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ABSTRACT

In this paper, we propose methods to extract the motion of
papillary muscles from high resolution CT images, and quan-
titatively characterize them by extracting spatio-temporal
skeletons. This method first reconstructs and visualizes de-
tailed models of papillary muscles using a two-stage coarse-
to-fine registration. To describe the model’s shape and motion
effectively and efficiently, high level abstractions of the mod-
els, i.e., the skeletons, are extracted with spatial and temporal
constraints. Several skeleton-based indices are proposed to
analyze the changes of model shapes and motions during a
heart cycle. The experimental results show the robustness
and efficiency of spatio-temporal skeletons, and the proposed
indices are capable to demonstrate the differences between
healthy and hypertrophic papillary muscles.

Index Terms— Papillary muscle, spatial-temporal skele-
ton, modeling, visualization

1. INTRODUCTION
Heart disease is a major public health problem in most coun-
tries around the world. Therefore, it is critical to detect and
diagnose such diseases in early stages. Non-invasive imaging
methods, e.g., computed tomography (CT) and magnetic res-
onance imaging (MRI), are being used widely to assist dis-
ease diagnosis. Most existing diagnosis methods generally
fall into two categories: global function based and regional
function based. Global function based methods mainly fo-
cus on using high-level measurements (e.g., ejection fraction
(EF), ventricular volume [10]) to evaluate the condition of
the heart. However, these approaches may fail to discover lo-
cal abnormalities, such as regional effects of left ventricular
hypertrophy (LVH), or even severe aortic stenosis (AS) [11].
Regional function based methods try to detect heart disease
from regional and local indices, such as the strain and wall
thickness [3]. However, these methods are still unable to re-
veal and characterize the detailed interior structures and their
properties, which could be beneficial for more specific char-
acterization of the nature and severity of heart disease [7].

The growing capabilities of imaging methods (e.g., high
resolution CT, MRI) provide a wealth of information on the
detailed structure and function of the heart [6]. Previous have
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Fig. 1. Model meshes reconstructed from high resolution CT
data of left ventricle (valves removed for better visualization).
(a) Healthy heart. (b) Hypertrophic heart. These results cap-
ture many details inside the heart. The papillary muscles are
marked with bounding boxes.

works mainly focused on automatic and global segmentation,
without analyzing the potential of acquired detail information
of individual main anatomical structures, such as the papil-
lary muscle and the trabeculae. Nevertheless, these structures
play very important roles in heart function, and they could be
closely related to heart disease, such as, left ventricular hy-
pertrophy [7, 9]. Papillary muscles, in particular, which con-
nect the heart wall and the valves, control the correct blood
flow by their contractions and relaxations. Therefore, it is po-
tentially significant to visualize them and analyze their func-
tion during a heart cycle. In this paper, we propose a frame-
work for reconstructing and visualizing the papillary muscle
with its detailed structures from high resolution CT images,
and extract the associated spatio-temporal skeletons for fur-
ther shape and motion analysis. A two-stage coarse-to-fine
registration method is employed to reconstruct the 3D+time
models of papillary muscles. A skeleton is a geometric and
topological abstraction of a 3D object, and has been shown
to be effective in shape and motion analysis [1]. A spatio-
temporal skeleton extraction and registration method is pro-
posed to extract the skeletons and skeleton-mesh mappings
for reconstructed papillary muscle model meshes. Further-
more, we conduct extensive skeleton-based analysis on repre-
sentative healthy and hypertrophic hearts.

2. METHODOLOGY
Our proposed framework consists of two main steps: 1) two-
stage coarse-to-fine registration, which builds the 3D+time
model meshes for papillary muscles from the high resolu-
tion CT image data, 2) spatio-temporal skeleton extraction for
these meshes. To do this, we first extract the skeleton for the
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Fig. 2. The two-stage registration results of papillary muscle
from the healthy heart. We show the frontal and back views of
the first-stage (a) and the second-stage (b) registration results.
(b) contains more details which are missing in (a).

base frame (i.e., the first acquired frame), build its skeleton-
mesh mapping pattern, and then transfer the mapping pattern
to other frames to obtain the desired skeletons.

Two-stage coarse-to-fine registration: We employ a
deformable model based segmentation and registration algo-
rithm [6] as the global stage. It generates 3D+time meshes
from high resolution CT images with one-to-one vertex corre-
spondences. Fig. 1 (a) and (b) show the segmentation results
for a healthy heart and a hypertrophic heart, respectively.

Since the first-stage registration focuses on the global reg-
istration of the whole heart, it unavoidably brings in some
reconstruction biases and noise for the local area of the papil-
lary muscle (Fig. 2). Thus, we need to employ a finer second-
stage registration on the papillary muscle area only. We man-
ually select the papillary muscle from the global registered
3D model of the heart on the base frame, as shown in Fig.
2(a). The corresponding papillary muscle parts in the rest of
the frames can be cropped out automatically, according to the
one-to-one vertex correspondences. An adaptive-Focus De-
formable Model (AFDM) [8] is then employed as the second-
stage local registration, and more accurate and finer models of
papillary muscles are obtained. The one-to-one vertex corre-
spondences are also computed (Fig. 2(b)).

Spatio-temporal skeleton extraction: A skeleton is a
low dimensional shape abstraction of an object mesh, so it
has many advantages to represent the high level shape and
motion [1]. To analyze the object shape at the skeleton level,
we propose a spatio-temporal skeleton extraction algorithm
to obtain the skeletons for all frames in a heart cycle, whose
skeleton-mesh mappings are consistent spatially and tempo-
rally. Most existing skeleton extraction methods [1, 14, 13]
mainly focus on how to extract the skeleton for a single ob-
ject. If the skeletons of the papillary muscle meshes are ex-
tracted individually without considering the spatial and tem-
poral constraints, the results may not be stable and consis-
tent. They may also have different number of nodes and dif-
ferent skeleton-mesh mapping patterns. Moreover, the com-
putational cost for a single skeleton extraction method is high,
and it is time-consuming to run it for every frame. Therefore,
extracting spatio-temporal skeletons efficiently is essential for
further shape and motion analysis. Our spatio-temporal skele-
ton extraction algorithm includes three steps: a) single skele-
ton extraction, b) skeleton mesh mapping, and c) skeleton reg-
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Fig. 3. Single skeleton extraction. (a) Input mesh. (b) Inter-
mediate results after a few volume contractions. (c) Approx-
imate zero-volume mesh after contractions. (d) Extracted 1D
curve-skeleton. (e) Extracted skeleton visualization with in-
put mesh. (f) The skeleton-mesh mapping result. Each color
of mesh surface corresponds to one skeleton node separately.

istration, which are introduced below.
a) Single skeleton extraction: In order to generate a 1D

curve skeleton, which abstracts the given object topologically,
we first make the object contract until it turns into an approx-
imate zero-volume mesh by iteratively smoothing, and then
convert the zero-volume mesh into a 1D curve skeleton.

Given a mesh G = (V,E, F ), with vertices V , edges E,
and faces F , where V = [vT1 , ..., v

T
n ]

T are the vertex po-
sitions. The volume reduction process is based on geome-
try contractions that iteratively smooth and collapse the mesh
without ruining the topological structure. This contraction is
formulated as an energy minimization problem involving two
terms: a contraction term based on the discrete Laplace oper-
ator that removes the geometry details along the approximate
normal directions, and an attraction term that uses the mesh
vertices as anchors to retain necessary topological structure
in the collapsing shape [1]. The conjugate normal direction
for the contraction is defined as L, the n × n curvature-flow
Laplace operator with elements:

Lij =

⎧⎨
⎩

wij = cot(αij) + cot(βij), if (i, j) ∈ E∑k
(i,k)∈E(−wik), if i = j

0, otherwise
(1)

where αij and βij are the opposite angles corresponding to
the edge (i, j) [5].

The new vertex position V ′ of the contraction result for
V can be obtained by solving the discrete Laplace equation:
LV ′ = 0. This equation is also called contraction con-
straints, which tries to remove the normal details and contract
the mesh geometry. To ensure the contracted mesh abstracts
the original shape well, all the vertices are constrained to
keep their current positions as soft constraints. The constraint
can be denoted as V ′ = V .

We put these two constraints in a single Laplacian system:[
WLL
WH

]
V ′ =

[
0
WHV

]
(2)

where WL,WH are the weights to balance the contraction
and attraction constraints in the contraction iterations [1]. Af-
ter contracting the object step by step until it becomes an ap-
proximate zero-volume mesh (Fig. 3(c)), a series of edge-
collapses [1] is employed to remove collapsed faces from the
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Fig. 4. The procedure of skeleton registration. (a) An in-
put mesh for skeleton extraction. (b) Skeleton-mesh map-
ping transferred from base frame. Skeleton result visualiza-
tion with input mesh (c) and skeleton-mesh mapping (d).

degenerated mesh, until all faces have been removed. One
example of a extracted skeleton can be found in Fig. 3(d).

b) Skeleton mesh mapping. After the skeleton is ex-
tracted from the mesh, we need to find the mapping pat-
tern between the skeleton nodes and the faces of the mesh.
The mapping results can reveal the physical meanings of
the skeleton abstraction. It is also a key prerequisite for
the following skeleton registration. Suppose the extracted
skeleton of mesh G = (V,E, F ) is S = (SV, SE) with
skeleton nodes SV and edges SE. The mapping is be-
tween the faces F = {f1, f2, ..., fm} and the skeleton
nodes SV = {SV1, SV2, ..., SVk}. The union of all the
faces mapping to the same node is called a component.
GeoDist(fi, SVj), the geodesic distance between a face fi
and a skeleton node SVj , is defined as the average Euclidean
distance between all the vertices of face fi and node SVj .
Intuitively, faces should be mapped to the skeleton nodes
with the shortest geodesic distance. However, the boundaries
between different components should have deep concavities
rather than flat surface transitions. Therefore, it is not enough
to only consider the geodesic distance. The curvature of the
mesh surface is also a good indicator for the boundaries of
the different components. We define the angular distance
between two faces fp and fq as :

AngDist(fp, fq) = (1− cosαpq). (3)

where αpq is the angle between the normal vectors of fp and
fq . The angular distance between a face fp with a skeleton
nodes SVj (denoted as AngDist(fp, V Sj)), is the shortest
distance between fp and all the faces already mapped to SVj .
So the index of skeleton node associated with face fp is:

argdmin{GeoDist(fp, SVd) + μAngDist(fp, V Sd)} (4)

where d ∈ [1, ..., k], μ is the weight used to balance between
geodesic and angular distance. μ = 2 in our setting.

The initial faces mapped to the skeleton nodes are selected
by only considering the geodesic distance. Other faces are
then mapped to the skeleton one by one according to Eq. 4.
An example result is shown in Fig. 3(f), and the compo-
nent segmentations are promising, e.g., two branch muscles
are segmented out properly.

c) Skeleton registration. Since the one-to-one vertex cor-
respondences among all the papillary muscle meshes have
been built using a two-stage coarse-to-fine registration, the
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Fig. 5. Results of the hypertrophic papillary muscle. (a) Re-
construction result (front & back views). (b) Extracted skele-
ton result. (c) Skeleton-mapping result. (d, e) spatio-temporal
skeleton extraction results on another hypertrophic frame.

mesh component segmentations can be easily transferred
from one mesh to another one. Take Fig. 4(a) as a new input
mesh to illustrate our method. Fig. 4(b) shows one mapping
result transferred from Fig. 3(f). Skeleton nodes are the
abstractions of the corresponding components, so their loca-
tions can be referred from these components. The location
of a skeleton node is calculated using the weighted average
of all the coordinates of the vertices belonging to the corre-
sponding component. The weights are inversely proportional
to the corresponding node-vertex distances of the base frame.
The skeleton result for this example is shown in Figs. 4(c)
and 4(d). In this way, the skeletons of other meshes can also
be obtained. Our method only has to run the single skeleton
extraction algorithm once for the base frame. Thus, it is much
more efficient than extracting the skeleton for each frame.

3. EXPERIMENTS
Data Description: We collected CT scans from healthy and
hypertrophic hearts. The CT images were obtained from a
320-MSCT scanner (Toshiba Aquilion ONE). A whole heart
can be captured in a single rotation using this advanced dy-
namic volume CT scanner, and a high isotropic volumetric
resolution (0.3mm) can be achieved. A conventional ECG-
gated contrast-enhanced CT angiography protocol is adopted
to acquire the CT image data. For each cardiac cycle, 10 car-
diac 3D+time CT images were acquired, which are equally
distributed in a single cycle of cardiac contraction. The res-
olution of each time frame is 512 by 512 by 320 pixels. The
reconstructed models for the hearts can be found in Fig. 1.

Visualization: The visualizations for the papillary mus-
cle of the healthy heart are shown in Fig. 2. The results of sin-
gle skeleton extraction, skeleton-mesh mapping, and skeleton
registration are shown in Fig. 3. Fig. 5 shows the results of
two frames of the hypertrophic heart. The branching struc-
tures, which attach the papillary muscle to the myocardium,
are also visualized clearly in these figures. This shows that
the papillary muscles are separate structures rather than solid
portions of the heart wall, as was the conventional belief [2].
Apparently, the papillary muscles from the healthy heart and
the hypertrophic heart are quite different in appearance. More
quantitative analysis on the differences between healthy and
hypertrophic papillary muscles will be conducted.

Quantitative results: In order to further explore the
function of papillary muscles and the differences between
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Fig. 6. Skeleton length comparison of healthy and hyper-
trophic papillary muscles. Larger changing range indicates
more intense contraction and stretch.

healthy and hypertrophic hearts, we performed some quan-
titative analysis based on the reconstruction results and the
extracted spatio-temporal skeletons. We also propose several
new indices to measure the cardiac function.

Volume index. Volume is a global descriptor, which indi-
cates some cardiac disabilities. Since the volume of papillary
muscle won’t change much during a heart cycle, we compare
the average volumes of the papillary muscles. The average
volume of the healthy papillary muscles is 2825 mm3, while
the average volume of the hypertrophic papillary muscles is
4677 mm3. This result shows that the volume of hypertrophic
papillary muscles is much bigger than the healthy ones.

Skeleton length index. The stretch of a papillary muscle
can be mainly measured by the length of its skeleton, which
is the sum of all the edges of the skeleton. The length is mea-
sured in voxels, so it won’t suffer from scale issues. Fig.
6 shows the skeleton length changes of healthy and hyper-
trophic papillary muscles in a heart cycle. The reduction of
skeleton length indicates the muscle contraction, while the in-
crease means relaxation. One contraction and one relaxation
are captured for both healthy and hypertrophic papillary mus-
cles in one heart cycle. The value range of healthy papil-
lary muscles are larger, which indicates the contractions of
the healthy ones are more intense, and thus more functional.

Skeleton Motion index. Cardiac motion is an important
indicator of heart health [4, 12], and the deformation of pap-
illary muscles plays an important roles. We calculated the
skeleton motion for healthy and hypertrophic papillary mus-
cles to explore their differences. To validate that the skele-
tons are good abstractions of the meshes, the mesh motions
are also computed for reference. Skeleton motion and mesh
motion are defined to be the average location displacements
of skeleton nodes and mesh vertices, respectively (measured
in voxels). Fig. 7 shows that the range of the skeleton motions
of healthy papillary muscles is much larger than hypertrophic
ones, which means the healthy papillary muscles have bet-
ter functional behaviors, e.g., quick deformations, thorough
relaxations. The motions of skeletons and meshes are also
compared, and there are little differences between them re-
gardless of different conditions of papillary muscles. Thus
the skeleton is a promising way to abstract mesh, besides its
many rewarding benefits in efficiency and robustness.

4. CONCLUSIONS
In this paper, we proposed a method to reconstruct and visu-
alize dynamic papillary muscles from high resolution CT im-
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Fig. 7. Results of the mesh and skeleton motion for the
healthy (left) and hypertrophic (right) papillary muscles in a
heart cycle. Each figure compares the motion between the
meshes and their high-level abstractions (i.e., skeletons).

ages. The reconstructed models contain substantial and un-
precedented details. Furthermore, a novel mesh abstraction
approach, spatio-temporal skeleton extraction method, is pro-
posed to extract skeletons from sequence frames and analyze
papillary muscle functions during a heart cycle. Extensive
experiments on skeleton-based indices show the capabilities
of our method to capture the differences between healthy and
hypertrophic hearts, and its robustness and efficiency.
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