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Abstract. We propose a novel Active Volume Model (AVM) which deforms in a
free-form manner to minimize energy. Unlike Snakes and level-set active contours
which only consider curves or surfaces, the AVM is a deforming object model that
has both boundary and an interior area. When applied to object segmentation and
tracking, the model alternates between two basic operations: deform according to
current object prediction, and predict according to current appearance statistics
of the model. The probabilistic object prediction module relies on the Bayesian
Decision Rule to separate foreground (i.e. object represented by the model) and
background. Optimization of the model is a natural extension of the Snakes model
so that region information becomes part of the external forces. The AVM thus has
the efficiency of Snakes while having adaptive region-based constraints. Segmen-
tation results, validation, and comparison with GVF Snakes and level set methods
are presented for experiments on noisy 2D/3D medical images.

1 Introduction

Boundary extraction is an important task in medical image analysis. The main challenge
is to retrieve high-level information from low-level image signals while minimizing the
effect of noise, intensity inhomogeneity, and other factors. Model-based methods have
been widely used with considerable success. Most noticeable are two types of models:
deformable models [1, 2], and statistical shape and appearance model [3, 4].

Kass et al. proposed Snakes [1], which are energy-minimizing splines with smoothness
constraints and influenced by image forces. Other parametric models were proposed to
incorporate overall shape model constraints [5] and to increase the attraction range of the
original Snakes by Gradient Vector Flow (GVF) [6]. Depending solely on image gradient
information, however, these methods may be trapped by noise and spurious edges. Region
analysis strategies [7, 8] have been incorporated in Snake-like models to improve their
robustness to noise.

Another class of deformable models commonly used in medical image analysis is level
set based geometric models [2]. This approach represents curves and surfaces implicitly
as the level set of a higher-dimensional scalar function and the evolution of these im-
plicit models is based on the theory of curve evolution, with speed function specifically
designed to incorporate image gradient information. The integration of region informa-
tion in geometric models has been mostly based on solving the frame partition problem
as in Geodesic Active Region [9] and Active contours without edges [10].

In noisy medical images, statistical modeling approaches are adopted by adding some
constrains from prior offline learning. Cootes et al. proposed methods for building active
shape models [4] and active appearance models [3], by learning patterns of variability
from a training set of annotated images. Integrating high-level knowledge, these models
deform in ways constrained by the training data. Thus they are often more robust in
image interpretation. Image interpretation by shape-appearance joint prior models can
be based on image search [4], or by maximizing posterior likelihood of the model given
image information, in a Bayesian framework [11]. Shape priors particularly have been



introduced to level-set based cardiac segmentation [12], and to deformable models for
constrained segmentation of bladder and prostate [13].

In this paper, we propose an Active Volume Model (AVM) which deforms with con-
straints from both Region Of Interest (ROI) and image gradient information. The ROI,
which represents the predicted object, is obtained from a classification of image features
based on model-interior statistics. An approximation of the object appearance statistics,
the model-interior statistics are learned adaptively during model evolution. An advan-
tage of the AVM model is that its formulation allows the ROI information to naturally
become part of the Snakes external forces; in this way, rapid model deformations can be
derived by finding the solution of the Euler equations in a variational framework [1]. In
our experimental evaluation on various noisy medical images in 2D/3D, we found that
AVM achieved comparable speed with the original Snakes and GVF [6] but with much
better robustness and accuracy. The probabilistic ROI boundary-prediction module pro-
vides a meaningful classification, in comparison with the thresholding technique in [8].
With similar model initialization, AVM converges much faster (typically within 30 ∼
40 iterations) than Active contours without edges (ACWE) [10]. While AVM produces a
single smooth object boundary surface, the segmentation by ACWE often contains small
holes and islands.

2 Methodology

An active volume model is a deforming solid that minimizes internal and external energy.
The internal constraint ensures the model has smooth boundary. The external constraints
come from image data, priors, and/or user-defined features.

Representing the model boundary parametrically, v(s) = (x(s), y(s)), the internal
energy term of AVM is defined similar to Active Contour Models.

Eint =

∫

1

0

(α(s)|vs(s)|
2 + β(s)|vss(s)|

2)ds (1)

The external energy function consists of two terms: the gradient term Eg and the
region term ER. So the overall energy function is:

E = Eint + Eext = Eint + k · (Eg + kext · ER) (2)

where k is a constant that balances the internal and external forces. kext is a constant
that balances the contributions of the gradient term and the region term.

Gradient Data Term. The gradient data term can be defined using the gradient map,
edge distance map, or a combination of both. Denote a gradient magnitude map or the
distance transform of an edge map as Fg, the gradient data term is defined as:

Eg =

∫

1

0

Fg(v(s))ds (3)

Fg =

{

D2

edge, edge distance map; or

− |∇I|
2
, gradient magnitude map

(4)

where Dedge refers to the unsigned distance transform of the edge map, and ∇I represents
the image gradient.

Region Data Term. A novel aspect of the active volume model is that it learns the
appearance statistics of the object of interest dynamically and the model’s deformation
is driven by the predicted object-region boundary. External constraints from various
sources can be accounted in the Region Data Term by probabilistic integration. Let us



consider that each constraint corresponds to a probabilistic boundary prediction module,
and it generates a confidence-rated probability map to indicate the likelihood of a pixel
being: +1 (object class), or -1 (non object class). Suppose we have n independent external
constraints, the feature used in the kth constraint is fk, and L(v) denotes the label of
a pixel v, our approach to combining the multiple independent modules is applying the
Bayes rule in order to evaluate the final confidence rate:

Pr(L(v)|f1, f2, ..., fn) =
Pr(f1, f2, ..., fn|L(v))Pr(L(v))

Pr(f1, f2, ..., fn)

∝ Pr(f1|L(v))Pr(f2|L(v))...P r(fn|L(v))Pr(L(v)) (5)

For each independent module, the probability Pr(fk|L(v)) is estimated based on the
active volume model’s interior statistics. Considering a module using intensity statistics,
the object region can be predicted according to the current model-interior intensity
distribution. For instance, for a pixel v with intensity feature value I(v) = i where i
ranges from 0 to 255, we have:

Pr(i|I) = Pr(i, object|I) + Pr(i, non object|I)

= Pr(i|object, I)Pr(object|I) + Pr(i|non object, I)Pr(non object|I) (6)

In the equation, the intensity distribution over the entire image I, Pr(i|I) is known, and
we estimate the object-interior distribution Pr(i|object, I) by the current model-interior
intensity distribution. Therefore, the background distribution can be derived:

Pr(i|non object, I) =
Pr(i|I) − Pr(i|object, I)Pr(object|I)

Pr(non object|I)
(7)

Assuming a uniform prior, Pr(object|I) = Pr(L(v) = object) = 0.5 and Pr(non object|I) =
Pr(L(v) = non object) = 0.5, in Eqn. 7, we are able to compute the background
probability Pr(i|non object, I). Applying the Bayesian Decision rule, we can obtain
a binary map PB that represents the predicted object region; that is, PB(v) = 1 if
Pr(i|object, I) ≥ Pr(i|non object, I), and PB(v) = 0 otherwise. We then apply a con-
nected component analysis algorithm on PB to retrieve the connected component that
overlaps the current model. This connected region is considered as the current ROI. Due
to noise, there might be small holes that need to be filled before extracting the shape
of the ROI, R. (We will discuss how to detect and handle actual holes in the object in
Section 2.3). Let us denote the signed distance transform of the current model’s shape
as ΦM , and the signed distance transform of the ROI shape as ΦR, the region-based
external energy term is defined as:

ER =

∫

1

0

ΦM (v(s))ΦR(v(s))ds (8)

The multiplicative term provides two-way balloon forces that deform the model toward
the predicted ROI boundary. This allows flexible model initializations either overlapping
the object or inside the object. Some example results are demonstrated in Fig. 3.

As one can see in Figure 1(C), the ROI evolves according to the changing object
appearance statistics (estimated by model-interior statistics). And the image forces gen-
erated by the region term deform the model to converge to the object boundary. The
Bayesian-Decision based ROI boundary prediction method outperforms other simple
thresholding-on-the-probability-map techniques. For instance, we show the binary map
PB generated by applying a threshold of the mean of the model-interior probability in
Figure 1(5) for comparison purposes; the ROIs and the converged model result signifi-
cantly under-estimate the true object volume.
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Fig. 1. Left Ventricle segmentation using AVM. (A) The model on the original image. (B) The
binary map PB estimated by intensity-based likelihood maps and applying the Bayesian Decision
rule. (C) Distance transform of the ROI boundary. (1) Initial model. (2)-(3) The model after
8 and 18 iterations respectively. (4) Final result after 26 iterations. (5) Converged result using
the mean model-interior probability as the threshold.

2.1 Model Dynamic Deformation

Summarizing all terms, the overall energy function is:

E =

∫

1

0

(Eint(v(s)) + k · (Fg(v(s)) + kext · (ΦM (v(s))ΦR(v(s))))) ds (9)

The minimization of E can be achieved by finding the solution of the Euler Equations:

Ax + ∂Eext(x, y)/∂x = 0 (10)

Ay + ∂Eext(x, y)/∂y = 0 (11)

where A is the pentadiagonal banded matrix that specifies the internal smoothness con-
straints of the model [1]. And the model points at iteration t are calculated from model
points at iteration t − 1 as follows:

xt = (A + γI)−1(γxt−1 − ∂Eext(xt−1, yt−1)/∂x) (12)

yt = (A + γI)−1(γyt−1 − ∂Eext(xt−1, yt−1)/∂y) (13)

where matrix I is the identity matrix and γ is the step size.
Using the above optimization method, we adopt the following steps to deform the

active volume model toward desired object boundary.

1. Initialize the active volume model, smoothness matrix A, step size γ, and calculate
the gradient magnitude or edge map.

2. Compute ΦM based on the current model; predict R by applying the Bayesian De-
cision rule to binarizing the estimated object probability map, and compute ΦR.

3. Deform the model according to Eqns. 12 and 13.
4. Reparameterize the model by resampling along model-boundary curve length, and

update the smoothness matrix A.
5. Repeat steps 2-4 until convergence.



2.2 Pseudo-3D Reconstruction

Parametric models often encounter efficiency and modeling issues in 3D because of the
difficulties in 3D mesh update and reparameterization. Since most 3D volumetric medical
images consist of stacks of 2D slices, we adopt an efficient and practical pseudo-3D
reconstruction method, which is applicable in a variety of 3D segmentation problems.
The basic idea is to perform 2D segmentation in one slice, and then propagate the
contour to initialize models in neighboring slices (e.g. above and below). A previous
slice’s converged result is used to initialize a new AVM on the current slice and the
model then deforms till convergence. To construct a 3D mesh model from the stack
of 2D contours, we apply a shape registration algorithm using the implicit distance-
transform representation [14] on pair-wise contours. Fifty sample points are taken from
the first contour model, and correspondences for these points are computed sequentially
on all other contours by shape registration. Once the segmentation is complete in 3D
and correspondences between the stack of 2D contours are established, the 3D result
is rendered as a triangle mesh in OpenGL. Interactive editing of the segmentation can
be performed on individual 2D slices, and after editing, correspondences need to be
recomputed only for the slices immediately adjacent to the edited slice. Figure 2 shows
an example pseudo-3D reconstruction result of the left ventricle using a heart CT volume.

(a) (b) (c) (d) (e)

Fig. 2. Pseudo-3D segmentation and reconstruction. (a) Illustrating the “stack of contours”
concept. (b)-(c) left ventricle (LV) and aorta showing segmentation on individual slices; LV is
based on 82 slices and aorta 50 slices. (d)-(e) Complete reconstruction result with aorta, left
atrium (LA) and LV. The aorta consists of 136 slices, LA consists of 101 and LV of 146 slices.

2.3 Detecting Change of Topology

We explicitly model topology changes by detecting holes in the volumetric model. Dif-
ferent from level set methods, our explicit hole-detection step has stricter requirement
so that the only pixels considered belonging to a hole inside the AVM are those that
are consistently classified to the background class for a number of iterations and connect
to cover a relatively large fraction (≥ 10%) of the model volume. It should be noted
that we always exclude pixels that are classified to background inside the AVM when
updating object statistics. If a hole is detected, a new model spawns off to represent the
hole structure. The original model is now a compound object with geometry defined by
Constructive Solid Geometry (CSG). Interior of the hole is excluded from computing
the compound model statistics and the new hole model evolves and deforms on its own
without affecting the compound model.

3 Experimental Results

We have experimented with the active volume model for extracting boundaries in various
medical images. For images with no clear edges, such as ultrasound images, a smaller
step size γ is required. For MRI or CT images, we use a larger step size.

We first test the model by using a set of cardiac CT images. Considering that the CT
images give relatively reliable edges and gradients, we select a large step size. On a CT
image with a stack of 303 2D slices, the model converges within 15 iterations for every
slice (see Figure 3). Figure 3(A) also shows that model initialization can either partially
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Fig. 3. Cardiac CT images. (A) Initial model. (B) Final converged result after (1)7 (2)8 (3)5
(4)6 (5)14 iterations.

overlap the object or be completely inside the object. The model is able to expand or
shrink to converge to the boundary of the object that dominates the model appearance.

We also test the model on a variety of CTA and MRI medical images. Figure 4
shows example segmentation results. When segmenting vessel boundaries in CTA images
(Figure 4(4) & (5)), we chose a greater coefficient k in Eqn. 9 to avoid the model shrinking
to a dot, since the object covers a very small region in the image.

For all the images shown in Figure 4, we present comparison between the proposed ac-
tive volume model (AVM), the Gradient Vector Flow (GVF) model [6], and the level-set
based Active Contours without Edges (ACWE) [10]. The GVF implementation is from the
original authors (http://iacl.ece.jhu.edu/projects/gvf/snakedemo/) and the ACWE im-
plementation is by Michael Wasilewski (http://www.postulate.org/segmentation.php);
we kept the default parameter settings in their original code. The parameters in AVM
and the two compared methods are listed in Table 3. The efficiency of AVM is compara-
ble to the original Snakes and to GVF, while the AVM’s accuracy is better. AVM runs
much faster than ACWE. AVM produces a smooth boundary directly while the ACWE
result contains small holes and islands. Table 3 summarizes the comparison in efficiency,
and Figure 4(C)&(D) demonstrate the GVF and ACWE results, in comparison with the
AVM result in Figure 4(B).

Active volume model
k kext

30.0 30.0

Gradient vector flow
α β γ κ µ σ

0.05 0.0 1.0 0.6 0.1 5.0

Active contours without edges
λ1 λ2 ǫ µ ν
1.0 1.0 1.0 506.25 0.0

Table 1. Parameters used in implementations when comparing AVM, GVF, and ACWE meth-
ods in Figure 4.

Model Case 1 2 3 4 5

Active volume model Iteration number 10 26 31 8 9
Gradient vector flow Iteration number 80 40 30 70 15

Running time(seconds) 253.5 185.8 15.1 16.5 12.9
Active contours without edges

Iteration number 1600 800 200 100 100
Table 2. Running time and number of iterations for Figure 4.

We use a set of ultrasound images to test the robustness of the model to noise. Since
there is no clear contrast edges in ultrasound images to certify the object boundary, the
region-based properties of AVM become very important. Figure 5 shows segmentation
results for ultrasound images, in which there are noisy gradients and spurious edges inside
the ROI. In this case, the object prediction represented by the ROI is the only reliable
information that enabled the finding of object boundary.
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Fig. 4. Segmentation result for MRI and CTA images. (A) Initial model. (B) Final coverged
result after (1)10 (2)26 (3)31 (4)8 (5)9 iterations. (C) Results from GVF after (1)80 (2)40 (3)30
(4)70 (5)15 iterations. (D) Results from Active contours without edges after (1)1600 (2)800
(3)200 (4)100 (5)100 iterations.

Finally, we test the running time and perform validation of the pseudo-3D recon-
struction. On a workstation with Intel processor Xeon 5160, the processing time for
segmentation and reconstruction shown in Figure 2(a) is 62 seconds, and the time for
Figure 2(b) is 26 seconds. Therefore the active volume model is fast enough to be used in
near real-time 3D reconstruction. Segmentation accuracy is also validated by comparing
to gold standard generated by an expert using methods described in [15]. We performed
validation on the 3D left ventricle reconstruction based on 82 slices (Figure 2(a)). The
mean values of sensitivity and specificity are 95.7% and 99.7%, respectively. The mean
value of the Dice similarity coefficient (DSC) is 97.6%.

4 Discussion

In this paper, we proposed a novel active volume model, which is a natural extension
of parametric deformable models to integrate object appearance and region information.
The main contributions include: (1) a clean formulation to integrate online learning and
adaptive region statistics into active contours, (2) an efficient optimization framework
that enables very fast gradient- and appearance-statistics based model deformations,
and (3) the combination of multiple sources of information in a unified framework for
object region and boundary prediction. Using various experiments on medical images, we
demonstrated that our model can perform segmentation efficiently and reliably on CT,
CTA, MRI and ultrasound images. In the future, we plan to experiment with true 3D
active volume models so that data in the 3D evolving model can be incorporated into the
ROI estimation. We will also integrate texture statistics and offline-learned prior models
in the framework.
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Fig. 5. Segmentation result for ultrasound images. (A) Initial model. (B) Final converged result
after (1)21 (2)27 (3)35 (4)23 iterations.
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