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Abstract. In this paper, we propose an efficient algorithm for MR image
reconstruction. The algorithm minimizes a linear combination of three
terms corresponding to a least square data fitting, total variation (TV)
and L1 norm regularization. This has been shown to be very powerful
for the MR image reconstruction. First, we decompose the original prob-
lem into L1 and TV norm regularization subproblems respectively. Then,
these two subproblems are efficiently solved by existing techniques. Fi-
nally, the reconstructed image is obtained from the weighted average of
solutions from two subproblems in an iterative framework. We compare
the proposed algorithm with previous methods in term of the recon-
struction accuracy and computation complexity. Numerous experiments
demonstrate the superior performance of the proposed algorithm for com-
pressed MR image reconstruction.

1 Introduction

Magnetic Resonance (MR) Imaging has been widely used in medical diagnosis
because of its non-invasive manner and excellent depiction of soft tissue changes.
Recent developments in compressive sensing theory [1][2] show that it is possi-
ble to accurately reconstruct the Magnetic Resonance (MR) images from highly
undersampled K-space data and therefore significantly reduce the scanning du-
ration.

Suppose x is a MR image and R is a partial Fourier transform, the sampling
measurement b of x in K-space is defined as b = Rx. The compressed MR image
reconstruction problem is to reconstruct x giving the measurement b and the
sampling maxtrix R. Motivated by the compressive sensing theory, Lustig et
al. [3] proposed their pioneering work for the MR image reconstruction. Their
method can effectively reconstruct MR images with only 20% sampling. The
improved results were obtained by having both a wavelet transform and a discrete
gradient in the objective, which is formulated as follows:

N . 1
& = argmin{Z || R — bl|* + allz|rv + Bl @zl } (1)
where « and § are two positive parameters, b is the undersampled measurements

of K-space data, R is a partial Fourier transform and & is a wavelet transform.
It is based on the fact that the piecewise smooth MR images of organs can be



sparsely represented by the wavelet basis and should have small total variations.
The TV was defined discretely as [|z[lrv = 2, 2=, ((Vizi;)? + (Vawi;)?) where
V7 and V3 denote the forward finite difference operators on the first and second
coordinates, respectively. Since both L1 and TV norm regularization terms are
nonsmooth, this problem is very difficult to solve. The conjugate gradient (CG)
[3] and PDE [4] methods were used to attack it. However, they are very slow
and impractical for real MR images. Computation became the bottleneck that
prevented this good model (1) from being used in practical MR image recon-
struction.

Other methods tried to reconstruct compressed MR images by performing
L,-quasinorm (p < 1) regularization optimization [5][6][7]. These nonconvex
methods do not always give global minima and are also relatively slow. Trzasko et
al. [8] used the homotopic nonconvex Lo-minimization to reconstruct MR images.
It was faster than those L,-quasinorm regularization methods. However, it still
needed 1 — 3 minutes to obtain reconstructions of 256 x 256 images in MATLAB
on a 3 GHz desktop computer. Recently, two fast methods were proposed to
directly solve (1). In [9], Ma et al. proposed an operator-splitting algorithm
(TVCMRI) to solve the MR image reconstruction problem. In [10], a variable
splitting method (RecPF) was proposed to solve the MR image reconstruction
problem. Both of them can replace iterative linear solvers with Fourier domain
computations, which can gain substantial time savings. In MATLAB on a 3
GHz desktop computer, they can be used to obtain good reconstructions of
256 x 256 images in ten seconds or less. They are two of the fastest MR image
reconstruction methods so far.

In this paper, we propose a new MR image reconstruction method based on
the combination of variable and operator splitting techniques. We decompose the
hard composite regularization problem (1) into two simpler regularization sub-
problems by: 1) splitting variable x into two variables {z;};=1,2; 2) performing
operator splitting to minimize total variation regularization and L1 norm regu-
larization subproblems over {x;};=1 2 respectively and 3) obtaining the solution
x by linear combination of {x; };=1 2. This includes both variable splitting and op-
erator splitting. We call it the Composite Splitting Algorithm (CSA). Motivated
by the effective acceleration scheme in Fast Iterative Shrinkage-Thresholding
Algorithm (FISTA) [11], the proposed CSA is further accelerated with an addi-
tional acceleration step. Numerous experiments have been conducted on real MR
images to compare the proposed algorithm with previous methods. Experimen-
tal results show that it impressively outperforms previous methods for the MR,
image reconstruction in terms of both reconstruction accuracy and computation
complexity.

2 Related Acceleration Algorithm

In this section, we briefly review the FISTA in [11], since our methods are mo-
tivated by it. FISTA consider to minimize the following problem:

min{F(z) = f(z) + g(x), z € R"} (2)



Algorithm 1 FISTA [11] Algorithm 2 CSD
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where f is a smooth convex function with Lipschitz constant Ly, and g is a
convex function which may be nonsmooth.

e-optimal Solution: Suppose z* is an optimal solution to (2). x € RP is
called an e-optimal solution to (2) if F(z) — F(z*) < € holds.

Gradient: V f(z) denotes the gradient of the function f at the point x.

The proximal map: given a continuous convex function g(x) and any scalar
p > 0, the proximal map associated to function g is defined as follows [11][12]:

prozy(g)(x) = argmin{g(u) + jlpllu -]} 3)

Algorithm 1 outlines the FISTA. It can obtain an e-optimal solution in
O(1/+/€) iterations.

Theorem 1. (Theorem 4.1 in [11]): Suppose {z*} and {r*} are iteratively ob-
tained by the FISTA, then, we have
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The efficiency of the FISTA highly depends on being able to quickly solve
its second step ¥ = prowz,(g)(x,). For simpler regularization problems, it is
possible, i.e, the FISTA can rapidly solve the L1 regularization problem with
cost O(nlog(n)) [11] (where n is the dimension of x), since the second step
zF = proz,(B||®z|1)(z,) has a close form solution; It can also quickly solve
the TV regularization problem, since the step z* = proz,(a|z|rv)(z,) can be
compute with cost O(n) [12]. However, the FISTA can not efficiently solve the
composite L1 and TV regularization problem (1), since no efficient algorithm
exists to solve the step

a* = proz,(allz|rv + BlPz|l)(z). (4)

To solve the problem (1), the key problem is thus to develop an efficient
algorithm to solve problem (4). In the following section, we will show that a
scheme based on composite splitting techniques can be used to do this.



3 Algorithm

From the above introduction, we know that, if we can develop a fast algorithm to
solve problem (4), the MR image reconstruction problem can then be efficiently
solved by the FISTA, which obtains an e-optimal solution in O(1/+/€) iterations.
Actually, problem (4) can be considered as a denoising problem:

.1
o¥ = argmin{Z ||z — z4|* + pallzllrv + pBl Pz}, ()

We use composite splitting techniques to solve this problem: 1) splitting variable
x into two variables {z;};=12; 2) performing operator splitting over each of
{z;}i=12 independently and 3) obtaining the solution x by linear combination
of {z;}i=1,2. We call it Composite Splitting Denoising (CSD) method, which is
outlined in Algorithm 2. Its validity is guaranteed by the following theorem:

Theorem 2. Suppose {2’} the sequence generated by the CSD. Then, x7 will
converge to prox,(alz|rv + Bl|Px|1)(x,), which means that we have z7 —
prozy(afzlry + Bl|Pxll1)(zy).

Due to page limitations, the proof for this theorem is given in the supplemental
material.

Combining the CSD with FISTA, a new algorithm, FCSA, is proposed for
MR image reconstruction problem (1). In practice, we found that a small itera-
tion number J in the CSD is enough for the FCSA to obtain good reconstruction
results. Especially, it is set as 1 in our algorithm. Numerous experimental results
in the next section will show that it is good enough for real MR image recon-
struction.

Algorithm 4 outlines the proposed FCSA. In this algorithm, if we remove
the acceleration step by setting t**1 = 1 in each iteration, we will obtain the
Composite Splitting Algorithm (CSA), which is outlined in Algorithm 3. A key
feature of the FCSA is its fast convergence performance borrowed from the
FISTA. From Theorem 1, we know that the FISTA can obtain an e-optimal
solution in O(1/+/e) iterations.

Another key feature of the FCSA is that the cost of each iteration is O(nlog(n)),
as confirmed by the following observations. The step 4, 6 and 7 only involve
adding vectors or scalars, thus cost only O(n) or O(1). In step 1, Vf(r* =
RT(Rr* — b) since f(r*) = 1||Rr* — b||? in this case. Thus, this step only costs
O(nlog(n)). As introduced above, the step z* = proz,(2al|z|rv)(z,) can be
computed quickly with cost O(n) [12]; The step 2* = proz,(28|®z|1)(z,) has
a close form solution and can be computed with cost O(nlog(n)). In the step
x% = project(x*,[l,u]), the function z = project(z, [I,u]) is defined as: 1) x = =
ifl<ax<wu;2zx=1ifz <w; and 3) x = v if © > u, where [l,u] is the range
of z. For example, in the case of MR image reconstruction, we can let [ = 0 and
u = 255 for 8-bit gray MR images. This step costs O(n). Thus, the total cost of
each iteration in the FCSA is O(nlog(n)).

With these two key features, the FCSA efficiently solves the MR, image re-
construction problem (1) and obtains better reconstruction results in terms of



Algorithm 3 CSA Algorithm 4 FCSA
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both the reconstruction accuracy and computation complexity. The experimen-
tal results in the next section demonstrate its superior performance compared
with all previous methods for compressed MR image reconstruction.

4 Experiments

Fig.1: MR images: a) Cardiac; (b) Brain; (C) Chest and (d) Artery.

4.1 Experiment Setup

Suppose a MR image = has n pixels, the partial Fourier transform R in problem
(1) consists of m rows of a n x n matrix corresponding to the full 2D discrete
Fourier transform. The m selected rows correspond to the acquired b. The sam-
pling ratio is defined as m/n. The scanning duration is shorter if the sampling
ratio is smaller. In MR imaging, we have certain freedom to select the rows,
which correspond to certain frequencies. In the k-space, we randomly obtain
more samples in low frequencies and less samples in higher frequencies. This
sampling scheme is the same of those in [3][9][10] and has been widely used for
compressed MR image reconstruction. Following these guidelines, we randomly



created sampling matrices. Practically, the sampling scheme and speed in MR
imaging also depend on the physical and physiological limitations [3].

We implement our CSA and FCSA for problem (1) and apply them on 2D
real MR images. All experiments are conducted on a 2.4GHz PC in Matlab
environment. We compare the CSA and FCSA with the classic MR image re-
construction method based on the CG [3]. We also compare them with two of
the fastest MR image reconstruction methods, TVCMRI [9] and RecPF [10]. For
fair comparisons, we download the codes from their websites and carefully follow
their experiment setup. For example, the observation measurement b is synthe-
sized as b = Rx + n, where n is Gaussian white noise with standard deviation
o = 0.01. The regularization parameter o and 3 are set as 0.001 and 0.035. R and
b are given as inputs, and z is the unknown target. For quantitative evaluation,
we compute the Signal-to-Noise Ratio (SNR) for each reconstruction result.

Fig. 2: Cardiac MR image reconstruction (a) Original image; (b), (c), (d) (e) and
(f) are the reconstructed images by the CG [3], TVCMRI [9], RecPF [10], CSA
and FCSA. Their SNR are 9.86, 14.43, 15.20, 16.46 and 17.57 (db). Their CPU
time are 2.87, 3.14, 3.07, 2.22 and 2.29 (s).

4.2 Numerical Results

We apply all methods on four 2D MR images: cardiac, brain, chest and artery
respectively. Figure 1 shows these images. For convenience, they have the same
size of 256 x 256. The sample ratio is set to be approximately 25%. To perform
fair comparisons, all methods run 50 iterations except that the CG runs only
8 iterations due to its higher complexity. The CPU time and SNR are traced



in each iteration for each of methods. To reduce the randomness, we run each
experiments 100 times for each parameter setting of each method.

Figure 2 shows the visual comparisons of the reconstructed results by dif-
ferent methods. Figure 3 gives the performance comparisons between different
methods in terms of the CPU time over SNR.The FCSA always obtains the
best reconstruction results on all MR images by achieving the highest SNR in
less CPU time. The CSA is always inferior to the FCSA, which shows the ef-
fectiveness of acceleration steps in the FCSA for the MR image reconstruction.
While the classical CG [3] is far worse than others because of its higher cost in
each iteration, the RecPF sound be slightly better than the TVCMRI, which is
consistent to the observations in [9] and [10].

The reconstructed results produced by the FCSA are far better than those
produced by the CG, TVCMRI and RecPF. The reconstruction performance
of the FCSA is always the best in terms of both the reconstruction accuracy
and the computational complexity, which clearly demonstrate the effective and
efficiency of the FCSA for the compressed MR image construction.
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Fig. 3: Performance comparisons (CPU-Time vs. SNR) on different MR images:
a) Cardiac image; (b) Brain image; (C) Chest image and (d) Artery image.

(d)



5 Conclusion

We have proposed an efficient algorithm for the compressed MR image recon-
struction. Our work has the following contributions. First, the proposed FCSA
can efficiently solve a composite regularization problem including both TV term
and L1 norm term, which can be easily extended to other medical image applica-
tions. Second, the computational complexity of the FCSA is only O(nlog(n)) in
each iteration. It also has strong convergence properties. These properties make
the real compressed MR image reconstruction much more feasible than before.
Finally, we conduct numerous experiments to compare different reconstruction
methods. Our method is shown to impressively outperform the classic methods
and two of fastest methods so far in terms of both accuracy and complexity.
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