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Abstract. In this paper, we introduce an adaptive model-based segmen-
tation framework, in which edge and region information are integrated
and used adaptively while a solid model deforms toward object bound-
ary. Our 3D segmentation method stems from Metamorphs deformable
models [1]. The main novelty of our work is in that, instead of performing
segmentation in an entire 3D volume, we propose model-based segmen-
tation in an adaptively changing subvolume of interest. The subvolume is
determined based on appearance statistics of the evolving object model,
and within the subvolume, more accurate and object-specific edge and
region information can be obtained. This local and adaptive scheme for
computing edges and object region information makes our segmentation
solution more efficient and more robust to image noise, artifacts and
intensity inhomogeneity. External forces for model deformation are de-
rived in a variational framework that consists of both edge-based and
region-based energy terms, taking into account the adaptively changing
environment. We demonstrate the performance of our method through
extensive experiments using cardiac MR and liver CT images.

1 Introduction

Automated object boundary extraction is a fundamental problem in medical
image analysis. It remains challenging to solve the problem robustly however,
due to the common presence of cluttered objects, object texture, image noise,
and various other artifacts in medical images. Efficiency is also often a concern,
especially in 3D segmentation. Model-based methods have been extensively stud-
ied in recent years and achieved considerable success because of their ability to
integrate high-level knowledge with low-level image processing [2–5]. The most
commonly used models are either deformable models [2, 3, 1, 4, 5], or statistical
models [6–8]. While both statistical shape [6] and appearance [7] models have
been proposed to capture variations in an object in images, most deformable
model frameworks [2, 3, 9] have been using primarily shape information, deriv-
ing external image forces from edge or gradient information. These shape-only
deformable models often have difficulty in segmenting objects with texture pat-
terns or in noisy images.

Some efforts have been made in the literature to integrate region information
into shape-only deformable models. Geodesic Active Regions [4] deal with su-
pervised texture segmentation in a frame partition framework. It assumes that
the number of regions in an image is known and the region statistics are learned



off-line using a mixture-of-gaussian approximation. Region Competition [10] per-
forms texture segmentation by combining region growing and active contours af-
ter applying a set of texture filters. The method assumes multivariate Gaussian
distributions on the filter responses. In [11], an improved active contour deforms
on a likelihood map instead of heuristically-constructed edge map; however, the
segmented objects are dilated versions of the truth objects, which is caused by
artificial neighborhood operations. Metamorphs [1] is proposed as a new class
of deformable models that integrate boundary information and nonparametric
region statistics for segmentation. In Metamorphs, shape and appearance of a
model are defined in a common pixel space and both edge- and region-based
energy terms are differentiable with respect to deformation parameters so that
boundary and region information are naturally integrated. Another key property
of Metamorphs is that the object region statistics are adaptively learned from the
evolving model-interior statistics, requiring no other a priori information. Good
segmentation results are obtained using Metamorphs in 2D images. However,
the original Metamorphs framework suffers from efficiency problems when being
extended to 3D because it requires computation in the whole image volume. Fur-
thermore, edges in the original framework were computed statically using canny
edge detector with a global threshold and did not get updated adaptively as the
object model deforms.

In this paper, we propose a new, efficient, 3D model-based segmentation
method based on Metamorphs. Our main novelty is to propose a local and
adaptive scheme that focuses computation on a subvolume and uses the model
interior’s gradient and intensity statistics for adaptive edge and region of interest
(ROI) computation. During model evolution, on one hand, the online-learning
aspect of the 3D Metamorphs model keeps up-to-date appearance statistics of
the object and uses this information to constrain model deformation, and on the
other hand, the adaptively changing statistics enable the model to better handle
image noise and gradual changes in intensity. In addition, we develop a new ROI
based balloon energy term, from which one can derive anisotropic external forces
that efficiently deform the model toward ROI boundary.

In the remainder of the paper, we briefly review Metamorphs [1] in section 2.
We introduce the new 3D adaptive Metamorphs models in section 3. In section
4, experimental results are presented and we conclude in section 5.

2 Metamorphs Deformable Models

Considering traditional deformable models as ”active contours” or ”evolving
curve fronts”, the deformable shape and appearance models, termed ”Meta-
morphs” [1], are ”deforming disks or volumes” that have not only boundary
shape but interior appearance.

Model Shape and Appearance Representations. The object model shape
in Metamorphs is represented implicitly as a distance function. In this way,
model shape is defined by a distance map ”image”, in the common pixel space
as image intensity. The intensity distribution of a Metamorphs model’s interior
region is represented using a nonparametric kernel-based method [12].

Model Dynamics. The deformations that a Metamorphs model can undergo
are defined using a space warping technique, Free Form Deformations (FFD)



[1]. FFD parameterizes warping deformations of the volumetric space in which
the model is embedded, hence deforming both model boundary and interior si-
multaneously. When applied to segmentation, a Metamorphs model is initialized
covering a seed region inside the object, and external image forces are derived in
a variational framework consisting of both edge- and region-based energy terms.
Both types of energy terms are differentiable with respect to the common set of
FFD deformation parameters.

3 3D Adaptive Metamorphs Models

Shape Representation. The 3D extension of Metamorphs implicit shape rep-
resentation is straightforward. Let Φ : Ω → R+ be a Lipschitz function that
refers to the distance transform for the model shape M. By definition Ω is
bounded since it refers to the image domain. The shape defines a partition of
the domain: the region that is enclosed by M, [RM], the background [Ω−RM],
and on the model, [∂RM] (In practice, we consider a narrow band around the
model M in the image domain as ∂RM). Given these definitions the following
implicit shape representation is considered:

ΦM(x) =











0, x ∈ ∂RM

+D(x,M) > 0, x ∈ RM

−D(x,M) < 0, x ∈ [Ω −RM]

where D(x,M) refers to the min Euclidean distance between the image pixel
location x = (x, y, z) and the model M. One example of shape representation is
shown in Fig. 1 (2.e).

Appearance Representation. The nonparametric kernel-based method is used
to represent 3D model-interior intensity distribution [1]. Suppose the model is
deforming on image I, the image region bounded by current model ΦM is RM,
the nonparametric distribution over pixel intensity values i can be derived as:

P(i
∣

∣ΦM) =
1

V (RM)
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RM

1√
2πσ

e
−(i−I(y))2

2σ2 dy (1)

where V (RM) denotes the volume of RM, and σ is a constant specifying the
width of the gaussian kernel. Using this nonparametric approximation, the in-
tensity distribution of the model interior gets updated automatically while the
model deforms. One example is shown in Fig. 1 (1.b).

Model Deformations. 3D Incremental Free Form Deformations (IFFD) is used
to define model deformations. The essence of FFD is to deform the model by
manipulating a regular control lattice F overlaid in its volumetric embedding
space. Hence the model deformation parameters, q, using FFD are deformations
of control points in the lattice F :

q = {(δF x
h,w,s, δF

y
h,w,s, δF

x
h,w,s)}; (h, w, s) ∈ [1, H] × [1, W ] × [1, S]

The deformed position of a pixel x = (x, y, z) given the control lattice deforma-
tion from the initial regular configuration, F 0, to a new configuration, F 0 + δF ,
can be calculated through interpolation using cubic B-spline basis functions:

D(q;x) =
3

∑

l=0

3
∑

m=0

3
∑

n=0

Bl(u)Bm(v)Bn(r)(F 0
i+l,j+m,k+n + δFi+l,j+m,k+n) (2)



– δFi+l,j+m,k+n, (l,m, n) ∈ [0, 3] × [0, 3] × [0, 3] are the deformations of pixel
x’s (sixty four) adjacent control points,

– (i, j, k) is the index (in global reference frame) of the control point located
at the origin of a local reference frame defined by x’s 64 adjacent control
points.

– Bl(u), Bm(v) and Bn(r) are the lth, mth and nth basis function of a Cubic
B-spine respectively [1].

3.1 Adaptive Edge and Region Information

(1)

(2) (a) (b) (c) (d) (e)
Fig. 1. An example of left ventricle segmentation in a 3D MR image. (1.a) Initial 3D
sphere model; (1.b) Intensity probability map (only displaying one slice in a 3D image);
(1.c) Edges based on global threshold; (1.d) ROI; (1.e) Localization of a subvolume of
interest (IIV); (2.a) one slice from the 3D IIV; (2.b) updated Intensity probability map
(2.c) updated edges based on local threshold in IIV; (2.d) distance map based on edges;
(2.e) distance map based on ROI boundary.

To efficiently find object boundary, our algorithm starts with a simple-shape
object model that is initialized covering a seed region inside the object. Edge and
region information are then extracted and integrated adaptively as the model
evolves over time. The overall model fitting process has the following steps.

– Step 1: Initialize a simple-shape (e.g. sphere, cylinder) 3D model centered
around a seed point [Fig. 1(1.a)].

– Step 2: Compute nonparametric intensity statistics inside the model using
Eqn. 1 [Fig. 1(1.b)]. The “Region Of Interest” (ROI) is determined as the
largest possible region in the image that overlaps the model and has a consis-
tent intensity distribution as the current model interior [1] (see [Fig. 1(1.d)]).
Based on the ROI, we localize a subvolume of interest, which we call the ”In-
terested Image Volume” (IIV) [Fig. 1(1.e)].

– Step 3: In IIV [Fig. 1(2.a)], compute the intensity probability map and up-
date ROI based on a local probability threshold. Edges are also computed
in IIV by performing 3D canny edge detection using a local gradient thresh-
old. Comparing Fig. 1(2.b) and Fig. 1(2.c) with Fig. 1(1.b) and Fig. 1(1.c),
one can see that the updated intensity probability map and edges are more
accurate in our adaptive framework.

– Step 4: With edges and ROI computed in IIV, compute edge- and region-
based energy terms(see section 3.2).



– Step 5: Evolve the deformable model, for a fixed number of iterations, toward
object boundary based on model dynamics derived from the above energy
terms. In [Fig. 2(b)], an intermediate model is shown.

– Step 6: Repeat steps 2-5 until convergence (e.g. when model deformation is
sufficiently small). The converged model is shown in [Fig. 2(c)].

(a) (b) (c)

Fig. 2. Model evolution. (a) Initial model plus one slice in a 3D image; (b) Intermediate
model; (c) Converged model.

3.2 3D Model Dynamics

Two energy terms are defined to deform the model toward object boundary.

The ROI Based Balloon Term. The ROI-based balloon term is designed to
efficiently deform the model toward ROI boundary. After computing the intensity
probability map PI within IIV (see Step 3 in section 3.1, [Fig. 1(2.b)]) based on
model-interior intensity statistics, a threshold (typically the mean probability
in IIV) is applied on PI to produce a binary IIV PB . Assuming the object to
be segmented is a solid without holes, we take the outer-most border of the
connected component on this binary image PB that is overlapping the model
as the current ROI boundary. We encode this ROI boundary by computing its
”shape image”, which is its signed distance transform [Fig. 1(2.e)]. Denote this
”shape image” as Φr, the ROI-based balloon term is defined as:

EB =
1

S(∂RM)

∫∫

∂RM

Φr(x)
(

ΦM(D(q;x))
)

dx (3)

By the first component of this energy term ΦM(D(q;x)) alone, the model
boundary affinity pixels x will be mapped outward to locations D(q;x), where
the model shape representation values ΦM(D(q;x)) are smaller. Hence the model
would expand and grow like a balloon so as to minimize the value of the energy
term. The second component in the energy term, Φr, is the ROI ”shape image”
and encodes the distance value of each pixel from the ROI region boundary. It
serves as a weighting factor for the first component so that the speed of model
evolution is proportional to the distance of the model from the ROI boundary.
Then, the model moves fast when it is far away from the boundary and the
underlying Φr(x) values are large; it slows down as it approaches the boundary,
and stops at the boundary. This ROI-based balloon term is very effective in
countering the effect of un-regularized or inhomogeneous region intensities such
as that caused by speckle noise and spurious edges inside the object of interest.
Moreover, the ROI term generates adaptively changing balloon forces that expe-
dite model convergence and improve convergence accuracy, especially when the
shape of the object is elongated, or has salient protrusions or concavities.



The Adaptive Shape Term. We encode the adaptive edge information using
a ”shape image” Φ, which is derived from the distance transform of the edge map
computed within IIV. In the previous Metamorphs model [1], the edge map is
computed with a global threshold applied to the whole image and stay unchanged
during model evolution [Fig. 1(1.c)]. In our model, the edge map is computed in a
ROI-related, adaptively-changing subvolume instead of in the whole image [Fig.
1(2.c)]. As the model evolves, the edge map is adaptively re-computed based on
gradient statistics inside the new model. To evolve a 3D model toward edges,
we define an edge-based data term EE on pixels in a narrow band around the
model boundary ∂RM.

EE =
1

V (∂RM)

∫∫

∂RM

(

Φ(D(q;x))
)2

dx (4)

Intuitively, this term will encourage the deformation that maps the model
boundary to edge locations where the underlying ”shape image” distance values
are as small (or as close to zero) as possible.

3.3 3D Model Evolution

A unified gradient-descent based parameter updating scheme can be derived
using energy terms introduced above. The following evolution equation is derived
for each element qi in the model deformation parameters q:

∂E

∂qi

=
(∂EE

∂qi

+ a
∂EB

∂qi

)

(5)

– The motion due to the adaptive shape term is:

∂EE

∂qi

=
1

S(∂RM)

∫∫

∂RM

2Φ(D(q;x)) ·
(

∇Φ(D(q;x)) · ∂

∂qi

D(q;x)
)

dx

– And the motion due to the ROI based Balloon term is:

∂EB

∂qi

=
1

S(∂RM)

∫∫

∂RM

Φr(x)
(

∇ΦM(D(q;x)) · ∂

∂qi

D(q;x)
)

dx

where a is a constant balancing the contribution of the two parts and the partial
derivatives with respect to the deformation (FFD) parameters, ∂

∂qi

D(q;x), can

be easily derived from the model deformation formula for D(q;x) [Eqn. (2)].

4 Experiments

Heart. We applied our adaptive model to segmenting endocardium of the left
ventricle in tagged MRI images. The image data are 4D spatial-temporal short-
axis cardiac tagged MR images. A 1.5T GE MR imaging system was used to
acquire the images using an EGG-gated tagged gradient echo pulse sequence.
Every 30ms, 2 sets of parallel short axis (SA) images were acquired; one with
horizontal tags and one with vertical tags. Each set consists of 24 phases, with
16 slices (images) per phase. We collected 768 2D-images for testing. These 768
2D-images formed 48 3D images, each with the size of 192×192×16. An expert
was also asked to draw the left ventricle (LV) endocardium contours in these
images for validation purposes.

Some example segmentation results are shown in Figure 3. Quantitative val-
idation is performed by comparing the automated segmentation results with



expert solutions. Denote the expert segmentation in the images as ltrue, and the
results from our method as lamm. The True Positive Fraction (TPF) describes
the fraction of the total amount of tissue in the true segmentation that is over-

lapped with the segmentation by our method: FPF = |lamm∩ltrue|
ltrue

. On the entire

test image set, the proposed method achieved an average 96.1% TPF. Our al-
gorithm was implemented in MATLAB with embedded C code, and tested on a
2GHz Pentium 4 PC. The running time for LV endocardium segmentation in a
3D image of size 192 × 192 × 16 is around 15 seconds.

Fig. 3. Left ventricle endocardium segmentation example. Converged 3D model plus
one slice in the 3D image from different views.

Liver MRI. Another application to which we apply our model-based method
is segmenting tumors in liver CT images. These images were acquired using a
LightSpeed Plus GE multi-slice CT scanner. The scans were reconstructed with a
38cm field of view. On average the CT system operated with an image acquisition
time of 90 msec. The scanner generated X-rays with a peak voltage of 120 kVp
and a maximum current of 260 mA. The axial resolution was 7.5mm and the
image resolution of each cross section slice is 512 by 512. We collected 28 3D CT
scans of the liver with 392 2D image slices in total. An expert was asked to draw
the tumor contours in these test images. Some example segmentation results are
shown in Figure 4. On the entire dataset, the proposed method achieved very
encouraging segmentation results with an average of 91.7% TPF . The running
time for tumor segmentation in these high-resolution CT images varied from 30
seconds to a few minutes depending the tumor size and noise level.

(1)

(2)
(a) (b) (c) (d)

Fig. 4. Tumor segmentation examples. (1.a) The converged model representing the
segmented tumor, plus one slice in a 3D CT image; (1.b) 2D view of the segmented
contour in the same image slice; (1.c) The model plus another slice of the same 3D
image; (1.d) The segmented contour in the same slice as in (1.c); (2) similar to (1) but
for a different 3D image.



5 Conclusions

We have presented a new 3D adaptive Metamorphs deformable model. It is a
major extension of the 2D Metamorphs model [1]. Instead of computing edge
and region information statically and in the whole image, we adaptively calculate
a ”focus of attention” subvolume, in which edges and region of interest (ROI)
are extracted based on object-specific criterion. A new ROI-based balloon term
is developed, which is effective in countering the effect of inhomogeneous region
intensities such as that caused by speckle noise and spurious edges inside the
object. Compared to other works that integrate edge and region information for
model-based segmentation, our model is novel in that it is an object model that
has both boundary and interior. As the model evolves, its adaptively-changing
appearance statistics will re-define its surrounding edges and ROI so that more
reliable external image forces can be obtained. Focusing the computation on a
subvolume containing the model also makes the framework more efficient.
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