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Abstract— This paper introduces a novel and efficient algo-
rithm for reconstructing the 3D shapes of tumors from a set of
2D bioluminescence images which are taken by the same camera
but after continually rotating the animal by a small angle. The
method is efficient and robust enough to be used for analyzing
the repeated imaging of a same animal transplanted with gene
marked cells. There are several steps in our algorithm. First,
the silhouettes (or boundaries) of the animal and its interior
hot spots (corresponding to tumors) are segmented in the set
of bioluminescence images. Second, the images are registered
according to the projection of the animal rotating axis. Third,
the images are mapped onto 3D projection planes and from
the viewpoint of each plane, the visual hulls of the animal and
its interior tumors are reconstructed. Then, the intersection of
visual hulls from all viewpoints approximates the shape of the
animal and its interior tumors. In order to visualize in 3D the
structure of the tumor, we also co-register the BLI-reconstructed
crude structure with detailed anatomical structure extracted from
high-resolution micro-CT on a single platform. The experimental
results show promising performance of our reconstruction and
co-registration method.

I. INTRODUCTION

Bioluminescence imaging (BLI) is an emerging technique
for sensitive and noninvasive imaging, which can be used for
monitoring molecular events in intact living animals. Important
applications of this imaging technique include gene therapy
and cell trafficking studies. Unlike fluorescence optical imag-
ing approaches which require an external source of light for
excitation of fluorophores, BLI generates a two-dimensional
(2D) view of gene expression using a CCD camera based
on the internal light produced by luciferases, catalysts in a
light generating reaction, through the oxidation of an enzyme-
specific substrate (luciferin) [1], [2]. The increasing use of BLI
as the choice of small-animal imaging modality is based on
the need for repeated imaging of the same animal transplanted
with gene marked cells, which is possible using BLI. Other
imaging modalities such as mPET, MRI are unsuitable for
repeated imaging in a laboratory setting and require sophis-
ticated equipment or allowance for isotope decay to image
repeatedly. A complementary imaging modality to BLI is the
microCT imaging, which can be used in one session to provide
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the high-resolution anatomical images. The problem we tackle
in this paper is to recover 3D tumor shape from multiple 2D
bioluminescence images of a small animal. There is a need for
3D reconstruction because 2D BLI images do not provide any
information on the response in the z-axis(i.e. depth). Recently
there has been research work on bioluminescence tomography
(BLT) which aims to extract the depth information [3], [4], [5].
However, as shown in [5], this inverse reconstruction problem
is ill-posed and in the general case the BLT does not have
a unique solution. Furthermore, real systems that implement
BLT can be time consuming and not easy to reconstruct the 3D
images with high resolution. One potential approach suggested
in [4] is to use multiple CCD cameras for simultaneous
measurement of bioluminescence signals.

In this paper, we propose a novel and efficient approach
to reconstruct 3D tumor shape in small animals using a
series of BLI images taken by the same camera but after
continually rotating the animal by a small angle. Our image-
based reconstruction technique is rooted in the stereoscopy
algorithm in computer vision [6]. Instead of using multiple
cameras, our experimental set-up uses a single CCD camera
that is readily available in commercial BLI imaging systems
(e.g. IVIS 200 imaging station) to acquire images of an animal
at every rotation stage for multiple rotations clockwise from
a fixed (e.g. the vertical) axis. The rotation angle is small
between consecutive acquisitions to ensure the possibilities of
obtaining good reconstruction results. This set-up is simpler
and more flexible than using multiple cameras since we can
acquire any number of images by adjusting the rotation angle.

Given the multiple BLI images of the animal, we propose
to reconstruct the 3D shape of the hot spots (corresponding
to tumors) based on a 3D visual hull reconstruction method.
Using visual hulls for object shape reconstruction has received
extensive attention and has been widely studied over the
last decade [7], [8]. A visual hull is the approximation to
the shape of an 3D object, and it can be computed from
simple silhouettes by extending the silhouettes along the depth
direction. The visual hull of an object depends both on the
object itself and on the viewing direction, and an exact
surface could be constructed if there are sufficient number of
viewing directions. Because it is simple and efficient, visual
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hull is successfully used for many virtual reality application
[9]. Visual hull is well-known that it has no concavity. For
solving this problem, Brand et al. [8] recently developed
a method. They generalized the problem with a differential
geometric setting in the dual space, in which the specified
priors are not needed for fitting the parameter functions.
Although the visual hull can not represent concavity, it is able
to give a good estimation if the objects is textureless or has
non-Lambertian effects. In this paper, since the tumors have
small sizes and they are textureless in the captured images,
a visual hull based 3D reconstruction method is suitable to
recover the tumor shapes from multiple BLI images. In this
paper, we use visual hulls to reconstruct the shape of tumors
captured by a set of BLI images. The proposed method has
several steps. First, the silhouettes of objects (e.g. a small
animal, or a tumor inside the animal) in all the images are
obtained with a simple segmentation approach. Then all the
images are registered according to the rotating axis. Finally,
the images are mapped onto their respective 3D projection
planes, visual hulls generated from all projection directions are
generated, and the intersection of all visual hulls are computed
to approximate the 3D location and shape of the animal and its
interior tumors. Our results on both phantom study and small
animals show very good reconstruction accuracy.

Based on our work described in [10], in this paper, we
combined the 3D tumor reconstructed results from BLI images
and microCT images together to obtain the final visualizations.
Registering and visualizing the reconstructed tumor structure
from BLI together with detailed animal geometry extracted
from microCT allows one to import multiple images on a
single platform and obtain better structural and functional
information. There has been extensive research on multi-modal
image registration in the literature, either based on matching
geometric features [11], [12] or by optimizing intensity-based
energy functions [13], [14]. However, we know of no existing
registration algorithms for registering the optical BLI and
structural microCT. In this paper, we develop such a regis-
tration algorithm based on BLI reconstruction and structure
(shape) registration. Using the registration algorithm we can
locate the tumor sites relative to animal anatomical landmarks,
and this knowledge will allow us to develop methods to
generate MSCs with robust and improved tumor targeting
capabilities in the future.

The remainder of the paper is organized as follows. In
section 2, we introduce our experimental set up and data
acquisition method. Section 3 presents the procedures for
segmenting animal tumor silhouettes. Section 4 introduces the
method for registering images. The visual hull reconstruction
algorithm and experimental results using both a phantom
study and real small-animal images are presented in section 5.
Section 6 proposes the co-registration visualization results of
BLI and microCT on a single platform. Section 7 concludes

this paper with discussions.

II. SETUP AND IMAGE ACQUISITION

The bioluminescence images were acquired following in-
jection of D-luciferin (given i.p. at 150mg/ml) and image
reconstruction was carried out using manufacturer’s (the IVIS
100 machine, by Xenogen, Alameda, CA) software. Images
were acquired in a standard mode with 2x2 binning. In order
to get specificity of the response in the z-axis, we design the
following experimental set up.

For small animals such as mice, a 50 ml tube cut at both
ends and the bottom can be used as a holder. The anesthetized
animal fits easily in the tube and can be placed in the imaging
device without any discomfort. The animal can be rotated
similar to the phantom-well images and 32 rotational images
can be acquired. An added advantage of the 50 ml tube is
that it can be fitted with a soft foam to make the animal
fit snugly in the tube, and the outside of the tube can be
marked with fiduciary markers for anatomical reference. After
the animal to be imaged is inserted into a cylindrical 50 ml
tube, images are acquired at every rotation stage clockwise
from the vertical axis. This generates a series of images
including the one without any rotation. Fig.1 shows some
example BLI images of a mouse with tumor in the abdomen
area. The mouse is contained in a 50 ml tube cut at both
ends and bottoms. The tumor regions have higher intensity
values in the BLI images. The dimensions along long axis
and short axis of the mouse tumor is1.2cm, 1.1cm and
1.1cm, which is obtained by sacrificing mouse after image
capturing. The intensity representation denotes the level of
response in different locations. The bright reflections due to
the tube surface are eliminated using a pre-processing filtering
step before applying our reconstruction algorithm.

Fig. 1 shows some example images, between which there are
small rotations. The intensity representation denotes the level
of response in different locations. Due to the characteristic
of the bioluminescence images, higher intensity denotes the
possible location of a tumor. The bright reflections due to the
tube surface are eliminated using a pre-processing filtering step
before applying our reconstruction algorithm. In the following
sections, we also use a set of images from a phantom study
(Fig.2(1)). The images were generated by rotating a 50 ml
tube clockwise at an increment of 11.25 degrees. Luciferase-
positive cell lysates were embedded in agarose inside the tube.
The dimensions along long axis and short axis of the cluster of
lysates are1.8cm, 1.2cm and1.1cm. It appeared as a hot point
in images which were acquired over 20 minutes following
injection of D-luciferin.

Using this set up, we can easily separate the interested
objects from the background. Then, with the proposed 3D
reconstruction method and the segmented silhouettes, we could
efficiently reconstruct the 3D shape of the tumors. We can
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Fig. 1. Examples of BLI images acquired from a small animal with tumor
cells growing in the abdomen.

(1)

(2)

(3)

Fig. 2. Segmentation Examples. (1) BLI images. (2) Segmented tubes. (3)
Segmented tumors

also further extend the method to register the center of mass
of several more areas near the maximum response, where
the intensity is 5-10% lower from this maximum. The 3D
reconstruction of these points will give an estimate of the
tumor enclosing volume.

III. SEGMENTING IMAGES

A visual hull depends both on the object silhouettes and
on the camera viewing direction. Before the reconstruction,
we should obtain the object silhouettes in the images. In our
experiment, as shown in Fig. 2(1), the objects were rotated
gradually with a small angle and their bioluminescence images
were captured correspondingly. Considering that the images
include not only the interested objects (the tube and the tu-
mor), but also the un-interested background, the captured BLI
images should be segmented for later processing. In order to
facilitate correct segmentation, a monochromatic background
was captured to distinguish the tube containing the small
animal from the environment in the experiment setup. First,
the contour (or silhouette) of the tube containing the small

(1)

(2)

Fig. 3. Examples for registering images. (1) BLI images. (2) after alignment.

animal is easily extracted from the input images by simple
thresholding. Fig. 2(2) shows the tube segmentation result we
obtained. In order to segment the tumor from the tube region,
the bright reflections due to the tube surface are eliminated
using a pre-processing filtering step. Then, according to the
characteristic of tumor in the BLI images (they appear as
higher intensities), we can segment the tumor from the tube
region by combining tumor intensity and edge information.
Fig. 2(3) shows segmentation results of the tumor in the
images.

IV. REGISTERING 2D BLI IMAGES

Due to noise in the imaging system during the rotation of
the small animal, the bioluminescence images may not be
perfectly aligned. To ensure accurate correspondence across
images, we apply an image-based method to register the
images such that projections of the rotating axis on all images
overlap in the image space. For this purpose, we define
an image dissimilarity objective function based on mutual
information [14], [15], and recover the translation and rotation
parameters by minimizing the objective function. Suppose a
source image isf , and its adjacent target image isg.

In the most general case, let us consider a sample domainΩ
in the image domain of the source imagef , we aim to recover
the parametersΘ = (Tx, Ty, θ) of a global transformationA
such that the mutual information betweenfΩ = f(Ω) and
gA
Ω = g

(
A(Θ; Ω)

)
is maximized. Here the parametersTx and

Ty are translation parameters in thex andy directions respec-
tively, andθ denotes the rotation angle. And the definition for
such mutual information is:

MI(XfΩ , XgA
Ω ) = H

h
XfΩ

i
+H

h
XgA

Ω

i
−H

h
XfΩ,gA

Ω

i
(1)

In the above formula,X denotes the intensity random
variable andH represents the differential entropy. Then we
define the image dissimilarity objective function as:
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E(A(Θ)) = −MI(XfΩ , XgA
Ω ) (2)

Hence by minimizing this objective functionE, we achieve
maximizing mutual information. The calculus of variations
with a gradient descent method is then used to minimizeE and
recover the transformation parametersTx, Ty andθ. Fig. 3(2)
shows the registered images. Note that small displacements
and rotations between consecutive images are corrected.

V. RECONSTRUCTING 3D STRUCTURE AND
TUMOR SHAPE

As introduced above, instead of setting up an image-
capturing system with multiple cameras, we take biolumi-
nescence pictures by a single fixed camera while rotating
the object (tube or small animal). This setup is equivalent
to having multiple cameras surrounding a static object, but
it is much simpler and does not require calibrating multiple
cameras. Fig. 5 demonstrates the multi-view set up where the
planes represent the projection planes for images taken from
different views. Since the depth variation due to the object
is small compared with the distance between the animal and
the camera, changes in the object silhouette along the depth
direction are negligible. Thus, an orthographic projection
model is reasonable to use in order to reconstruct the 3D object
structure and tumor shape.

After all images are aligned so that the projections of the
rotating axes overlap, we compute feature correspondences
between consecutive images in order to reconstruct the 3D
locations of those features. This is achieved by detecting
corner features on both images, and establishing correspon-
dences based on maximizing mutual information between
small-neighborhood regions around the features.

To detect corner features on an imageI, we consider the
spatial image gradient (i.e. first order derivatives),[Ix, Iy]. For
a neighborhoodQ surrounding a pixelp, we form the matrix
C, defined as:

C =
( ∑

I2
x

∑
IxIy∑

IxIy

∑
I2
y

)

where the sums are taken over the neighborhoodQ. Then
we apply principal component analysis to compute the two
eigenvaluesλ1 andλ2 (λ1 ≥ λ2) of the matrixC, and choose
corner features as those neighborhoods withλ1 ≥ λ2 > 0 and
the smaller eigenvalueλ2 is larger than a threshold.

To measure the similarity between small-neighborhood re-
gions around corresponding feature points on two consec-
utive images, we use the multi-modal similarity measure,
Mutual Information, because nonlinear changes exist in feature
appearance due to planar projection after rotation. Fig. 4
shows examples of correspondences established between two
consecutive images (corresponding points are marked by the
same number).

Fig. 4. Feature correspondences established between two consecutive images.

Our 3D tumor shape reconstruction is based on the concept
of visual hull. As introduced in [7], [9], [16], a visual hull is
defined by a set of camera locations, the internal calibration
parameters of the camera and silhouettes from each view. It
can be simply thought as the maximal volume that creates
all possible silhouettes of an object. It is obvious that the
visual hull should include the object and be included in the
convex hull of the object. Generally, the visual hull is usually
computed with small number of silhouettes. Matusik and his
colleagues introduced an efficient technique for generating the
visual hull in his work. His approach computes the intersection
of the viewing ray from each designated viewpoint with each
pixel in the image of that viewpoint [9]. Then, visual hull
based reconstruction methods have the advantage that they
can be performed quickly. At the same time, they are also
much less expensive in terms of storage requirements than
volumetric approaches such as voxel carving [17]. Moreover,
if we can obtain accurate estimation of each image views and
the internal calibration parameters of the camera, a relatively
small number of views (4-8) is often sufficient to recover the
3D object shape for these techniques. Thus, it is very useful
and popular for creating real-time virtual models of objects in
practice.

Formally, the visual hull of an objectS with respect to
the viewing regionR, denoted byV H(S,R), is a volume
in space such that for each pointP in V H(S,R) and each
viewpoint V in R, the half-line fromV throughP contains
at least one point ofS [7]. This definition simply states
that the visual hull consists of all points in space whose
images lie within all silhouettes viewed from the viewing
region. Stated another way, the visual hull is the maximal
object that has the same silhouettes as the original object,
as viewed from the viewing region. It is useful to think of
an alternative, constructive definition of the visual hull with
respect to a viewing region. Given a point V in the viewing
region R, the silhouette of the object as seen from V defines a
generalized cone in space with its apex at V map images taken
from different views onto their respective projection planes.
Similar to the basic idea in all the visual-hull reconstruction
algorithms [7], [9], [16], in our implementation, due to using
the orthographic projection model, the segmented object and
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(a) (b)

Fig. 5. Setting up projection plane geometry for images taken from different
views. (a) some example views for consecutive images. (b) all views forming
a full circle.

tumor silhouettes are projected into the 3D space by cylindrical
visual hulls, instead of conical visual hulls in the projective
projection model. By computing the intersection of the visual
hulls projected from all images (i.e. all viewing directions), we
obtain the estimation for the shape and location of the animal
and its interior tumors.

A. Experimental Results

First, we perform several phantom studies. Fig. 6(a) demon-
strates the process of determining the 3D depth of feature
points by computing the intersection of 3D rays passing
perpendicularly through corresponding feature points on two
consecutive images, which are mapped onto their respective
projection planes. It shows the reconstructed 3D location of
the tube center (the intersection of the two rays in blue) and
the 3D location of the tumor center (the intersection of the
two rays in red). The tumor centers on the bioluminescence
images are computed as the centroids of the high-intensity
signal regions (drawn as asterisks on the image planes), and the
intersection of 3D rays passing through tumor center locations
on images taken from different views gives us the location of
the tumor center in 3D. Fig. 6(b) shows the intersection of
multiple cylindrical hulls based on the tumor silhouettes. The
intersection of all cylindrical hulls gives the 3D reconstruction
of the tumor shape. When we compute the visual hull of the
tumor, we can obtain the 3D tumor structure. In the phantom
study, since the object surface can be approximated using
a cylinder, we determine the radius of the cylinder using
silhouettes of the tube. Fig. 7 shows the reconstructed 3D
tumor viewed in two directions. Fig. 8 shows the reconstructed
shape of the tube and tumor, which are viewed in two different
directions.

We also do the same procedures to reconstruct animal and
tumor shapes from small-animal BLI images. Fig. 11(a-b)

shows the reconstructed tumor location and shape from a set
of BLI images of the mouse with abdominal tumor.

Based on our approach, we establish the relationship be-
tween the reconstructed animal dimension measurements in
the animal centered reference frame and that in the physical
world. This is achieved by computing the conversion ratio
based on one base measurement, such as the diameter or the
length of the tube or mouse).
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Fig. 6. Examples for visual effect (a) Line intersection. (b) Cylinder hull
intersection.

(a) (b)

Fig. 7. Reconstructed 3D tumor shape from two views.

B. Evaluation

Evaluation of the reconstruction accuracy is done by com-
paring the recovered 3D shape and location of the tumor with
the ground truth in our experimental set up.

In our phantom study example, validation of the recon-
struction accuracy is done by comparing the recovered 3D
shape and location of the tumor with the ground truth in our
experimental set up. Visually from Fig. 8, we can see that
the estimated tumor location is within the tube and has a
reasonable 3D shape. At the same time, we also measured
physically the tumor center location, and dimensions along
the long axis and short axis of the cluster of luciferase-
positive cell lysates that appeared as hot (or bright) spots
in the images. Comparing our reconstruction result with the
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(a) (b)

Fig. 8. Reconstructed 3D tumor (red) in the tube (gray) in the phantom
study, from two views

(a) (b)

Fig. 9. Reconstructed 3D tumor (red) in the tube (gray) containing the mouse,
from two views.

ground truth (Detailed in section II), the distance in 3D
between the measured hot spot center and the reconstructed
center is around2mm, the difference between the long axis
dimensions is less than1mm, and the difference between
the short axis dimensions is less than1mm. For the mouse
example, the reconstructed tumor dimensions are all less than
2mm different from the true dimensions, and the reconstructed
tumor location matches with the ground truth acquired by
sacrificing the mouse.

VI. REGISTRATION WITH MICRO-CT ON SMALL
ANIMALS

Using the algorithm described above, we can recover the
tumor shapes in animals. One key difference is that, because
the geometry of an animal is much more complicated than
a tube, it is difficult to reconstruct the 3D animal surface
satisfactorily using the sparse surface points recovered. Our
solution is to co-register the crude structure reconstructed from

bioluminescence images with structural microCT tomographic
images. This co-registration of BLI and microCT on a single
platform has the advantage of combining the strengths of
BLI which are: low cost and repetitive imaging, and that of
microCT which are: high-resolution and containing detailed
structural information.

In preparation for the BLI/microCT images, an animal was
injected through tail vein with2× 104 tumor cells expressing
luciferase. Tumors were formed in the abdomen and could be
imaged by BLI(on day 12 after injection) following injection
of 150mg/kg D-luciferin given intraperitoneally. The animal
was anesthetized with isolflurane inhalation, injected with
150mg/kg D-luciferin and immobilized in an open 50 ml tube
and placed on the imaging stage of the IVIS 100 machine
(Xenogen, Alameda, CA). Images were acquired for two
rotations on each side of the fixed central axis at 11.25 degrees.
Examples of BLI images acquired can be seen in Fig. 1. The
same animal was carried over to the microCT machine in the
same position while remaining under isoflurane anesthesia.
MicroCT images (512 slices) were acquired on an IMTEK
microCT machine. Examples of microCT slices for the same
animal are shown in Fig. 10.

Fig. 10. Examples of microCT images from the same animal as in Fig. 1.

We followed similar procedures to that in the phantom
study for reconstruction using BLI images. First, the BLI
images are registered by aligning the projections of the rotating
axes. Then both 3D mouse surface points and 3D tumor
center locations are recovered in the virtual rotating camera
set up using the set of bioluminescence images. Fig. 11(a-
b) shows the reconstructed 3D tumor location and shape. In
our experiments, the living mouse is undergoing repetitive
imaging, which allows us to obtain temporal information.

On the other hand, the mouse is imaged once in the
beginning of the study. We extract the mouse surface and
skeleton structures using standard segmentation and visual-
ization techniques. We use both landmark feature information
and the Iterative Closest Point (ICP) technique [18] to register
the crude 3D structure reconstructed from BLI images with
the detailed 3D structure reconstructed from microCT.

The Iterative Closest Point Algorithm [18] is widely used for
registering two partially overlapping but slightly misaligned
images. It has proven to be very useful registration method
in the processing of 3D image data. The key idea of ICP is
described as follows: Given two surfacesS andS′, in order to
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(a) (b) (c)

Fig. 11. (a) Frontal view of reconstructed tumor location superimposed on a
projected image. (b) another view of the reconstructed tumor location, showing
relative position with respect to three projected images. (c) reconstructed
tumor superimposed on the detailed mouse geometry from microCT.

register these two surfaces, we can search a deformation. After
this deformation, point P in surface S should be ”close” to its
corresponding pointP ′ in surfaceS′. In order to measure the
metric of ”close”, one function is introduced as follows:

Func =
∑

i

dist2(F (Pi)− Pj) (3)

If this function has a small values, it means that two pointsPi

andPj are ”close”. Generally, ICP includes two main steps: 1)
Given a deformationF : Mp = F (P ) with known parameters,
we can apply this deformation to the surfaceS to get a model
surfaceMs. SupposeP is the point in the surfaceS. For
every pointMp in Ms, find its closest pointP ′ in the surface
S′. P ′j is the corresponding point that has been found in this
iteration for point P; 2) Now, we can compute the function
defined in equation 3. In this time,P andP ′ are known but
the parameters of deformationF is unknown. Minimize the
function value to get new deformation parameters. We can
repeat these two steps until the termination criterion is reached.

After the registration with ICP, we are able to visualize the
recovered 3D tumor location and shape from BLI together
with the detailed geometry from microCT. Fig. 11(c) shows
the final registration and tumor shape result in 3D.

VII. DISCUSSIONS AND CONCLUSIONS

We have presented a novel image-based framework for 3D
tumor shape reconstruction from a series of 2D biolumines-
cence images and for registering reconstructed BLI structure
with animal geometry extracted from high resolution micro-
CT images. This is the first image-based BLI reconstruction
method presented, to the best of our knowledge, and the
simplicity and efficiency of our framework gives it great
potential in studying cell trafficking, tumor growth, response
to therapy in vivo as well as imaging and analyzing processes

such as hematological reconstitution following bone marrow
transplantation, among others. Experimental results on both
phantom data and small animal data show that the proposed
method has encouraging performance for 3D tumor shape
reconstruction from 2D Bioluminescence Images and co-
registration with CT Images.
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