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Abstract. Appearance and shape are two key elements exploited in
medical image segmentation. However, in some medical image analy-
sis tasks, appearance cues are weak/misleading due to disease/artifacts
and often lead to erroneous segmentation. In this paper, a novel de-
formable model is proposed for robust segmentation in the presence of
weak/misleading appearance cues. Owing to the less trustable appear-
ance information, this method focuses on the effective shape modeling
with two contributions. First, a shape composition method is designed to
incorporate shape prior on-the-fly. Based on two sparsity observations,
this method is robust to false appearance information and adaptive to
statistically insignificant shape modes. Second, shape priors are modeled
and used in a hierarchical fashion. More specifically, by using affinity
propagation method, our deformable surface is divided into multiple par-
titions, on which local shape models are built independently. This scheme
facilitates a more compact shape prior modeling and hence a more robust
and efficient segmentation. Our deformable model is applied on two very
diverse segmentation problems, liver segmentation in PET-CT images
and rodent brain segmentation in MR images. Compared to state-of-art
methods, our method achieves better performance in both studies.

1 Introduction

In various applications of medical image segmentation, deformable model has
achieved tremendous success, which should be contributed to its joint employ-
ment of shape and appearance characteristics. While appearance features pro-
vide low level clues of organ boundaries, shape imposes high level knowledge
to infer and refine deformable model. However, in some medical image analy-
sis, appearance cues are relatively weaker or even misleading (Fig. 1). In those
cases, the best “guess” of the organ boundaries can only come from shape pri-
ors, which should be effectively modeled from training shapes. However, effective
shape modeling is confronting these challenges, 1) shape variation is complex and
cannot always be modeled by a parametric probability distribution; 2) a shape
instance derived from image appearance cues (input shape) may have gross er-
rors; and 3) local details of the input shape are difficult to preserve if they are
not statistically significant in the training data. Traditional deformable model,
e.g., Active Shape Model its extensions [1,6], can not tackle them uniformly.
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Fig. 1. Middle: whole body low-dose CT data. Left:
zoom in of the liver and lung. In the marked region the
boundary between the liver and the kidney is hardly
observed. The appearance cue is weak because of the
low contrast around the boundary. Right: zoom in of
the spleen and lung. In the marked region, there is ar-
tifact induced by breath. It is part of the lung. Since
the image information is misleading here, segmenta-
tion methods solely relying on appearance cue may
accidentally include this region as spleen.

In this paper, we propose
a deformable model aim-
ing to achieve robust seg-
mentation in the presence
of weak/misleading appear-
ance cues. In particular,
two novel methods are de-
signed for robust and
effective shape prior model-
ing. First, instead of assum-
ing any parametric model of
shape statistics, we propose
to incorporate shape priors
on-the-fly through sparse
representation. More specif-
ically, we have two spar-
sity observations: 1) Given
a large shape repository of
an organ, a shape instance
of the same organ can be
approximated by the com-
position of a sparse set of
instances in the shape repository; and 2) gross errors from local appearance
cues might exist but these errors are sparse in spatial space. Incorporating these
two sparsity priors, our deformable model becomes robust to gross errors and can
preserve shape details even they are not statistically significant in the training
repository. This shape composition method benefits both the model initializa-
tion and refinement. Second, instead of modeling global shape priors, we propose
to decompose the deformable surface to multiple parts and build shape models
on them independently. The partition is accomplished by affinity propagation
method [4] based on image and geometry features. Since the shape statistics
of local structures often has more compact distribution than global structures,
this strategy facilitates better shape modeling and increases algorithm runtime
efficiency.

2 Methodology

Segmentation Framework: To achieve generality, our segmentation frame-
work is designed in the spirit of “data-driven”. Fig. 2 shows the workflow of
our segmentation system, which consists of offline learning and runtime segmen-
tation stages. In offline learning, 3D volume images along with the manually
labeled ground truths are employed to learn the appearance and shape charac-
teristics of the organ under study. More specifically, methods proposed in [10,9]
are used to learn landmark detectors and a set of spatially adaptive boundary
detectors. Meanwhile, organ surfaces are stored in a shape repository, which will
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be exploited to derive shape priors during runtime. Runtime segmentation starts
from the initialization of the model surface (represented by a triangular surface)
based on automatically detected landmarks and shape priors. The surface then
deforms under the guidance of both image appearance cues and shape priors.
More specifically, two steps are performed iteratively until convergence. First,
the surface model deforms to local places where the learning-based boundary
detectors generate higher responses. Next, the locally deformed surface is refined
by the shape priors derived from the shape repository.

As discussed before, although learning-based landmark/boundary detectors
can tackle reasonable appearance variations [10,9], they might generate wrong
responses in the presence of severe imaging artifacts/diseases, and hence mislead
the deformable model. In this scenario, shape prior is the only information source
to initialize/correct the deformable surface. (Note that shape priors are employed
in both landmark-based model initialization and shape refinement in Fig. 2.)
Therefore, the effective modeling of shape priors becomes extremely critical to
achieve a robust segmentation. Due to page limits, we will focus on the modeling
of shape priors in the remainder of this paper.

Shape Prior Modeling via Sparse Composition: Instead of assuming any
parametric probabilistic distributions of the shape statistics, our shape prior
model is based on two observations: 1) After being aligned to a common canon-
ical space, any shape can be approximated by a sparse linear combination of
other shape instances in the same shape category. Approximation residuals might
come from inter-subject variations. 2) If the shape to be approximated is de-
rived by appearance cues, residual errors might include gross errors from land-
mark/boundary detections. But such errors are sparse as well. Accordingly, we
aim to incorporate shape priors on-the-fly through shape composition, i.e., a
shape derived by appearance cues is refined by the approximation of a set of
annotated shape instances following the two sparsity observations. It is worth
mentioning that sparsity has been adopted in segmentation algorithms in differ-
ent manners, such as the sparse information models [3], which reconstruct a 3D
surface from sparse subcomponents.
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Fig. 2. The workflow of our segmentation framework
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In this work, a shape is represented by a triangle mesh which consists of a set
of vertices. Denote the input shape as v, where v ∈ R3N is a vector concatenated
by 3D coordinates of its N vertices. (In the remainder of this paper, any shape
instance is defined as a vector in the same way and has the same dimensionality.)
Assume D = [d1,d2, ...,dK ] ∈ R3N×K is a large shape repository that includes
K accurately annotated shape instances di. Note that {di, i = 1, 2, 3, ..., K} are
pre-aligned using generalized Procrustes analysis [5,1].The approximation of v
by D is then formulated as an optimization problem:

argmin
x,e,β

‖T (v, β) − Dx − e‖2
2, s.t.‖x‖0 < k1, ‖e‖0 < k2, (1)

where T (v, β) is a global transformation operator with parameter β, which aligns
the input shape v to the common canonical space of D. The key idea of our shape
prior modeling lies in the two constraints of (1). In the first constraint, x ∈ RK

denotes the coefficient/weights of linear combination. The L0-norm of x ensures
that the number of nonzero elements in x is less than k1. In other words, only a
sparse set of shape instances can be used to approximate the input shape, which
prevents the overfitting to errors from missing/misleading appearance cues. In
the second constraint, e ∈ R3N is a vector that models the large residual errors.
The sparsity constraint is imposed on e to incorporate the observation that gross
errors might exist but are occasional.

(1) is a NP hard problem owing to the non-convex L0 norm. Thanks to the
recent proof of the sparse representation theorem [2], L1 norm relaxation can
be employed to make the problem convex while still preserving the sparsity
property. However, to solve (1), we still need to simultaneously optimize multi-
ple variables and deal with the nonlinearty if T (v, β) is modeled as a rigid or
similarity transformation. Our solution is to use an Expectation-Maximization
(EM) style algorithm (or alternating minimization) to solve (1). It is divided into
two sub-problems: 1) estimate the transformation parameter β and 2) efficiently
minimize the simplified linear inverse problem with the aligned shape. In the
“E” step, β is estimated using Procrustes analysis, which aligns the shape v to
the canonical space as v′ = T (v, β). In the “M” step, the following simplified
problem is minimized:

arg min
x,e

‖v′ − Dx − e‖2
2 + λ1‖x‖1 + λ2‖e‖1, (2)

Since (2) now becomes a typical linear inverse problem, it can be solved using
existing solvers. The “E” and “M” steps are iteratively performed until x, e and
β converge. Dx is then computed as a refined version of the input shape, which
imposes the shape priors on-the-fly.

Multi-resolution Shape Refinement and Local Shape Priors: It has been
widely accepted that multiresolution/hierarchical scheme should be employed
to improve the efficiency and robustness of deformable segmentation [7]. In a
multiresolution scheme, only a small set of sparsely distributed vertices are used
as driving vertices to estimate a rough segmentation of the initial stages. As the
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iterations increase, more and more vertices join the driving set to gradually reach
accurate segmentation. Our sparse shape composition method naturally supports
this scheme by estimating a sparse linear combination from an incomplete input.
Assume vsub = Sv is a subset of all vertices in shape v, where S is a binary
diagonal matrix which indicates if the ith vertex is in the subset (Sii = 1). (1)
can then be naturally extended as:

argmin
x,e,β

‖T (vsub, β) − SDx − Se‖2
2, s.t.‖x‖0 < k1, ‖e‖0 < k2, (3)

(3) can be solved using the same EM optimization. The only difference is that
the optimized x will be finally applied on the full space of D, such that the entire
input shape is refined.

One extreme situation of (3) is that S becomes very sparse and only includes a
few vertices (usually with the most distinctive appearance/geometry characteris-
tics). In this situation, (3) indeed becomes the formula of landmark-based surface
initialization, which is the first step of our runtime segmentation system. Again,
by incorporating shape priors with the assumption of “sparse gross errors”, our
initialization method becomes robust to erroneous landmark detections due to
severe diseases/imaging artifacts.

The merit of (3) is actually beyond the support of multiresolution deforma-
tion scheme. In practice, many 3D deformable models include many thousands
of points to give an accurate description of organ shapes. The optimization of
(2) thus has high computational complexity. In addition, since local shape statis-
tics often lie in a more compact space than global ones, shape priors built on
sub-surface are expected to improve the performance. To achieve this goal, we
propose a “mesh partitioning” method, which can also be seamlessly incorpo-
rated in our sparse shape composition formula. Affinity propagation clustering [4]
is employed to divide the model shape into multiple partitions. Since one-to-one
correspondences are already constructed among all shapes, affinity propagation
only needs to perform once for the model shape. The similarity used in the
affinity propagation is defined as the combination of the image similarity and
geodesic distances between vertices [9].

In our implementation, each divided partition is further “dilated” for several
levels to produce overlaps with neighboring partitions. Finally, partitions are
converted to a set of indication matrices S1,S2, ...,Sp used in (3). The opti-
mization problem defined on the entire surface is thus decomposed to a set of
sub-problems. Each partition is refined independently but the refined partitions
are averaged in these overlapping regions to guarantee the smoothness of the
entire surface.

The computational complexity of an existing solver (e.g., interior point
method) is O(N3), where N is the number of vertices of the whole surface.
After dividing the whole surface into p partitions with about N

p vertices in each
partition. The computational complexity is decreased to only 1

p2 of the original
one, which highly improves the efficiency.



456 S. Zhang et.al.

3 Experiments

Fig. 3. Initialization results (1st row) and defor-
mation results (2nd row) from the corresponding
initialization. Results from PA (1st column) and
our method (2nd column) and ground truth (right-
most figure). PA incorrectly includes part of the
lung because of the artifacts inducing by breath (see
arrows).

Liver Segmentation from
Low-dose CT: We evalu-
ate the segmentation perfor-
mance of our system, using
3D low-dose CT data from
PET-CT. In wholebody PET-
CT scan, CT images usually
have low dose and large slice
thickness, which result in low
contrast and fuzzy boundaries
between organs. Hence, organ
segmentation in PET-CT be-
comes more challenging than
traditional CT. In our exper-
iment, the 3D ground truth
of low-dose CT is manually
segmented by multiple clini-
cal experts. 40 out of 67 CT
scans are used to train the
landmark detector and also
used to construct the shape repository D. The other 27 are left for testing. To
obtain the one-to-one correspondence for vertices among all shapes, we choose
one shape as a reference and register it to all the others using adaptive-focus
deformable model (AFDM) [8]. The shape has around 1, 000 vertices, and 20
are selected as landmarks for model initialization. The proposed method is com-
pared to three popular algorithms: 1) PA: Procrustes Analysis [5] is used to find
a similarity transformation to fit a mean shape to detected landmarks. There is
no shape refinement during deformation. 2) SMS: It is the Shape Model Search
module in ASM [1], which employs the PCA method to learn shape statistics and
refine the input shape. 3) SI-NN: k-nearest neighbors method, which uses nearest
neighbors to find the closest prototypes in the expert’s structure annotations. For
a fair comparison, same landmark/boundary detectors and deformation strat-
egy are used in all methods. They only differ in model initialization and model
refinement, which involve shape priors.

Fig. 3 compares the landmark detection based initialization. Since the image
contrast of low-dose CT is very low and there are breathing artifacts in the
lung region, the landmark detector may easily fail to locate correct positions.
Our method is less sensitive to such errors. Its initialization result is already
very close to the object boundary. We also compare the deformation results
starting from different initializations. A better initialized model also benefits
the deformation performance.

To quantitatively evaluate the 3D segmentation accuracy, we report the mean
value and standard deviation of the distances between shape surfaces in Tab. 1.
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Table 1. Quantitative comparisons of
the mean values and standard devia-
tions of the distances (voxel) between
surfaces. 1st column compares initial-
ization results. Note that SMS and PA
uses the same initialization.

Method Fig. 3(Init) All data
PA 2.26 ± 1.72 3.96 ± 3.21

SMS 2.26 ± 1.72 2.16 ± 1.68
SI-NN 4.88 ± 3.61 3.82 ± 3.12
Ours 1.31± 0.95 1.13± 0.83

Our proposed framework achieves the best
performance. The standard deviations in
Tab. 1 show that our method also achieves
the best stability among all methods. To
evaluate the benefit of mesh partitioning,
the surface mesh is divided into 30 re-
gions. The shape refinement step takes
several minutes when applied to the whole
surface directly. Using mesh partitioning,
it significantly improves the efficiency and
only takes 2-3 seconds. The whole system
takes around 20 seconds (a Python im-
plementation on a PC with 2.4GHz In-
tel Quad CPU) to segment liver in a
512x512x300 CT volume. Note that the shape refinement module not only im-
proves the robustness of the deformable model, but also decreases the iteration
times of deformation since it helps avoid local minima of image information.

Rodent Brain Structure Segmentation from MRI: In this study, we use
the proposed method to segment rodent brain structures in MR images. In our
experiments, 58 data are delineated by clinical experts. 40 are used as training
data, and the rest 18 are used as testing. We focus on the 3D segmentation of
the cerebellum (Fig. 4). This task is challenging in two aspects. First, there are
complex textures and high gradient values inside of the cerebellum region, which
adversely affect the deformation module. Second, rodent cerebellum contains two
protruding parts, which are easily to be falsely “smoothed out” by traditional
shape prior modeling. The visual comparison of the segmentation results is shown
in Fig. 4. With regular shape constraint, the protruding parts are shrunk, and

Fig. 4. Segmentation results of the rodent cerebellum. The 1st row is from the proposed
method. The 2nd row is from the same framework but without shape prior constraint.
The rightmost figure is one slice of the MR image with cerebellum highlighted.
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the whole shape is attracted by the high internal gradient. Most regions are
under-segmented. The error is 5.86 ± 3.68, in terms of voxel distance. These
problems are well tackled by the proposed method. The protruding parts are
well preserved, and the global shape are properly constrained. It achieves better
segmentation results, with error 1.31 ± 0.91.

4 Conclusions

In this paper, we proposed a deformable model aiming to robustly segment
organs in the presence of weak/misleading appearance cues. A sparse shape
composition method is proposed to model and incorporate shape priors on-
the-fly. It is able to tackle three challenges in a unified framework and natu-
rally supports multi-resolution deformation scheme. Furthermore, we use the
affinity propagation method to partition the surface shape local shape pri-
ors. Besides a more efficient shape prior modeling, this strategy also dramat-
ically increase run-time efficiency. The majority of the work was carried out
when Shaoting Zhang was a research intern at Siemens Medical Solutions, USA.
http://www.research.rutgers.edu/∼shaoting/research/siemens2010/project.htm
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