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ABSTRACT

We proposed an approach based on reconstructive sparse representations to segment tissues in optical images of
the uterine cervix. Because of large variations in image appearance caused by the changing of the illumination
and specular reflection, the color and texture features in optical images often overlap with each other and are not
linearly separable. By leveraging sparse representations the data can be transformed to higher dimensions with
sparse constraints and become more separated. K-SVD algorithm is employed to find sparse representations
and corresponding dictionaries. The data can be reconstructed from its sparse representations and positive
and/or negative dictionaries. Classification can be achieved based on comparing the reconstructive errors. In
the experiments we applied our method to automatically segment the biomarker AcetoWhite (AW) regions in
an archive of 60,000 images of the uterine cervix. Compared with other general methods, our approach showed
lower space and time complexity and higher sensitivity.

Keywords: segmentation, cervix image, biomarker AcetoWhite, reconstructive errors, sparse representation,
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1. INTRODUCTION

Segmentation of different regions of medical images can assist doctors to analyze them. Area information from
segmentation is important in many clinical cases. In this work, we propose an approach to automatically segment
the biomarker AcetoWhite (AW) regions in an archive of 60,000 images of the uterine cervix. These images are
optical cervigram images acquired by Cervicography using specially-designed cameras for visual screening of
the cervix (Figure 1). They were collected from the NCI Guanacaste project1 for the study of visual features
correlated to the development of precancerous lesions. The most important observation in a cervigram image is
the AW region, which is caused by whitening of potentially malignant regions of the cervix epitheliuem, following
application of acetic acid to the cervix surface. Since the texture, size and location of AW regions have been
shown to correlate with the pathologic grade of disease severity, accurate identification and segmentation of
AW regions in cervigrams have significant implications for diagnosis and grading of cervical lesions. However,
accurate tissue segmentation in cervigrams is a challenging problem because of large variations in the image
appearance caused by the changing of illumination and specular reflection in pathology. As a result, the color
and texture features in optical images often overlap with each other and are not linearly separable when training
samples are larger than a certain level (Figure 2).

1.1 Related work

Previous work on cervigram segmentation has reported limited success using K-means clustering,2 Gaussian
Mixture Models,3 Support Vector Machine (SVM) classifiers.4 Shape priors are also proposed.5 Although such
priors are applicable to cervix boundary, it does not work well with AW since AW regions may have arbitrary
shapes. Supervised learning based segmentation,67 holds promise, especially with increasing number of features.
However, because of the intrinsic diversity between images and the overlap between feature distributions of
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Figure 1. Examples of digitized cervicographic images (i.e. cervigrams) of the uterine cervix, created by the National
Library of Medicine (NLM) and the National Cancer Institute (NCI). Ground truth boundary markings by 20 medical
experts. Our work is aimed for automatically segmenting the biomarker AcetoWhite (AW) regions, which indicates clinical
significance.

Figure 2. Color distribution of AW and non-AW regions. Red means AW and blue means non-AW. The left one comes
from one sample. The right one comes from one hundred samples.

different classes, it is difficult to learn a single classifier that can perform tissue classification with low error rate
for a large image set. Our empirical evaluation shows that overfitting is a serious problem when training a single
(SVM) classifier using all training samples the average sensitivity of the classifier is relatively low. A potential
solution is to use a Multiple Classifier System (MCS),8 which trains a set of diverse classifiers that disagree
on their predictions and effectively combines the predictions in order to reduce classification error. Voting,
AdaBoost, bagging and STAPLE9 can be employed. A necessary condition for the above ensemble methods is
that all the base classifiers should provide sufficiently good performance, usually 50% or higher sensitivity and
specificity in order to support the ensemble. However, there may be large variance in base classifier performance
in our case. Some classifiers commonly have lower sensitivity than 50%. Wang and Huang10 proposed a method
to find the best base classifier based on distance guided selection, which achieves state-of-the-art results in a
subset of the archive.

In our method we focus on finding a single classifier by transforming the data to a higher dimension with
sparse constraints. Then the data can be more separated using sparse representations. This classifier is potentially
useful for MCS since the sensitivity and specificity are always larger than 50% in our experiments. Finding the
sparse representation typically consists of the sparse coding and codebook update. Greedy algorithms such
as matching pursuit (MP)11 and orthogonal matching pursuit (OMP)12 can be employed for finding sparse
coefficients (coding). Extensive study of these algorithms shows that if the sought solution is sparse enough,
these greedy techniques can obtain the optimal solution.13 When the sparse data has group clustering trend,14

AdaDGS15 can be employed to further improve the performance. To update codebook, method of optimal
direction (MOD)16 and K-SVD17 are two effective approaches. Although both of them result in similar results,
we prefer K-SVD because of its better convergence rate. After finding positive and negative dictionaries from
training images and computing sparse coefficients from testing images, reconstructive errors can be obtained and
compared. The pixel can be assigned to the class with lower errors. Our main contributions are the following: 1)
we introduce the reconstructive sparse representations and K-SVD algorithms to the medical imaging community,
which are originated from the compressive sensing field; 2) we apply this theory to solve the challenging cervigram
image segmentation problem and achieve improved performance. Details of this method is explained in Section



Figure 3. The algorithm framework. The left column represents the data. The right column represents algorithms
including K-SVD.

2 and experiments are shown in Section 3.

2. METHODOLOGY

2.1 Framework

Figure 3 illustrates the algorithm framework. In the training stage, ground truth is manually obtained by clinical
experts. Patches on the ground truth are labeled as positive ones, while the others are negative ones. These
patches are fed into K-SVD to generate positive and negative dictionaries. Then using these two dictionaries, the
sparse coding step is applied on patches extracted from testing images to compute two sets of sparse coefficients.
From the coefficients and corresponding dictionaries, reconstructive errors are calculated and compared for
classification. An alternative way is to classify the sparse coefficients (using SVM) instead of classifying the
original data, which is also tested in Section 3. Details of the reconstructive sparse representation are discussed
in Section 2.2 and Section 2.3.

2.2 Learning sparse dictionaries

Reconstructive sparse representation is used here to classify image patches. The objective of sparse representation
is to find D and X by minimizing the following equation:

min
D,X
{‖Y −DX‖2F } subject to ∀i, ‖xi‖0 ≤ L (1)

Where Y represents signals (image patches here), D is the overcomplete dictionary, X is the sparse coefficients,
‖ · ‖0 is the l0 norm counting the nonzero entries of a vector, ‖ · ‖F is the Frobenius norm. Denote yi as the
ith column of Y , xi as the ith column of X, then yi and xi are the ith signal vector and coefficient vector
respectively, with dimensionality D ∈ Rn×k, yi ∈ Rn and xi ∈ Rk.

K-SVD algorithm starts from a random D and X obtained from the sparse coding stage. The sparse coding
stage is based on pursuit algorithms to find the sparse coefficient xi for each signal yi. OMP is employed in this
stage. OMP is an iterative greedy algorithm that selects at each step the dictionary element that best correlates
with the residual part of the signal. Then it produces a new approximation by projecting the signal onto those
elements already selected.13 The algorithm framework of OMP is listed in the Table 1.



Table 1. The framework of the OMP algorithm.

Input: dictionary D ∈ Rn×k, input data yi ∈ Rn

Output: coefficients xi ∈ Rk

Γ = ∅
Loop: iter=1, ..., L
• Select the atom which most reduces the objective

arg min
j

{
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• Update the active set: Γ← Γ ∪ {j}
• Update the residual using orthogonal projection
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• Update the coefficients
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In the codebook update stage K-SVD employs a similar approach as K-Means to update D and X iteratively.
In each iteration D and X are fixed except only one column di and the coefficients corresponding to di (ith row
in X), denoted as xi

T . The Equation 1 can be rewritten as
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We need to minimize the difference between Ei and dix
i
T with fixed Ei, by finding alternative di and xi

T .
Since SVD finds the closest rank-1 matrix that approximates Ei, it can be used to minimize the Equation 5.
Assume Ei = UΣV T , di is updated as the first column of U , which is the eigenvector corresponding to the largest
eigenvalue. xi

T is updated as the first column of V multiplied by Σ(1, 1).

However, the updated xi
T may not be sparse anymore. The solution is logical and easy. We just discard the

zero entries corresponding to the old xi
T . The detail algorithms of K-SVD are listed in the table 2.

2.3 Reconstructive errors

Using K-SVD algorithm we can obtain two dictionaries for positive patches and negative patches separately,
denoted as D+ and D− respectively. The simplest strategy to use dictionaries for discrimination is to compare
the errors of a new patch y reconstructed by D+ and D− and choose the smaller one as its type, as shown in
equation 9.

type = arg min
i=+,−

{‖y −Dix‖22} subject to ‖x‖0 ≤ L (9)

The potential problem of this method is that the dictionaries are trained separately. That is to say, pos-
itive/negative dictionary only depends on positive/negative patches, so it attempts to reconstruct better for



Table 2. The framework of the K-SVD algorithm.

Input: dictionary D ∈ Rn×k, input data yi ∈ Rn and coefficients xi ∈ Rk

Output: D and X
Loop: Repeat until convergence
• Sparse coding:

use OMP to compute coefficient xi for each signal yi, to minimize

min
xi

{‖yi −Dxi‖22} subject to ‖xi‖0 ≤ L (7)

• Codebook update:
for i = 1, 2, ..., k, update each column di in D and also xi

T (ith row)

• Find the group using di (xi
T 6= 0), denoted as ωi

• Compute error matrix Ei as in equation 5
• Restrict Ei by choosing columns corresponding to ωi. The resized error is

denoted as ER
i

• Apply SVD and obtain

ER
i = UΣV T (8)

Update di as the first column of U . Update nonzero elements in xi
T as the

first column of V multiplied by Σ(1, 1)

positive/negative patches but not worse for negative/positive patches. Discriminative methods can be consid-
ered to alleviate this problem.18 However, the tuning parameters of the discriminative system are very sensitive
and it can only converge within small intervals. In our case, reconstructive method works relatively well. Dis-
criminative method with this application is left to future investigation.

An alternative way is to classify the sparse coefficients x instead of y. x from training images can be fed into
SVM or other classifier. The intuition is that x is in higher dimension with sparse constants and can be more
separated. Both of these two approaches are tested in Section 3.

2.4 Tracing regions

Since there is no shape information considered, the resulting areas are usually disconnected. Inspired by the
edge linking stage of Canny edge detector, similar procedure can also be applied on this application. Equation
9 can be rewritten as:

error = ‖y −D−x‖22 − ‖y −D+x‖22 (10)

When error < 0, the testing data is assigned to the negative samples. Otherwise it is positive. However,
due to noise, there may be positive instances below the threshold (0). Thus similar to the Canny edge detector,
two thresholds T1 and T2 (T1 > T2) can be predefined. In the first pass, T1 = 0 is used as the threshold
and classification is performed. This procedure is the same as Section 2.2. In the second pass, T2 < 0 is set
as the new threshold. The errors of neighboring points of the first results are checked, and the points with
error > T2 are merged into the positive samples. With ideal thresholds, the disconnectivity problem can be
alleviated in a certain level. However, the value of T2 highly depends on the application and currently is found
by cross validation and brute force. Starting from 0, T2 is decreased by a small step each time. The sensitivity
and specificity are computed in each step. The parameters causing the best performance are chosen. More
sophisticated approaches are left for future investigations.



(a) AW dictionaries (b) non-AW dictionaries

Figure 4. positive (AW) and negative (non-AW) dictionaries trained from K-SVD. Each dictionary is displayed as 16 by
16 cells (256 cells). Each cell comes from the column of the dictionary and is reshaped as a 5 by 5 patch. Some patches
from different dictionaries are quite similar. Note that these patches do not directly represent image patches, since the
columns are normalized in HSV color space.

Table 3. Performance comparison between 4 classifiers, measured by the mean of sensitivity and specificity.

Sensitivity Specificity

SVM with image patches 50.24% 63.59%
Nearest Neighbor 55.62% 69.18%
Compare reconstructive errors 62.71% 75.85%
SVM with sparse coefficients 61.46% 76.37%

2.5 Implementation details
Cervigram images from the NCI/NLM archive with multiple-expert boundary markings are available for training
and validation purposes. 100 images of diverse appearance were selected for training and testing. To maximally
mix the samples, 10 image is used for testing and validation and the remaining 90 ones are used for training. The
mean sensitivity and specificity are reported. Different color spaces including RGB, HSV and Lab are tested.
HSV is chosen since it is slightly better. Other color spaces, texture and appearance information can also be
considered. Each patch is a 5 by 5 square centered in the pixel and concatenated H,S,V information into single
vectors (75 by 1, n = 75). We choose the sparse factor L = 6 and dictionaries of size k = 256. Although
there are many choices for these values, they are not arbitrary. They need to satisfy the constraints mentioned
in19 to guarantee convergence. In each image 1,000 patches are randomly selected from both AW and non-AW
regions, 500 for each. Overall 90,000 patches are generated from the training images. 60 iterations of K-SVD are
performed. The positive and negative dictionaries represent AW and non-AW regions respectively. Each column
of dictionaries are reshaped as 5 by 5 patches, and they are displayed together in Figure 4. Some patches from
different dictionaries are similar, proving that classification is a challenging task. Utilizing sparse representations
can alleviate this problem.

3. RESULTS

The method was implemented in Matlab R2009a and tested on a 2.40 GHz Intel Core2 Quad computer with
8G RAM. It was compared with SVM and k nearest neighbors. SVM failed to handle 90,000 patches since it
would consume most memories and couldn’t converge. Thus the data for SVM was down sampled. Instead of
feeding image patches into SVM, we also trained SVM using sparse coefficients. Nearest neighbor method was
also time and space consuming because of the large training set. K-SVD was more efficient with 5 seconds for
each iteration and less than 1GB RAM because of its sparsity.

Table 3 shows the results of different classifiers measured by sensitivity and specificity. Figure 5 visualizes
the segmentation results of a specific image. Since the distributions of image patches were overlapped (Figure 2),



Figure 5. Results of a specific image. From left to right: original image; ground truth; SVM with image patches; nearest
neighbor; reconstructive errors (equation 9).

SVM with image patches underperformed the classification task. Using sparse coefficients in higher dimension,
SVM performed better since the data was more separated. Although comparing reconstructive errors also
achieved good results, it still had many noises from non-AW regions. The reason is that the K-SVD algorithm
is not discriminative and there is no shape information considered.

From the comparisons in Table 3 and Figure 5 we can find that sparse representations are very useful in this
challenging problem.

4. CONCLUSIONS

In this paper we proposed classifiers based on reconstructive sparse representations to segment tissues in optical
images of the uterine cervix. Our method was compared with some typical learning methods and worked better
in this challenging case. In the future we would like to put efforts on three directions. 1) We will develop
discriminative sparse representations instead of reconstructive ones. The dictionaries should perform better for
its own class and also worse for other classes. Current discriminative methods highly depend on the parameters
and are not stable. It can be further improved. 2) We will add our method into “best base classifier”10 to
improve the sensitivity and specificity of the whole system. 3) Combining sparse representations with SVM is
also interesting.
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