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Abstract

For the purpose of object boundary extraction, traditional shape-based

deformable models rely on external image forces that come primarily from

edge or image gradient information. Such reliance on local edge information

makes the models prone to get stuck in local minima due to image noise and

various other image artifacts. In this chapter, we review a 2D deformable

model—Metamorphs, which integrates region texture constraints so as to



achieve more robust segmentation. Compared with traditional shape-based

models, Metamorphs’s segmentation result is less dependent on model ini-

tialization and not sensitive to noise and spurious edges inside the object of

interest. Then we review Active Volume Models (AVM), a similar and im-

proved approach for 3D segmentation. The shape of this 3D model is con-

sidered as an elastic solid, with a simplex-mesh surface made of thousands

of vertices. Deformations of the model are derived from a linear system that

encodes external forces from the boundary of a Region of Interest (ROI),

which is a binary mask representing the object region predicted by the cur-

rent model. Efficient optimization and fast convergence of the model are

achieved using the Finite Element Method (FEM). To further improve seg-

mentation performance, a multiple-surface constraint is also employed to

incorporate spatial constraints among multiple objects. It uses two surface-

distance based functions to adaptively adjust the weights of contribution

from the image-based region information and from spatial constraints among

multiple interacting surfaces. Several applications are shown to demonstrate

the benefits of these segmentation algorithms based on deformable models

that integrate multiple sources of constraints.
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1 Introduction

Object boundary extraction is an important task in image analysis. The main

challenge is to retrieve high-level information from low-level image signals while

minimizing the effect of noise, intensity inhomogeneity, and other factors. Model-

based methods have been widely used with considerable success. Most noticeable

are two types of models: deformable models [1, 2], and statistical shape and ap-

pearance model [3, 4].

Kass et al. proposed Snakes [1], which are energy-minimizing splines with

smoothness constraints and influenced by image forces. Other parametric de-

formable models were proposed to incorporate overall shape and motion con-

straints [5, 6] and to increase the attraction range of the original Snakes by Gra-

dient Vector Flow (GVF) [7]. Depending solely on image gradient information,

however, these methods may be trapped by noise and spurious edges. Region

analysis strategies [8, 9] have been incorporated in Snake-like models to improve

their robustness to noise.

Another class of deformable models is level set based geometric models [2, 9].

This approach represents curves and surfaces implicitly as the level set of a higher-

dimensional scalar function and the evolution of these implicit models is based

on the theory of curve evolution, with speed function specifically designed to

incorporate image gradient information. The integration of region information in

geometric models has been mostly based on solving the frame partition problem

as in Geodesic Active Region [10] and Active contours without edges [11]. The

level-set models are more computationally expensive and often require knowing

the number of regions and appearance statistics of each region a priori, but they

are free in topology and do not need explicit parameterization. So the level-set



approach is commonly used in segmenting multiple objects [12] and achieves

good result in tubular structure segmentation [13]. Coupled surface constraints

and dual-front implementation of level set active contours [14] also provide the

flexibility of capturing variable degrees of localness in optimization.

In noisy images, statistical modeling approaches can add constraints from off-

line learning. Cootes et al. proposed methods for building active shape mod-

els [4] and active appearance models [3], by learning patterns of variability from

a training set of annotated images. Integrating high-level knowledge, these mod-

els deform in ways constrained by the training data and are often more robust in

image interpretation. Image interpretation by shape-appearance joint prior mod-

els can be based on image search [4], or by maximizing posterior likelihood of

the model given image information, in a Bayesian framework [15]. In medi-

cal imaging, shape priors particularly have been introduced to cardiac segmen-

tation [16, 17, 18], and to deformable models for constrained segmentation of

bladder and prostate [19]. One limitation of the statistical models is in the labori-

ous training data collection and annotation process.

Recently, Huang et al. present a new deformable modeling strategy aimed

at integrating shape and appearance in a unified space, which is named as Meta-

morphs [20, 21]. The model has not only boundary shape but also interior ap-

pearance. The model shape is implicitly embedded in a higher dimensional space

of distance transforms, thus represented by a distance map “image”. In this way,

both shape and appearance of the model are defined in the pixel space. A common

deformation scheme, the Free Form Deformations (FFD), parameterizes warping

deformations of the volumetric space in which the model is embedded in, hence

deforming both model boundary and interior simultaneously. As the model de-



forms, the model’s interior appearance statistics are updated adaptively. Both

shape and appearance constraints are taken into account for determining defor-

mation of the model toward object boundary. The robustness of Metamorphs is

demonstrated using both natural and medical 2D images that have high noise lev-

els, intensity inhomogeneity, and complex texture. The details are discussed in

Section 2.

Compared with shape-based deformable models, Metamorphs’ interior ap-

pearance provides additional region-based constraints, making it more robust and

efficient in segmentation. Efforts have been made on the integration of interior

appearance into 3D models. Huang et al. introduces an adaptive model-based seg-

mentation framework [22], in which edge and region information are integrated

and used adaptively while a solid model deforms toward the object boundary.

Instead of performing segmentation in an entire 3D volume, they propose model-

based segmentation in an adaptively changing subvolume of interest. The subvol-

ume is determined based on appearance statistics of the evolving object model,

and within the subvolume, more accurate and object-specific edge and region in-

formation can be obtained. After calculating ROI and distance function, marching

cubes [23] is applied to reconstruct the 3D surface. Shen et al. [24] and Zhang et

al. [25] propose two pseudo-3D segmentation methods to reconstruct 3D object

surface from 2D Metamorphs’ results; the details of these methods are discussed

in Section 2.4 and Section 2.5 respectively. However, these methods have not

incorporated real 3D deformable models. Texture information from 2D cannot

reflect the 3D object appearance well. The efficiency of these pseudo-3D models

and their sensitivity to the tuning of parameters are also problems. Further, the re-

construction of 3D surface from 2D contours is often subject to difficulties caused



by discontinuity between contours obtained from adjacent image slices.

To address these limitations, a novel volumetric deformable model is pro-

posed recently, which is called the Active Volume Model (AVM) [26]. The AVM

model’s shape is represented by a simplex mesh (or finite-element triangulation)

and its volumetric interior carries the various visual appearance feature statistics.

An advantage of the AVM formulation is that it allows the predicted object-region

information to naturally become part of a linear system, the solution of which

gives the deformation of the model to minimize an energy function designed to

deform the model toward object boundary. Being a parametric model fitting ap-

proach, the AVM model convergence is fast, typically taking no more than 40

iterations. Several factors contribute to this efficiency: (1) AVM focuses on mod-

eling the foreground object and then reasons about the background, instead of

modeling the background explicitly, (2) the model’s deformations can be solved

in a linear system, and (3) multiple external constraints are combined in a prob-

abilistic framework and together contribute to long-range forces coming directly

from the predicted object region boundary. The converged AVM model is directly

a smooth mesh representing the segmented object surface. Therefore it does not

need any post-processing step such as surface reconstruction, as required by other

methods including region growing, level set, graph cut and MRF.

To further enable simultaneous segmentation of multiple objects or multi-

ple object parts, AVM is augmented by integrating multiple-surface spatial con-

straints. The improved model is named as multiple-surface AVM (MSAVM) [24].

MSAVM is especially in many medical image applications where we are inter-

ested in extracting boundaries of several surfaces that are coupled in such a way

that their relative positions are known and the distances between them are within a



specific range. Integrating this high-level spatial constraint into the segmentation

model can improve accuracy and robustness. In the literature, several methods

have been proposed to segment coupled medical objects simultaneously. A 2D

method [27] segments left ventricular Epi- and Endocardial borders using coupled

active contours but needs a precise manual initialization. In 3D, Zeng et al. [28]

incorporated spatial constraints about gray matter and white matter into a level

set framework which greatly improved cortex segmentation accuracy. In [29],

a graph-theoretic approach detects multiple interacting surfaces by transforming

the problem into computing a minimum s-t cut. Deformation of multiple surfaces

in [30] has intersurface proximity constraints which allow each surface to guide

other surfaces into place. However, all of the above three 3D methods [28, 29, 30]

require manually specifying the expected thickness between surfaces as model-

based constraint. In contrast, this requirement is removed in MSAVM: Instead

of setting up a fixed distance constraint during initialization, MSAVM dynami-

cally updates the distance constraint between the interacting surfaces based on

current model surfaces’ spatial inter-relations. Integrating the distance constraint

strategy with other energy terms based on image gradient and region information,

MSAVM is less sensitive to the initialization of model positions and yields more

accurate segmentation results than AVM.

The remainder of the chapter is organized as follows. In Section 2, we review

Metamorphs—a deformable shape and texture model, and its pseudo-3D versions.

In Section 3, we review AVM’s properties, including the 3D deformation, the

representation, the boundary prediction module, as well as MSAVM’s multiple-

surface distance constraints. Section 4 demonstrates several applications of the

above methods. We conclude this chapter and discuss future work in Section 5.



2 Metamorphs

The Metamorphs deformable model [20, 21] was proposed with the aim to natu-

rally integrate shape and texture information in model-based segmentation. A lim-

itation of many previous segmentation methods is that, the region-based module

and the boundary-based module are used separately, thus information from both

sources are not integrated during the evolution of a deformable model. To address

this problem, Metamorphs is modeled not a shape model but an integrated model

with both boundary shape and interior texture. In 2D, the model’s representation

therefore is a “disk” rather than a spline curve. The dynamics of a Metamorphs

model are derived coherently from both boundary and region information during

the whole course of model evolution in a common variational framework. In this

section, we briefly review Metamorphs and its variations.

2.1 2D Shape Representation and Deformations

The Model’s Shape Representation: The model’s shape is embedded implicitly

in a higher dimensional space of distance transforms. The Euclidean distance

transform is used to embed the boundary of an evolving model as the zero level

set of a higher dimensional distance function. Let Φ : Ω → R+ be a Lipschitz

function that refers to the distance transform for the model shapeM. By definition

Ω is bounded since it refers to the image domain. The shape defines a partition of

the domain: the region that is enclosed by M, [RM], the background [Ω−RM],

and on the model, [∂RM]. Given these definitions the following implicit shape



representation for M is considered:

ΦM(x) =





0, x ∈ ∂RM

+D(x,M), x ∈ RM

−D(x,M), x ∈ [Ω−RM]

(1)

where D(x,M) refers to the minimum Euclidean distance between the image

pixel location x = (x, y) and the model M.

Such implicit embedding makes the model shape representation a distance

map “image”, which greatly facilitates the integration of shape and appearance

information. It also provides a feature space in which objective functions that are

optimized using a gradient descent method can be conveniently used.

The Model’s Deformations: The deformations that Metamorph models can un-

dergo are defined using a space warping technique, the Free Form Deformations

(FFD). The essence of FFD is to deform an object by manipulating a regular con-

trol lattice F overlaid on its volumetric embedding space. In Metamorphs, we

consider an Incremental Free Form Deformations (IFFD) formulation using the

cubic B-spline basis [31].

Let us consider a lattice of control points

F = {Fm,n} = {(F x
m,n, F

y
m,n)}; m = 1, ..., M, n = 1, ..., N (2)

overlaid on a region Γ = {x} = {(x, y)|lx ≤ x ≤ hx, ly ≤ y ≤ hy} in the embed-

ding space that encloses the model. Let us denote its initial regular configuration

with no deformation as F 0, and the deforming configuration as F = F 0 + δF .

Then the IFFD parameters q are the deformation improvements of the control

points in both x and y directions:

q = δF = {(δF x
m,n, δF

y
m,n)}; (m,n) ∈ [1,M ]× [1, N ] (3)



q is the deformation parameter. The deformed position of a pixel x = (x, y) given

the deformation of the control lattice from F 0 to F , is defined in terms of a tensor

product of Cubic B-spline polynomials:

D(x) =
3∑

k=0

3∑

l=0

Bk(u)Bl(v)Fi+k,j+l (4)

where i = b x−lx
hx−lx

· (M − 1)c, j = b y−ly
hy−ly

· (N − 1)c. This is the familiar defini-

tion for cubic B-spline based interpolation. As a space warping technique, IFFD

also integrates naturally with the implicit shape representation which embeds the

model shape in a higher dimensional space. More details are available at [31].

2.2 Model Dynamics and Evolution

The motion of the model is driven by two types of energy terms derived from the

image: the gradient data terms Eg, and the region data terms ER. So the overall

external energy functional E is defined by:

Eext = Eg + kER (5)

where k is a constant balancing the contributions from the two types of terms.

In the Metamorphs formulation, we are able to omit the model smoothness term,

since this smoothness is implicit by using Free Form Deformations. The details

of the Eg and ER energy terms will be revisited in Section 3. In this section,

we introduce the representation of the region, or the model’s texture, used in the

region data terms, as well as the algorithmic steps in model evolution.

The Model’s Texture: Rather than using traditional statistical parameters (such

as mean and variance) to approximate the intensity distribution of the model inte-

rior, we model the distribution using a nonparametric kernel-based method. The
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Figure 1: Left Ventricle endocardium segmentation, demonstrating Metamorphs appear-

ance representation. (1) Initial model. (2) Intermediate result after 4 iterations. (3) Final

converged result after 10 iterations. (a) The evolving model drawn on original image. (b)

Interior region of the evolving model. (c) The intensity p.d.f. of the model interior. (d)

The image intensity probability map according to the p.d.f. of the model interior.

nonparametric approximation is differentiable, more generic and can represent

complex multi-modal intensity distributions.

Suppose the model is placed on an image I , the image region bounded by

current model ΦM is RM, then the intensity p.d.f. of the model interior region

can be represented using a Gaussian kernel-based density estimation:

P(i
∣∣ΦM) =

1

V (RM)

∫∫

RM

1√
2πσ

e
−(i−I(y))2

2σ2 dy (6)

where i = 0, ..., 255 denotes the pixel intensity values, V (RM) denotes the vol-



ume of RM, y represents pixels in the region RM, and σ is a constant specifying

the width of the Gaussian kernel [32]. One example of this nonparametric density

estimation can be seen in Fig. 1. The zero level set of the evolving models ΦM

are drawn on top of the original image in Fig. 1(a). The model interior regions

RM are cropped and shown in Fig. 1(b). Given the model interiors, their non-

parametric intensity p.d.f.s P(i
∣∣ΦM) are shown in Fig. 1(c), where the horizon-

tal axis denotes the intensity values i = 0, ..., 255, and the vertical axis denotes

the probability values P ∈ [0, 1]. Finally, over the entire image I , we evaluate

the probability of every pixel’s intensity according to the model interior intensity

p.d.f., and the resulting probability (or likelihood) map is shown in Fig. 1(d).

Using this nonparametric estimation, the intensity distribution of the model

interior gets updated automatically while the model deforms to cover a new set of

interior pixels; and it avoids having to estimate and keep a separate set of intensity

parameters such as the mean and variance if a Gaussian or Mixture-of-Gaussian

model was used. Moreover, this kernel-based estimation in Eq. 6 is a continuous

function, which facilitates the computation of derivatives in a gradient-descent

based optimization framework.

Model Evolution: Since the energy terms in Metamorphs model-based segmenta-

tion framework are all differentiable with respect to the model deformation param-

eters q (Equation 3), a unified gradient-descent based parameter updating scheme

can be derived using both edge and region information. Based on the energy term

definitions, one can derive a evolution equation for each element qi in the defor-

mation parameters q. The detailed derivations for each term can be found in [20].

The overall model fitting algorithm consists of the following steps:

1. Initialize the deformation parameters q to be q0, which indicates no defor-



mation.

2. Compute ∂E
∂qi

for each element qi in the deformation parameters q.

3. Update the parameters q′i = qi−λ · ∂E
∂qi

. λ is the gradient descent step size.

4. Using the new parameters, compute the new model M′ = D(q′;M).

5. Update the model. Let M = M′, re-compute the implicit shape represen-

tation ΦM, and the new partition of the image domain by the new model:

[RM], [Ω−RM], and [∂RM]. Also re-initialize a regular FFD control lat-

tice to cover the new model, update the predicted object ROI “shape image”

φr based on the new model interior, and recompute the energy terms.

6. Repeat steps 1-5 until convergence.

In the algorithm, after each iteration, both model shape and model-interior in-

tensity statistics get updated, and deformation parameters get re-initialized for the

new model. This allows continuous, both large-scale and small-scale deforma-

tions for the model to converge to the energy minimum. Fig. 2 compares the re-

sults of GVF snakes and Metamorphs. Combining both image gradient and model

appearance constraints, Metamorphs performs more robustly and accurately than

GVF.

2.3 Adaptive 3D Metamorphs

Efforts have been put into extending 2D Metamorphs to 3D. Huang et al. pro-

posed adaptive Metamorphs for 3D segmentation [22]. Instead of performing

segmentation in an entire 3D volume, they apply model-based segmentation in an
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Figure 2: Comparison between GVF Snakes and Metamorphs. (a) Original image with

initial model drawn on top. (b) Gray-level edge map. (c) Result using GVF snake on orig-

inal image. (d) Result using GVF snake on smoothed image. (e) Result using Metamorphs

without image smoothing.

adaptively changing subvolume of interest. The subvolume is determined based

on appearance statistics of the evolving object model, and within the subvolume,

more accurate and object-specific edge and region information can be obtained.

Still using the implicit shape representation in 3D, this method requires applying

Marching Cubes algorithm [23] to reconstruct the 3D surface, after the distance

function is obtained. However, the reconstructed 3D surface may not be smooth.

And topologies of the meshes reconstructed at different stages of deformation may

be neither consistent with each other nor consistent with the true object topology.

Fig. 3 shows some tumor segmentation results using this adaptive 3D Metamorphs

model. Zooming in on these figures, one can observe discontinuity on some of the

reconstructed surface meshes.
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Figure 3: Tumor segmentation examples. (1.a) The converged model representing

the segmented tumor, plus one slice in a 3D CT image; (1.b) 2D view of the

segmented contour in the same image slice; (1.c) The model plus another slice of

the same 3D image; (1.d) The segmented contour in the same slice as in (1.c); (2)

similar to (1) but for a different 3D image.

2.4 Pseudo-3D Segmentation

One can also perform 2D segmentation in each slice, then find correspondence

between sample points on each pair of adjacent contours and reconstruct the 3D

surface mesh [24]. Since most 3D volumetric medical images consist of stacks

of 2D slices, the pseudo-3D method is applicable in a variety of 3D segmenta-

tion problems. The basic idea is to perform 2D segmentation using a deformable

model contour in one slice, and then propagate the contour to initialize models in

neighboring slices (e.g. above and below). The initialized model on a new slice

is then allowed to deform till convergence. To construct a 3D mesh model from

the stack of converged 2D contours, we apply a shape registration algorithm [33]



Figure 4: Left ventricle endocardium segmentation example. Converged 3D

model plus one slice in the 3D image, shown from several different views.

on pair-wise contours. Fifty sample points are taken from the first contour model,

and correspondences for these points are computed sequentially on all other con-

tours by shape registration. Once correspondences between points on the stack of

contours are established, a 3D triangular mesh representing the segmented object

boundary is reconstructed using contour points as surface vertices.

Once the segmentation is complete in the 3D volume and correspondences

between the stack of 2D contours are established, the segmented 3D volume is

rendered as a triangle mesh. Interactive editing of the segmentation can be per-

formed on individual 2D slices, and after editing, correspondences need to be

recomputed only for the slices immediately adjacent to the edited slice. Fig. 5

shows an example pseudo-3D reconstruction result of the segmented left ventricle

using a heart CT volume.

2.5 Variational Methods for Surface Reconstruction

Another approach for pseudo-3D segmentation is to iteratively employ variational

methods for surface reconstruction [25]. 2D Metamorphs models are initialized in

several slices of a 3D medical image. These 2D contours can be viewed as scat-
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Figure 5: Pseudo-3D segmentation and reconstruction. (a) Illustrating the “stack

of contours” concept. (b)-(c) left ventricle (LV) and aorta showing segmentation

on individual slices; LV is based on 82 slices and aorta 50 slices. (d)-(e) Complete

reconstruction result with aorta, left atrium (LA) and LV. The aorta consists of 136

slices, LA consists of 101 and LV of 146 slices.

tered data. Variational interpolation techniques such as thin-plate spline (TPS) can

be applied on the scattered data to obtain 3D surface shape [34]. In 3D, the in-

terpolation function to be reconstructed, fx, can be represented using a weighted

sum of appropriate radial basis functions φ = |x|2log(|x|).

f(x) =
n∑

j=1

djφ(x− cj) + P (x) (7)

Where cj are contour point coordinates in 3D, dj are the weights, and P (x) is a

degree one polynomial that accounts for the linear and constant portions of f .

To solve for the weight parameters, dj , and the polynomial coefficients in P ,

we can use known constraints hi = f(ci).

hi =
k∑

j=1

djφ(ci − cj) + P (ci)(8)

Let ci = (cx
i , c

y
i , c

z
i ), φij = φ(ci− cj), we can write down the following linear



system [34]:



φ11 φ12 . . . φ1k 1 cx
1 cy

1 cz
1

φ21 φ22 . . . φ2k 1 cx
2 cy

2 cz
2

...
...

...
...

...
...

...

φk1 φk2 . . . φkk 1 cx
k cy

k cz
k

1 1 . . . 1 0 0 0 0

cx
1 cx

2 . . . cx
k 0 0 0 0

cy
1 cy

2 . . . cy
k 0 0 0 0

cz
1 cz

2 . . . cz
k 0 0 0 0







d1

d2

...

dk

p0

p1

p2

p3




=




h1

h2

...

hk

0

0

0

0




(9)

In practice, we use sampled points on the initialized models as well as some

nearby points to constrain the linear system. Employing the iso-surface method,

the f function value for all model points is set to be zero, and the function value

of any nearby point is set to be its Euclidean distance to the closest model point.

Solving this linear system gives us the weights dj and the linear coefficients in P .

Substituting these values into the function in Equation 7, the function value at any

voxel can be evaluated. Therefore, we can obtain the intersection of the zero-level

isosurface with the 3D volume image, and reconstruct 2D iso-contours on those

slices without model initialization; then these iso-contours are used to initialize 2D

Metamorphs models on those slices. The model contours are allowed to deform

in 2D till convergence. During the deformation process, new iso-surfaces can be

generated by calculating new weights and substituting them to the interpolation

function (Equation 7). The final 3D segmentation result is obtained from the stack

of converged 2D contours. Note that using the variational surface reconstruction

technique avoids the registration and correspondence finding step in Section 2.4.



3 Active Volume Models

One limitation of these pseudo-3D segmentation methods is that the spatial con-

tinuity between slices is not considered and thus the reconstructed 3D boundary

surface is often not smooth due to discontinuity between 2D segmentations on

neighboring slices. The adaptive Metamorphs [22] method, although in 3D, can

generate topologically incoherent boundary. To address these limitations, Active

Volume Model (AVM) was proposed [26] as a true 3D deformable model that in-

corporates the merits of Metamorphs [20] while being computationally efficient in

3D and generating smooth, topologically-coherent boundary surfaces. Instead of

FFD-based deformation, AVM employs the more efficient Finite Element Method

(FEM) to represent and solve for model deformations (Section 3.1). In Meta-

morphs, another problem is the sensitivity of result to the tuning of parameters,

especially the weight parameters that balance the contributions of different energy

terms and thresholds on the probability map for object vs. background classifi-

cation. In AVM, the number of parameters is reduced, and a probabilistic ROI

boundary-prediction module provides a meaningful classification (Section 3.2)

without any ad-hoc thresholding. Another advantage of AVM is that the spatial

information between multiple surfaces can be incorporated to further improve ac-

curacy and robustness (Section 3.3).



3.1 3D Shape Representation and Deformation

Explicit 3D Shape Representation: The 3D surface of AVM is defined by a

mapping

Λ = [0, 1]× [0, 1] → R3

(s, r) → v(s, r) = (x(s, r), y(s, r), z(s, r)),
(10)

Cohen et al. used tessellation to build a 3D FEM surface [35]. The tessellation

can be either a cylinder or an ellipsoid. The model works well in the cylinder case,

but fails using an ellipsoid. The problem is that the distribution of vertices on the

ellipsoid is in quite an irregular manner. The vertices near the two poles exert

strong internal forces to drag other vertices, which causes incorrect results. In

order to solve the above problem in tessellation FEM mesh and enable the model

to match closely object boundary, AVM adopts a polyhedron mesh as the model

representation which places vertices regularly on the model. More specifically, an

AVM is considered as an elastic solid and defined as a finite element triangulation

Λ, which can be tetrahedron, octahedron or icosahedron. Using the finite element

method, the internal energy function can be written compactly as:

Eint =
1

2

∫

Λ

(Bv)T D(Bv)dΛ (11)

where B is the differential operator for the model vertices v and D is the stress

matrix (or constitutive matrix). A more detailed explanation of the matrices can

be found in [36].

The Model’s Deformation: Given the above shape representation and internal

energy term, and external energy terms in the segmentation framework (see Sec-

tion 3.2), minimization of the AVM energy function can be achieved by solving

the following linear system

A3D · V = LV ; (12)



where A3D is the stiffness matrix derived from Equation 11 by using the basis

function in Equation 13. A3D is symmetric and positive definite. V is the vector

of vertices on the surface of AVM. LV is the external force vector corresponding

to the vertex vector and is obtained from the external energy terms (Section 3.2).

To facilitate the computation, AVM adopts a continuous piecewise linear basis

function,

φj(vi) = δij ≡




γ i = j

0 i 6= j
(13)

where vi is the ith vertex on the finite element triangulation and γ is a positive

value to control the smoothness of the model.

Equation 12 can be solved by using finite differences [35]. After initializing

the AVM, the final converged result can be obtained iteratively based on equation:

(V t − V t−1)/τ + A3D · V t = LV t−1 (14)

where V 0 is the initial AVM vertex vector and τ is the time step size. Equation 14

can be written in a finite differences formulation, which yields

M · V t = V t−1 + τLV t−1

M = (I + τA3D)
(15)

This matrix M is sparse, so the linear system can be solved efficiently using nu-

merical tools.

3.2 Model Dynamics and Evolution

In order to fit to the boundary of an object, the AVM model is driven by both

a gradient based data term and a region data term which are derived from im-

age information. The overall external energy function consists of two terms: the



gradient term Eg and the region term ER. So the overall energy function is:

E = Eint + Eext = Eint + (Eg + kreg · ER) (16)

where kreg is a constant that balances the contributions of the two external energy

terms. The weight factor between Eint and Eext is implicitly embedded in the

FEM basis function (γ in Eqn. 13).

The Image Gradient Data Term: The gradient data term can be defined using

the gradient map, edge distance map, or a combination of both. Denote a gradient

magnitude map or the distance transform of an edge map as Fg, the gradient data

term is defined as:

Eg =

∫

Λ

Fg(x)dΛ (17)

Fg =





D2
edge, edge distance map

− |∇I|2 , gradient magnitude map
(18)

where Dedge refers to the unsigned distance transform of the edge map, and ∇I

represents the image gradient.

The Object Region Data Term: A novel aspect of the active volume model is

that it learns the appearance statistics of the object of interest dynamically and

the model’s deformation is driven by the predicted object-region boundary. Ex-

ternal constraints from various sources can be accounted in the Region Data Term

by probabilistic integration. Let us consider that each constraint corresponds to

a probabilistic boundary prediction module, and it generates a confidence-rated

probability map to indicate the likelihood of a pixel being: +1 (object class), or -1

(non object class). Suppose we have n independent external constraints, the fea-

ture used in the kth constraint is fk, and L(x) denotes the label of a pixel x, our

approach to combining the multiple independent modules is applying the Bayes



rule in order to evaluate the final confidence rate:

Pr(L(x)|f1, f2, ..., fn) = Pr(f1,f2,...,fn|L(x))Pr(L(x))
Pr(f1,f2,...,fn)

∝ Pr(f1|L(x))Pr(f2|L(x))...P r(fn|L(x))Pr(L(x)) (19)

For each independent module, the probability Pr(fk|L(x)) is estimated based

on the active volume model’s interior statistics. Considering a module using inten-

sity statistics, the object region can be predicted according to the current model-

interior intensity distribution. For instance, for a pixel x with intensity feature

value I(x) = i where i ranges from 0 to 255, we have:

Pr(i|I) = Pr(i, object|I) + Pr(i, non object|I)

= Pr(i|object, I)Pr(object|I) + Pr(i|non object, I)Pr(non object|I)(20)

In the equation,

• the intensity distribution over the entire image I , Pr(i|I) is known,

• we estimate the object-interior distribution Pr(i|object, I) by the current

model-interior intensity distribution.

• Therefore, we can compute the background intensity distribution as:

Pr(i|non object, I) =
Pr(i|I)− Pr(i|object, I)Pr(object|I)

Pr(non object|I)
(21)

where we assume a uniform prior, Pr(object|I) = Pr(L(x) = object) =

0.5 and Pr(non object|I) = Pr(L(x) = non object) = 0.5.

Having both foreground object and background probabilities, we can obtain a bi-

nary map PB that represents the predicted object region by applying the Bayesian



Decision rule. That is, PB(x) = 1 if Pr(i|object, I) ≥ Pr(i|non object, I), and

PB(x) = 0 otherwise. We then apply a connected component analysis algorithm

on PB to retrieve the connected component that overlaps the current model. This

connected region is considered as the current ROI. Due to noise, there might be

small holes that need to be filled before extracting the shape of the ROI, R. Let us

denote the signed distance transform of the current model’s surface shape as ΦΛ,

and the signed distance transform of the ROI boundary shape as ΦR, the region-

based external energy term is defined using voxels within a narrow band around

the model surface as:

ER =

∫

Λ

ΦΛ(v)ΦR(v)dΛ (22)

The multiplicative term provides two-way balloon forces that deform the model

toward the predicted ROI boundary. This allows flexible model initializations

either overlapping the object or inside the object.

As one can see in Fig. 6(C), the ROI evolves according to the changing ob-

ject appearance statistics (estimated by model-interior statistics). And the image

forces generated by the region term deform the model to converge to the object

boundary. The Bayesian-Decision based ROI boundary prediction method outper-

forms other simple thresholding-on-the-probability-map techniques. For instance,

we show the binary map PB generated by applying a threshold of the mean of the

model-interior probability in Fig. 6(5) for comparison purposes; the ROIs and the

converged model result significantly under-estimate the true object volume.

Model Evolution: Using Equation 15, we adopt the following steps to deform the

AVM toward matching the desired object boundary.

1. Initialize the AVM, stiffness matrix A3D, step size τ , and calculate the gra-

dient magnitude or edge map.
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Figure 6: Left Ventricle endocardium segmentation using active volume model.

(A) The model drawn on the original cardiac image. (B) The binary map PB

estimated by intensity-based likelihood maps and applying the Bayesian Decision

rule. (C) Distance transform of the ROI boundary. (1) Initial model. (2) The

model after 8 iterations. (3) The model after 18 iterations. (4) Final converged

result after 26 iterations. (5) The converged result using the mean model-interior

intensity probability as the threshold.

2. Compute ΦΛ based on the current model; predict object ROI R by applying

the Bayesian Decision rule to binarizing the estimated object probability

map, and compute ΦR. Calculate the external force vector LV which is a

vector consisting of external forces at every vertex v: Lv = ∂Eext

∂v
.

3. Deform the model according to Equation 15.

4. Adaptively increase the external force factor in Equation 16, decrease the

step size τ in Equation 15 and reduce γ in Equation 13.



5. Repeat steps 2-4 until convergence.

In Step 4, adaptively changing the weight factors guarantees the model can

not only reach the desired object boundary, but also capture a lot of details on the

boundary.

3.3 Multiple-Surface Constraints

In some medical images, there may not be enough information (e.g. contrast) that

can be derived from the images to clearly distinguish the object boundaries of in-

terest. This could be due to neighboring objects having very similar tissue types,

or due to limitations in medical imaging technology. Therefore, a single surface

based deformable model may stop at local minima or leak out to incorrectly con-

verge at a nearby object’s boundary. Often such mistakes can be avoided by con-

sidering spatial constraints between multiple objects—for instance, by integrating

the spatial constraints in a multiple-surface based deformable model framework

[28, 19, 24] and deforming all interacting surfaces simultaneously to extract the

object boundaries with better accuracy.

The Multiple-Surface AVM is initialized as several AVMs inside an outer

AVM 1. And each AVM has its own predicted ROI. To deform the multiple sur-

faces simultaneously with adaptive spatial constraints, the constraints are inte-

grated into the model’s energy function. We construct two distance-related Gaus-

sian Mixtures functions, gR(dist) and gD(dist), which are defined based on the

distance value between surfaces. Let i, j be surface indices, the mean distance
1An MSAVM can also be without an outer AVM.
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Figure 7: (a)(b) Functions to balance the contributions of region term and spatial

constraint term, (c) DC mapping of brain gray matter segmentation; the range for

distance between Gray and white matters is 2∼15 voxels, (d) DC mapping of heart

segmentation; the distance range is 2∼25 voxels, (e) the color bar used to map the

spatial information.

value of the ith surface to other surfaces is defined as:

disti =

∫
Λi

dist(v)dΛi∫
Λi

dΛi

(23)

dist(v) = min
∀j,j 6=i

(|ΦΛj
(v)|) (24)

where v is a vertex on the ith surface Λi, and ΦΛj
is the implicit representation

(i.e. signed distance transform) of the jth surface Λj .

The two distance-related Gaussian Mixtures functions of the ith surface are

defined in Equation 25 and illustrated in Fig. 7.

gD(dist) = (1 + α)− e−(dist−disti)
2/2σ2

1 − αe−(dist−disti)
2/2σ2

2

gR(dist) = e−(dist−disti)
2/2σ2

1 + αe−(dist−disti)
2/2σ2

2

(25)

where α ∈ (0, 1) is a weighting parameter, σ1 and σ2 (σ1 < σ2) are the standard

deviations of two Gaussians respectively.

Then the energy function for the ith surface of MSAVM is defined as:

E = Eint + ER + Edist (26)



where Eint is the same as the internal energy in Equation 16. ER is the external

energy term derived from the predicted object ROI, defined as:

ER =

∫

Λ

gR(dist(v))ΦM(v)ΦR(v)dΛ (27)

and Edist is the external energy term derived from the spatial distance constraint,

defined as:

Edist =

∫

Λ

gD(dist(v))(dist(v)− disti)
2dΛ (28)

Given a vertex v on the ith surface, its minimum distance value to all the

other surfaces dist(v) can be calculated based on Equation (23). According to

gR(dist(v)) and gD(dist(v)) (Figure 7(a-b)), if dist(v) is close to the ith sur-

face’s mean distance (to other surfaces), disti, then gR(dist(v)) is large and the

region term ER makes more contribution toward the surface’s local deformation

near v; conversely, if dist(v) is far away from disti, which means the local sur-

face near the vertex may be stuck at local minima or have a leakage, the energy

term for distance constraint Edist is given more power to deform the local surface

to satisfy the distance constraint and guide it into place.

Comparing with the distance constraint function in [28], which only works

well in the case of brain segmentation since the cortical layer has a nearly con-

stant thickness, MSAVM adopts the above gR(dist) and gD(dist) functions to

adaptively control the spatial constraints. MSAVM thus has broader applications.

It can not only be used to segment brain gray matter and white matter, but also has

very good performance in extracting ventricles from heart and lungs in the thorax

even though distances between these coupled ventricular surfaces vary greatly.

Fig. 7c and 7d show two segmentation results by distance-color (DC) mapping

the spatial distance information into color space.



MSAVM maintains the fast convergence and flexible initialization properties

of AVM. Instead of setting a static spatial constraint manually or empirically, af-

ter each iteration, MSAVM updates each surface’s mean distance value dist based

on the spatial relationship among its current model surfaces. The gR(dist) and

gD(dist) functions for each surface are then shifted accordingly to make sure the

new dist still corresponds to the centerline of these functions. This unsupervised

strategy for online learning of spatial distance constraints between MSAVM’s

multiple surfaces, coupled with its AVMs’ online learning of region appearance

statistics, make MSAVM possess both adaptive spatial constraints and adaptive

region-based constraints. These properties allow MSAVM to often have even

more flexible initialization and faster convergence than the original AVM.

Model Evolution: For MSAVM, each surface is treated with an independent

linear system. For the ith surface,

Ai · Vi = LVi
(29)

where Ai is the stiffness matrix defined the same way as 3D AVM, Vi is the vector

of vertices of the ith surface and LVi
is the corresponding external force vector.

The difference from AVM is that the spatial constraint is a part of the external force

vector (Equation 28) in MSAVM. Thus deforming MSAVM can be achieved by

solving several independent linear systems.

The algorithmic steps for MSAVM model evolution are as follows:

1. Initialize the MSAVM, stiffness matrix A3D and dist for each surface.

2. For each surface, compute ΦΛ based on the current model; predict R and

compute ΦR; and update dist based on Eq. (24) and shift gR(dist) and

gD(dist) according to dist; calculate the external force vector.



3. Deform each surface of MSAVM according to Eq. 29.

4. Adaptively decrease the degree of surface stiffness/smoothness.

5. Repeat steps 2-4 until convergence.

4 Applications

In this section, we apply these methods described above to different applica-

tions, and compare them with other 3D segmentation methods including Geodesic

Active Contours (GAC) [37] and Level Set Evolution Without Reinitialization

(LSEWR) [38] by measuring the running times and validating the segmentation

results using expert ground truth markings.

4.1 3D Segmentation Using AVM

On a PC workstation with an Intel Duo Core 3GHz E6850 processor, we compared

AVM with other 3D segmentation methods. Fig. 8 shows the final triangulation

surface of AVM, compared with the final converged results of GAC and LSEWR

after surface reconstruction. Table 2 presents the sensitivity (P), specificity (Q)

and Dice Similarity Coefficient (DSC) [39] values and running times for various

experiments.

Since AVM model is represented by FE triangulation, comparing with GAC

and LSEWR, smooth surfaces can be obtained directly by AVM without any post-

processing, such as morphological operations and surface reconstruction. AVM

also preserves topology during deformation. As shown for a 2D slice projection

example in Fig. 10, level set segmentation results (Fig. 10 (2) and (3)) have com-

plex topology, while AVM result is one smooth surface delineating lung boundary



Table 1: Quality evaluation and performance comparison

Organ Methods P Q DSC Time

Lungs

AVM 93.6 99.8 95.2 1000s

GAC 75.7 99.9 85.8 2149s

LSEWR 91.4 99.7 94.6 1840s

Heart

AVM 91.8 99.6 94.3 1044s

GAC 78.0 99.8 87.6 1752s

LSEWR 80.1 99.9 88.5 1452s

GM

AVM 87.6 98.3 91.5 1620s

GAC 75.7 99.0 85.0 2332s

LSEWR 86.4 99.9 89.4 621s

WM

AVM 76.8 96.2 78.3 1833s

GAC 66.9 95.5 72.5 2453s

LSEWR 81.1 99.8 89.0 643s

despite tumor presence. Thus AVM is very suitable for extracting organ bound-

aries from volumetric medical images.

In our experiments, AVM demonstrates several other advantages.

1. The model is very robust to noise. All the image data used in the testing are

the original data without any preprocessing, e.g., smoothing and morphological

operations.

2. The AVM is less dependent on the setting of parameters and on the initializa-

tion of model shape and position. We can thus use the same one parameter setting

for all the lung segmentation examples, another parameter setting for all the heart

segmentation examples, and so on. Fig. 9 shows in a left and right lungs segmen-
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Figure 8: Comparing AVM with Geodesic Active Contours (GAC) and Level Set

Evolution Without Reinitialization (LSEWR). (A) AVM, (B) GAC, (C) LSEWR.

(1) heart LV segmentation, (2) lung segmentation, (3) brain GM segmentation, (4)

brain WM segmentation.

tation example that the AVM was initialized as ellipsoids with different radii and

initial positions. The model always converged to the same result.

3. The model has good performance in avoiding leakage and overcoming local

minima. Fig. 10 shows a slice from the thorax CT DICOM stack. Note that the pa-

tient has lung disease which causes part of the lung interior region to have similar

texture as the lung exterior. Due to the abnormality, our previous 2D method [24]

failed to reach the object boundary but stopped at a local minima. And the abnor-

mal interior region had negative effect on GAC and LSEWR results, which have
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Figure 9: AVM has less dependence on model initialization and parameter set-

tings. (A)(1) Initial AVM model, (2) after 3 iterations, (3) after 12 iterations, (4)

after 21 iterations, (5) final converged result after 33 iterations, (6) final result

viewed from a different viewpoint. (B)(A)(1) A different AVM model initializa-

tion on the same image stack, (2) after 3 iterations, (3) after 12 iterations, (4) after

24 iterations, (5) final converged result after 36 iterations, (6) final result viewed

from a different viewpoint.

complex topology and contain small holes and islands inside the desired object

boundary. In contrast, AVM model can avoid these problems and reach the true

boundary of the lung despite the abnormality.

4. Since there are thousands of vertices on the FE triangulation surface, the model

is able to extract very detailed information on object surfaces. This advantage

can be seen from the human brain gray matter (GM) and white matter (WM) seg-

mentation example in Fig. 11. The 3D simulated MRI brain images are provided

by BrainWeb (http://www.bic.mni.mcgill.ca/brainweb/). The MRI stack is of T1

modality, has 1mm slice thickness, 3% noise level and 20% INU. Both mod-

els (one for GM and one for WM) are initialized as ellipsoids with strong initial



(1) (2) (3) (4)

Figure 10: AVM preserves topology and is good at avoiding leakage and over-

coming local minima. (1) 2D projection of AVM model, (2) 2D projection of

Geodesic Active Contours’ result, (3) 2D projection of Level Set Evolution With-

out Reinitialization’s result, (4) 2D AVM result [24].

smoothness constraint. As the models are getting closer to the approximated ob-

ject boundary, the models decrease the smoothness constraint automatically based

on the deformation strategy. Then a lot of details on the object surfaces appear on

the models.

4.2 Multiple-surface Segmentation Using MSAVM

Table 2: Quantitative evaluation and performance comparison

Data Methods P Q DSC Iterations Time

Lung in Fig. 12
MSAVM 95.5 99.8 96.2 26 870s

AVM 92.3 99.8 94.6 33 1000s

Heart in Fig. 13
MSAVM 92.0 99.0 92.2 27 1535s

AVM 90.7 98.9 91.1 39 2023s

We applied MSAVM to segmenting various organ surfaces in volumetric med-

ical images. First, we put the model into a thorax CT stack to segment the lungs.
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Figure 11: GM and WM segmentation using AVM. The GM and WM model

surfaces each has 131,074 control vertices. (A)(1) Initial model of GM, (2) after

3 iterations, (3) after 12 iterations, (4) after 24 iterations, (5)&(6) final converged

result after 36 iterations. (B)(1) Initial model of WM, (2) after 3 iterations, (3)

after 12 iterations, (4) after 24 iterations, (5)&(6) final converged result after 39

iterations.

The model was initialized as one outer ellipsoid around the thorax and two inside

ellipsoids whose long axes are perpendicular to the axial image plane. Fig. 12

shows the 3D DC mapping images during deformation. A 2D coronal projection

view is also included in Fig. 12 (f) to show the initial model and converged result.

Then we experimented with the model on segmenting heart surfaces in a car-

diac CT stack. The MSAVM model is initialized as three ellipsoids: one for

epicardial surface of the myocardium, one for endocardial surface of the left ven-

trile, and a third one for endocardial surface of the right ventricle. Some boundary

condition is also specified so that the model does not deform beyond the top and

bottom slices. Fig. 13 and Fig. 14 show the deformation steps of the heart from
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Figure 12: DC mapping of lung surfaces segmentation using MSAVM, the dis-

tance range is 3-45 voxels. (1)(a)-(e)deformation progress of inner surfaces,

(2)(a)-(e)outer surface; (a)Initial model after (b)3, (c)9, (d)21, (e)26(converged

result) iterations; (1)(f)initial model in a 2D slice, (2)(f)converged result in a 2D

slice.

two 3D viewpoints. 2D sagittal and coronal projection views are also provided

in Fig. 13 (f) and Fig. 14 (f). Due to intensity inhomogeneity caused by pap-

illary muscles inside the left ventricle, it would be difficult for a single surface

deformable model to reach the desired boundary without supervised learning pri-

ors. However, deforming according to the on-line predicted object boundary with

spatial constraints, MSAVM can overcome the inhomogeneity problem and ex-

tract accurately the multiple cardiac surfaces.

To demonstrate the MSAVM more clearly, we put a set of 2D axial projection

slices from a case of 3D heart segmentation in Fig. 15, and compare them with the

converged result of original AVM using the same initialization in Fig. 15 (f). Due

to intensity inhomogeneity inside the inner surfaces and obscure boundary of the

outer surface, original AVM either leaks to the outer-most (e.g. outer surface) or

stops at local minima (e.g. left ventricle). However, deforming under the spatial
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Figure 13: DC mapping of heart segmentation using MSAVM viewed from the

right, the distance range is 2-25 voxels, (1)(a)-(e)deformation progress of in-

ner surfaces, (2)(a)-(e)DC mapping for outer surface; (a)Initial model after (b)3,

(c)9, (d)21, (e)27(converged result) iterations; (1)(f)initial model in a 2D slice,

(2)(f)converged result in a 2D slice.

constraints, MSAVM can avoid such leakage and overcome the local minima to

find the desired object boundary.

Table 2 summarizes the MSAVM running times and quantitative evaluation

of sensitivity (P), specificity (Q) and dice similarity coefficient (DSC) on a PC

workstation with Intel Duo Core 3GHz E6850 processor. Compared with the

AVM without spatial constraint, MSAVM improved segmentation results in all

the cases. Even though MSAVM needs extra time to calculate the spatial distances

among surfaces, it has faster convergence so MSAVM is actually faster than AVM.

4.3 Prediction of Missing Structures

Being data-driven segmentation approaches, Metamorphs and AVM find object

boundary based on image observations. On the other hand, statistical shape and

appearance models, such as the Active Shape Models (ASM) [4], perform seg-
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Figure 14: DC mapping of heart segmentation using MSAVM viewed from

the left, the distance range is 2-25 voxels, (1)(a)-(e)deformation progress

of inner surfaces, (2)(a)-(e)outer surface; (a)Initial model after (b)3, (c)9,

(d)21, (e)27(converged result) iterations; (1)(f)initial model in a 2D slice,

(2)(f)converged result in a 2D slice.

mentation based on both priors learned offline and image observations extracted

online. We investigated one application of combining Metamorphs and AVM, in

predicting missing structures in rat brains due to abnormality. The basic idea is to

generate 3D segmentation results using both ASM and Metamorphs. Comparing

the volume ratio of the two results, topology changes (e.g. because of some miss-

ing brain structure) can be detected. If the structure being segmented is present,

(a) (b) (c) (d) (e) (f)

Figure 15: Heart segmentation progress in a 2D slice projection. (a)Initial

MSAVM, after (b)9, (c)15, (d)21, (e)29(converged result) iterations, (f)converged

result of three separate AVMs after 36 iterations.



Figure 16: Metamorph’s 3D segmentation results on 4 datasets (two normal cases

and two abnormal cases). For better comparison and visualization, normal and

abnormal cases are displayed together, and top as well as bottom parts of the

volumes are clipped. The outer shapes are segmented normal structures, while the

inner shapes come from abnormal cases with the structure missing. The volumes

of inner shapes are much smaller than those of outer ones (less than one half).

ASM’s volumes in all cases are similar to Metamorph’s results in normal cases,

which are not shown here.

the ratio of the two volumes will be close to 1. If the structure is missing, ASM

will deform little during segmentation thus remain close to the mean shape of

the structure; on the contrary, the data-driven Metamorphs model will shrink to

a much smaller volume since there is no obvious contrast boundary to attract the

model. Therefore, in the case of the structure being missing, the ratio between the

volume of the Metamorphs result and that of that ASM result will be much less

than 1.

In our experiment, four 4-month old female rats were anesthetized with chloral

hydrate and transcardially perfused with PBS (0.1M, pH7.4), followed by 4%

paraformaldehyde in PBS, using a PerfusionOne apparatus. The brains were left

in the cranium to prevent distortions and damage and the heads were stored in



4% paraformaldehyde in PBS. The specimens were scanned on a 21T, 900MHz,

Brucker Biospin MRI, with TE=5ms, TR=100ms, f.o.v. 3x2.16x2.58 and voxel

size 0.06mm, isotropic. The MR images were segmented with the use of the

modeling and visualization package Amira 4.1 by experts to establish the ground

truth. For the evaluation of the method, we selected 15 test datasets from the

four rats brain MRI datasets which contains 8 datasets with the cerebellum and

7 datasets without the cerebellum. We then segmented the testing brain datasets

with and without the cerebellum using the ASM method slice by slice and pseudo-

3D Metamorph models simultaneously.

When cerebellum exists, the volume segmented by ASM slice by slice and the

volume segmented by 3D Metamorph model are approximately the same and the

ratio of the volumes is close to 1. On the other hand, without cerebellum superim-

posed, the volume segmented by ASM is much larger than the volume segmented

by Metamorph model due to the absence of structure boundary and Metamorph’s

insufficient balloon force. The ratio between the volumes segmented by ASM

slice by slice and the volumes segmented by Metamorph model is much large

than 1. The Metamorph results on 4 datasets (out of 15) are shown in Fig. 16.

Two are normal cases and the others are abnormal. For better comparison and

visualization, normal and abnormal cases are displayed together, giving us two

pairs of segmentation results. Each pair is shown in two columns (i.e. two im-

ages), which are the segmented volumes viewed from two different viewpoints.

The top and bottom parts of the volumes are clipped. The outer shapes are results

of segmented normal structures, while the inner shapes come from abnormal cases

with structure missing. One can see the inner-shape volumes are much smaller

than the outer ones (less than one half). ASM’s segmented volumes are similar to



Metamorph’s results on normal cases, which are not shown here. Out of 15 test

datasets, there were 7 correct predictions of cerebellum (out of 8) and 6 correct

predictions of non-cerebellum (out of 7). Thus, the success rate for correctly de-

tecting the presence of cerebellum is 86.6%. With the proposed method, we can

combine statistical prior models and data-driven models to address the issue of

detecting missing or emerging structures of interest.

5 Conclusions and Future Works

In this chapter, we have reviewed Metamorphs—a class of deformable models that

integrate region texture constraints in 2D segmentation, as well as some pseudo-

3D segmentation methods based on Metamorphs. We also reviewed a recently

proposed Active Volume Model, which is a natural extension of parametric de-

formable models to integrate object appearance and region information in 3D.

Several applications were introduced to demonstrate the benefits of these algo-

rithms.

The results are promising. However, due to the local smoothness of simplex-

mesh and parametric models, it is still hard for the model to reach some tip loca-

tions (e.g., top-right tip of the right ventricle in Fig. 15). As future work we plan

to address this problem by re-meshing the model near high-curvature areas such

as tips since vertices in these areas tend to be sparser than those distributed on

the main body. We are also interested in the incorporation of offline-learned prior

models into AVM. 4D segmentation or motion reconstruction is another research

direction.
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