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Abstract. Image segmentation plays a crucial role in many medical
imaging applications by automatically locating the regions of interest.
Typically supervised learning based segmentation methods require a
large set of accurately labeled training data. However, thel labeling pro-
cess is tedious, time consuming and sometimes not necessary. We pro-
pose a robust logistic regression algorithm to handle label outliers such
that doctors do not need to waste time on precisely labeling images
for training set. To validate its effectiveness and efficiency, we conduct
carefully designed experiments on cervigram image segmentation while
there exist label outliers. Experimental results show that the proposed
robust logistic regression algorithms achieve superior performance com-
pared to previous methods, which validates the benefits of the proposed
algorithms.

1 Introduction

To assist doctors locate pathologies, automatic segmentation of different regions
of medical images is very useful. Supervised learning based segmentation method,
which use manually segmented training data as references, has superior perfor-
mance. Those methods perform well as long as the feature space sufficiently
distinguishes each label. They are relatively computationally efficient and not
sensitive to parameters. Many popular learning methods have been applied to
solve challenging medical problems, such as, but not limited to support vector
machine (SVM) [12], neural network [11, 2], conditional random field (CRF) [5],
logistic regression (LR) [3].

One disadvantage of the learning-based segmentation is the requirement of
manual interaction for obtaining training data. Manual segmentation by different
people are subjective due to the lack of standard when performing the manual
segmentation. in reality, the segmentation training data are not correctly, per-
fectly labeled. However, all the previous methods ignored the imperfection of
training data. In such cases the training set is misleading, the guidance given
by the labels may not be reliable. Consequently learning results may not totally
reliable. On the other hand, the precisesly labeling prcess is time consuming,
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laborious and herpaps not necessory. In this paper, we take the advantage of
learning methods handling label outliers and propose a simplied lableing pro-
cess. The proposed simplified labeling process could significantly reduce doctors
time and effort in labeling the training data. And the proposed learning methods
would handle the labeling errors introduced by the new labeling process. While
learning in the idealized setting has been thoroughly studied, learning in the
presence of labeling errors has not been well explored. And nothing has been
done for medical image segmentation with labeling error.

According to the practical consideration mentioned above, we are the first
to systematically study logistic regression and sparse logistic regression method
with outliers and apply it on cervigram image segmentation. Logistic regression
(LR) is a classical method for classification and has been widely used in many
applications. Sparse logistic regression, which is the logistic regression with l1-
norm regularization, is a very effective method for classification on large scale
data with high dimension. Both methods could be adopted in image segmenta-
tion.

In this paper, we propose a robust sparse logistic regression method to handle
the classification problem with label outliers. In our method, a latent variable
is introduced for the true correct labels, and then we estimate the probability
of labels being flipped. Conjgate gradient method and Lassplore algorithm [8]
are used respectively to minimize the loss function under the noise assumption.
After optimization, the probability of the flipped labels is updated using the
new classification estimation. The algorithm can quickly converge after several
iterations.

To demonstrate the effectiveness of the proposed algorithm, we apply the
proposed method on the task of automatically segmenting the biomarker Ace-
toWhite (AW) regions in an archive of 60, 000 images of the uterine cervix [4].
The most important observation in a cervigram image is the AW region, which is
caused by whitening of potentially malignant regions of the cervix epitheliuem,
following application of acetic acid to the cervix surface. Since the texture, size
and location of AW regions have been shown to correlate with the pathologic
grade of disease severity, accurate identification and segmentation of AW regions
in cervigrams have significant implications for diagnosis and grading of cervical
lesions. Carefully designed experiments on the cervigram images with label out-
liers demonstrate the superior performance of the proposed method and validate
the benefits of the proposed algorithm in practical applications.

2 Related Work

In this section, we briefly review logistic regression and sparse logistic regression.

Logistic regression is a conditional probability of the label y, given a sample
x ∈ Rn, and a weight vector w ∈ Rn:

p(y = 1 | x,w) = σ(wTx) =
1

1 + e−wT x
. (1)
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Given a set of training examples D = {(x1, ŷ1, ..., (xi, ŷi), ..., (xm, ŷm)}, we
want to learn a classifier y = f(x). Here xi ∈ Rn denotes a sample, and ŷi is
the corresponding observed class label. The likelihood function associated with
these m samples is defined as

f(w) =log

m∏
i=1

p(ŷi | xi, w)

=

m∑
i=1

ŷi + 1

2
log(p(ŷi = 1 | xi, w)) +

1− ŷi
2

log(p(ŷi = −1 | xi, w)),

which is a smooth and convex function. We can determine w by minimizing the
logistic loss:

ŵ = argmin
w

f(w). (2)

This is a smooth convex optimization problem. Regularization is usually
used to avoid the overfitting problem. The l2-norm regularization leads to a
smooth and differentiable unconstrained convex optimization problem. Standard
optimization algorithm such as Newton method and conjugate gradient method
can be applied for solving such optimization problem [1, 9].

The l1-norm regularization is used to obtain a sparse model. However, the
l1-norm regularization term is non-differentiable. There are many algorithms pro-
posed in the past for solving the l1 regularized logistic regression [7, 10]. Liu et
al. proposed the Lassplore algorithm for solving large scale sparse logistic regres-
sion. They formulate the problem as the l1-ball constrained logistical regression
formulation, in which the objective function is continuously differentiable, and
the problem domain set is closed and convex [8].

3 Proposed Algorithm

We propose a new simplified labeling process. Doctors would label a bounding
box around the region of interest rather than precisely label the boundaries.
Please see Figure 2 (a,b,c) as illustration of the proposed labeling process. Fig-
ure 2(a) is the image for segmentation. As we can see from (b), the groundtruth,
the boundary of the region of interest in nontrivial and complicated. Our la-
beling process is illustration in (c), which would roughtly include the region of
interest in a bounding box. The simplified labeling process would significantly
save time and effort of doctors in labeling the training data.

Considering the new labeling process, which introduces some labeling noise,
none of the previous work has been able to handle label outliers. In this paper, we
propose a robust logistic regression method to handle the classification problem
on large scale data with label outliers.
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3.1 Robust Logistic Regression

If there exists some label noise, Eq. 2 is no longer valid. We introduce a latent
variable yi, which is the true label. The probability of the observed label p(ŷi |
xi, w) is written as the following:

Sk
i
.
= p(ŷi = k | xi, w)

=

K∑
i=0

p(ŷi = k | yi = j)p(yi = j | xi, w).
(3)

Observed Label
−1 1

True −1 γ00 γ01
Label 1 γ10 γ11

Table 1. Probabilistic relationship between observed label and true label

Here p(ŷi = k | yi = j) represents the probability that the label has flipped
from the true label j to the observed label k. The probability relationship be-
tween observed label and true label is represented in Table. 1. By expanding
the terms in Eq. 3 we find that,

S0
i = p(ŷi = −1 | xi, w)

= p(ŷi = −1 | yi = −1)p(yi = −1 | xi, w) + p(ŷi = −1 | yi = 1)p(yi = 1 | xi, w)

= γ00(1− σ(wTx)) + γ10σ(wTx)

S1
i = p(ŷi = 1 | xi, w)

= p(ŷi = 1 | yi = −1)p(yi = −1 | xi, w) + p(ŷi = 1 | yi = 1)p(yi = 1 | xi, w)

= γ01(1− σ(wTx)) + γ11σ(wTx).

(4)
By substituteing Eq. 4 into Eq. 2, we find:

f(w) =

m∑
i=1

ŷi + 1

2
log(S1

i ) +
1− ŷi

2
log(S0

i ). (5)

This formulation remains smooth and differentiable. It can be solved using
standard optimization algorithm such as conjugate gradient method [9, 1].

3.2 Robust Sparse Logistic Regression

To handle outliers in sparse logistic regression, we need to optimize Eq. 5 subject
to the l1-ball constrain. We use the Lassplore algorithm to solve the sparse
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logistic regression problem [8]. The Lassplore algorithm is a first-order black-
box oracle method that evaluates the function value and the gradient at each
iteration. The gradient of Eq. 5 is the following:

∇wf(w) =

m∑
i=1

ŷi + 1

2S1
i

∇wS
1
i +

1− ŷi
2S0

i

∇wS
0
i ,

(6)

where ∇wS
0
n and ∇wS

1
n are:

∇wS
0
i = (γ10 − γ00)σ(wTxi)(1− σ(wTxi)) · xi,

∇wS
1
i = (γ11 − γ01)σ(wTxi)(1− σ(wTxi)) · xi,

(7)

σ(wTxn) is the conditional probability of ŷi given a sample xi.
An initial estimation of the label flipping probability can be given to start the

optimization. After solving the Lassplore algorithm, label flipping probability is
updated as the following:

ei = σ(wTxi),

γ00 =
(ei < 0.5)&(ŷi = −1)

ei < 0.5
, γ01 = 1− γ00,

γ11 =
(ei > 0.5)&(ŷi = 1)

ei > 0.5
, γ10 = 1− γ11,

(8)

To conclude, an iterative framework is proposed to update the label-flipping
probability. First given an initialization of the label-flipping probability, the Lass-
plore method is used to minimize the loss function. Then, the label-flipping prob-
ability is estimated again using the new classification results. Using this scheme
we iteratively update the label-flipping probability and solve the optimization
problem.

4 Experimental Results and Discussion

We first use a synthetic dataset to illustrate the effectiveness of our algorithm.
The examples are sampled from two multivariate normal distributions differing
in mean and covariance. Here we focus on the non-uniform flipping of labels,
where there are negative data being labeled as positive ones. This setting is to
imitating the proposed labeling process in medical images. All the data are train-
ing on the corrupted data and then tested on the true labels. We quantitatively
evaluate the classification results in Table. 2. Compared to logistic regression
(LR) and sparse logistic regression (SLR) methods, both robust logistic regres-
sion (rLR) and robust sparse logistic regression (rSLR) perform better on sensi-
tivity but worse on specificity. Dice similarity coefficient(DSC), which is defined
as (2∗ true positive)/(2∗ true positive+false positive+false negative), measures
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Method Sensitivity Specificity DSC

LR 0.9307 ± 0.0207 0.9987 ± 0.0027 0.9570 ± 0.0158
rLR 0.9920 ± 0.0040 0.9687 ± 0.0031 0.9809 ± 0.0013
SLR 0.9153 ± 0.0248 0.9987 ± 0.0027 0.9508 ± 0.0158
rSLR 0.9840 ± 0.0033 0.9807 ± 0.0020 0.9833 ± 0.0015

Table 2. Trained on the corrupted training labels, this table shows testing measure-
ments on true labels. The proposed methods show better performance.

the consistency of results and groundtruth. DSC is a more comprehensive mea-
surement of the coinicdence of the classification result with the groundtruth.
The proposed methods perform better on this measurement.
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Fig. 1. (a) shows the samples with true labels and use Logistic Regression (LR) for
separation. (b) shows the samples with observed labels, where about 20% labels from
negative class are flipped to the positive class. Robust algorithms push the classification
line to the true boundary line on true labels.

We apply the proposed algorithm to classify pixels in optical images into
two classes, namely normal and abnormal tissues while not given accurate seg-
mentation training labels. The experiment is designed as the following: We have
experts precisely labeled the segmentation, which are considered as groundtruth.
We also have experts roughly labeled the segmentation, using our proposed sim-
plified labeling process. The roughly labeled data is used for training, and then
we test our segmentation results against the precisely labeld segmentation. Our
proposed labeling process and segmentation results would achieve competitive
results compared using the the groundtruth for training. In our experiments,
HSV feature is imployed for classification.

Table 3 shows the results of different classifiers measured by sensitivity, speci-
ficity and DSC. Our method consistently achieves significantly better perfor-
mance in terms of DSC. The results from our method also compares favorably
with other state-of-the-art methods in this application [13].
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5 Conclusion

This paper proposed a novel method on handling labeling noise. The proposed
method has been demonstrated on cervigram segmentation problem. Using a
bounding box around the region of interest as labels other than accurate labels,
we can still get satisfied results. In the future, we want to extend our work using
group sparsity [6].

(a) Image for segmentation (b) The groundtruth (c) Roughly labeled data

(d) LR using groundtruth (e) LR (f) rLR

(g) SLR (h) rSLR

Fig. 2. (d) uses the groundtruth and LR in training for comparison. The simplifiled
labeling data, as shown in (c) are used for training for robust algorithm. (f) and (h)
include lots of negative points since we use some of the negative points in training. Use
the robust algorithms, the result expelled many negative points.
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Method Sensitivity Specificity DSC

LR using groundtruth 0.8351 0.8820 0.8157
LR 0.9486 0.5660 0.6950
rLR 0.8175 0.8825 0.8058
SLR 0.9354 0.5931 0.7012
rSLR 0.7121 0.8986 0.7517

Table 3. Testing errors on segmenting the cervigram data.
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