7], models the segmentation task as an energy-
minimizing framework driven by both external forces derived
from image appearance cues and internal forces from shape
smoothness constraint. Many variations have been proposed

to improve the robustness of the Snakes model. Most of them
focus on handling noise and spurious image edges, since the
traditional Snakes, solely relying on the image gradient infor-
mation, can easily get stuck at local minima. Methods such
as Region analysis strategies [13] have been incorporated in
Snake-like models to improve their robustness to noise. In
particular, instead of modeling traditional “active contours”,
Metamorphs [6] have been introduced to model “deforming
disks or volumes”. It is able to integrate both shape and
appearance in a unified space, where the estimated object
boundary by shape and appearance are encoded as probabil-
ity map. Since the model has incorporated not only boundary
shape but also interior appearance, it is more robust to am-
biguous boundaries and complex internal textures. The defor-
mation of this parametric model is based on Free Form Defor-
mation, which is very efficient, as it reduces the deformation
space from all pixels to a few parameters. The Metamorphs
method is effective on diverse tasks, such as segmenting the
heart and liver from MRI, and prostate from ultrasound im-
ages. Several ways have been proposed to extend and further
improve the original Metamorphs method. Shen et al. pro-
posed Active Volume Model (AVM) [8] to perform volume
segmentation in 3D images. The AVM model’s shape is rep-
resented by a simplex mesh and its volumetric interior carries
the various visual appearance feature statistics. A shape prior
constraint based on Active Shape Model (ASM) [2] has also
been incorporated into 3D Metamorphs [5, 10]. It constrains
the intermediate shape by following the shape pattern from
existing data, which makes it able to recover or preserve local
shape details. Despite the superior performance of the Meta-
morphs method and these extensions and improvements, it is
still not clear how to effectively integrate temporal informa-
tion into this model for spatio-temporal segmentation, such as
segmenting the left ventricle endocardium in a cardiac cycle.
A possible solution is to use Metamorphs in each time frame
independently, or use the result from the previous frame as the
initialization for the next. However, neither of these truly em-
ploy the temporal information. Furthermore, it is also desir-
able to automatically initialize the model instead of manually
locating the organ as is done in standard Metamorphs, since



manual initialization is very time-consuming, especially for
temporal data.

In this paper, we propose a unified framework to seam-
lessly couple spatial and temporal information together in the
Metamorphs model. It is also able to automatically initialize
the model in temporal data. As discussed above, boundary es-
timation from information sources such as gradient and region
are encoded as probability maps in a standard Metamorphs
framework, since different probability maps can be easily in-
tegrated by multiplying them together. Thus, we design our
temporal energy as probability maps as well. Temporal Spec-
tral Residual (TSR) [3] is employed to rapidly generate such
maps in temporal data. TSR is an automatic saliency detec-
tion method which only needs a Fourier spectrum analysis,
so it can rapidly predict the foreground and background. This
temporal energy is used as both the initial energy of the model
and a constraint during runtime. The weight of this tempo-
ral energy is adaptively decreased during deformation, since
the region energy from texture information becomes more and
more reliable when it is close to the boundary. Compared to
traditional Metamorphs, the computational overhead of our
model is very light due to the efficiency of this TSR method
and the ease of coupling different energy functions by us-
ing probability maps. We validate this algorithm in a task of
segmenting the left ventricle endocardium from 2D MR se-
quences. Compared to the standard Metamorphs, our method
is fully automatic, and is able to effectively segment regions-
of-interest in the time series data.

2. METHODOLOGY

Online Robust Deformable Model. In order to find the
boundary robustly, we employ an online deformation frame-
work based on the Metamorphs. The standard Metamorphs
model is driven by both gradient and region information de-
rived from the image, as region information alleviates the
problems caused by unclear boundaries and complex tex-
tures. However, Shen et al. [8] have shown that, in many
cases, including the gradient-based boundary information in
this framework does not improve the segmentation perfor-
mance. Therefore, we just use the image intensity feature and
its predicted object regions to derive image forces. A new
energy derived from temporal information is also modeled,
which is introduced in Sec. 2. These two energies are cou-
pled using probability maps. The overall energy function is
defined as:

E =

n∑
i=1

Eint +

(
n∑

i=1

ER + kTET

)
(1)

where Eint is the internal (smoothness) energy [6]. The dif-
ference of the internal energy from [6] is that we take the
sum over the whole sequence. ER is the external region en-
ergy term, n is the number of time frames, ET is the exter-
nal temporal energy term, and kT is the weight to balance

the contributions of the two external energy terms ER and
ET . The details of the region term are introduced in Sec. 2,
and the temporal term is discussed in Sec. 2. The balance
between the internal and external energies is naturally con-
trolled by the smoothness constraint of the shape model [8].
Different from standard Metamorphs, our objective function
is designed for the whole sequence of temporal data instead
of each time frame separatively.

To initialize the model, we use a TSR-based saliency
detection method to rapidly and automatically generate prob-
ability maps for all time frames, which denote the pixel
probabilities of being foreground or background. This energy
drives the model to deform. After this initialization, an inter-
mediate result is generated and energy from the region term
can be calculated and iteratively updated. Although temporal
energy continues to serve as a constraint during the evolution
of the model, its importance is adaptively decreased, since
the region term becomes more and more reliable when the
model is close to the boundary. We define the weight kT
as kT = 1 − e−|∆M|, where M is the current shape model.
Thus |∆M| is the magnitude of deformation change in model
shape. In the beginning, the shape deforms quickly, so kT is
relatively large. It means that we trust more in the temporal
energy, and put larger weights on it. After several iterations,
the region term should be more important since the model is
close to the boundary. At this time the shape deforms less, so
kT is smaller. The model converges when kT approaches zero
as the shape stops deforming. In the following we introduce
the two external energy terms in our model.

Region Energy using Nonparametric Kernel Method.
The region energy ER is based on the intensity distribution of
the model interior. A nonparametric kernel-based method is
employed to model it. Such a nonparametric approximation
is differentiable, generic, and can represent complex multi-
modal intensity distributions. Suppose the model is placed on
an image (denote its intensity as I), where the image region
bounded by the current model ΦM is RM, then the proba-
bility of a pixel’s intensity value i being consistent with the
model interior intensity can be derived using a Gaussian ker-
nel as:

P(i
∣∣ΦM) =

1

V (RM)

∫∫
RM

1√
2πσ

e
−(i−I(y))2

2σ2 dy (2)

where V (RM) denotes the volume of RM, and σ is a con-
stant specifying the width of the gaussian kernel.

Using this nonparametric approximation, the intensity
distribution of the model interior gets updated automatically
while the model deforms. The initialization of the model
texture is flexible, e.g., starting with a small model inside the
texture region to be segmented.

Although the region energy is already able to generate
good results for static images, it still has two problems for
temporal data. First, the results may not be consistent be-
tween two neighboring frames since there is no temporal con-



Fig. 1. Salient motion regions detected by TSR algorithm on
a cardiac MR sequence. (marked in red color in the bottom
row).

straint. Second, we may need to perform manual initializa-
tion for each time frame. This is not efficient, as there may
be more than 20 frames in each temporal dataset. This moti-
vates us to design the temporal energy ET . In our approach,
instead of manual initialization of a model inside the texture
region, we automatically initialize the model according to the
object boundary estimated from the temporal energy termET ,
which is discussed in the following section.

Temporal Energy using Temporal Spectral Residual.
To solve the above mentioned problems, we propose a new
energy, defined in temporal space. The goal is to seamlessly
couple both region and temporal terms. To achieve this, it is
preferable that the temporal term is also defined as a proba-
bility map, which denotes the probability of being foreground
or background. Then it is consistent with the Metamorphs
framework, and two terms can be seamlessly coupled in the
same framework and be balanced with weight kT as in Eq.
1. The computational overhead should also be small. We
use TSR to efficiently generate this temporal energy term as a
probability map.

TSR is an efficient method to find salient motion regions
in video sequences. The main idea is to roughly remove the
redundant part of a volume data (the static part of temporal
slices) and keep the salient motion regions. This algorithm is
able to provide reliable motion regions without needing initial
labeling or any training data. It uses the Spectral Residual
algorithm (SR) [4], which is a saliency detection algorithm
on 2D images using statistics of Fourier Transformation. TSR
uses SR to find the salient regions along the temporal axis in
a video sequence.

Treating a sequence of 2D images as a 3D volume, TSR
is able to roughly locate the cardiac region in temporal space,
as shown in Figure 1. A cardiac motion cycle contains car-
diac motion regions (the motion saliency) and static regions
(regions which do not change much during the cardiac mo-
tion cycle). The motion salient regions are used to generate
the ET energy term in the Metamorphs, for both initialization

and deformation constraint.
Denote the temporal axis of the sequence as T , then the

temporal slices are represented by slabs of XT and Y T ,
where X and Y are the axes of each image frame. To find the
salient regions along the temporal axis, the TSR algorithm
employs SR on XT and Y T separately. Static regions do not
change much over time in the cardiac MR sequence. When
viewed in the temporal domain, pixel intensity stays almost
the same over temporal slices. Thus given a temporal slice
(i.e., XT or Y T planes), the SR algorithm is able to remove
the static part and keep the saliency region. Merging the re-
sults from both temporal planes by majority voting generates
a reliable saliency map for the motion region, i.e., left ventri-
cle endocardium in this case. Figure 1 shows a representative
result. The probability maps detected by TSR are mostly
concentrated around the boundary of the left ventricle endo-
cardium, which provides a rough initialization and temporal
energy termET for the constraint of the deformable model. In
addition, as this algorithm only needs the Fourier transform,
the computational cost is very low. It does not significantly
increase the computation time of the Metamorphs.

3. EXPERIMENTS

In this section, we validate this proposed Spatio-temporal
Metamorphs by segmenting the left ventricle endocardium
from MRI. Segmentation experiments were performed on a
set of 10 MRI cine sequences. Each sequence has 25 heart
phases (frames) and a total duration of 1 sec (approximately
one heart-beat). General cardiac segmentation has been pre-
viously extensively investigated [12, 14, 1]. Our focus here is
to demonstrate the improved performance relative to standard
Metamorphs on this temporal data.

This segmentation task is challenging because of two
facts. The papillary muscle and trabeculae inside the left
ventricle endocardium has large frequent movement. Such
movement causes high gradient, which can adversely affect
the accuracy of segmentation algorithms. Furthermore, the
morphology of the papillary muscle changes along time se-
ries. It is hard to obtain a consistent result by performing a
segmentation algorithm on a single frame. The bottom row
in Fig. 2 shows a segmentation result of the Metamorphs
that fails to maintain the consistency over time. The inferior
papillary muscle is captured in the first frame, but then lost in
the next. The Spatio-temporal Metamorphs uses the temporal
constraint, so it considers the papillary muscle movement
over the whole MR sequences, and is able to keep the re-
sults more consistent. Our result is shown in the top row in
Fig. 2, where the papillary muscle area is successfully cap-
tured along all frames, due to the constraint from temporal
energy.

Table 1 quantitatively compares the accuracy of these two
algorithms compared with expert segmentation. The pro-
posed method achieves higher mean values of sensitivity and



Fig. 2. Comparison between the proposed method (top row)
and the standard Metamorphs (bottom row). The light red
area in the first column is the inferior papillary muscle in
the left ventricle endocardium. The high frequent movement
makes it hard to capture the papillary muscle consistently.

specificity with lower standard deviations. It demonstrates
that our method is more accurate and stable. We also con-
ducted running time analysis in Table 1. We implemented
this method using Matlab on a Quad CPU 2.4GHZ PC, with
a volume data with 25 frames of size 256 by 256. Standard
Metamorphs takes 30.1 seconds. Standard Metamorphs with
TSR takes 30.65 seconds. TSR takes only additional 1.5%
of running time, which is a small portion of the overall com-
putation. Furthermore, the use of the motion information
from the whole series with TSR can further boost the calcu-
lation speed by enabling parallel computing on a multi-core
platform. The standard Metamorphs method is calculated
sequentially, as the current frame depends on the result from
the previous frame as the initialization. The Spatio-temporal
Metamorphs does not have this constraint. Each frame can
be updated in parallel, thus the computational time here is
further reduced to 4.8s, which is only 15.95% of the standard
Metamorphs. Thus the proposed method can greatly speed
up the calculation of the standard Metamorphs.

4. CONCLUSIONS

We proposed a robust segmentation method which employs
both region and temporal information as image forces. The
model is automatically initialized based on predicted saliency
regions from the Temporal Spectral Residual algorithm. Such
temporal energy is further used as a constraint during defor-
mation with adaptively changing weights. Its computational
overhead is very light compared to standard Metamorphs
because of the efficiency of this TSR method and the ease
of coupling different energy functions by using probability
maps. This algorithm was validated in a task of segmenting
the left ventricle endocardium from 2D MR sequences, and
shows improved performance. In the future, we would like
to extend this framework to 3D. Furthermore, we will in-
corporate shape priors [11] to improve the robustness of our
method.

Sensitivity Specificity Time
Metamorphs 0.79± 0.14 0.94± 0.05 30.1s
Our method 0.93± 0.05 0.96± 0.03 4.8s

Table 1. Quantitative comparisons of sensitivity, specificity
and computational time. Mean values and standard deviations
are reported.
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