Reviewing
Final Exam

• **Covered Contents**
 – Chapter 1 Introduction
 – Chapter 2
 – Chapter 5 Instruction Set
 – Chapter 7 Assembly Language Programming
 – Appendix A-C

• **Questions**
 – PART I. False and True (10 x 1pts=10pts)
 – PART II. Multiple Choices (15 x 2pts=30 pts)
 – PART III. Short Answers (4 x 3pts=12pts)
 – PART IV. Computation & Coding (8 x 6pts=48pts)

• **Distribution**
Final Exam

• **Covered Contents**
 – Chapter 1 Introduction
 – Chapter 2
 – Chapter 5 Instruction Set
 – Chapter 7 Assembly Language Programming
 – Appendix A, B, C

• **Questions**
 – PART I. False and True (10 x 1pts=10pts)
 – PART II. Multiple Choices (15 x 2pts=30 pts)
 – PART III. Short Answers (4 x 3pts=12pts)
 – PART IV. Computation & Coding (8 x 6pts=48pts)
How to review

• Questions
 – 80% of questions come from the questions in Homework Assignments, Programming Assignments, Quiz and the Midterm Exam,

• How
 – Quiz and Assignments
 – Lectures
 – Textbooks
Practices

• True and False
 – Program Counter (PC) is a special register and counts on how many instructions have been executed F
 – When designing instructions, how long an instruction actually took mattered more than how many could be started per second F
 – Both the magnetic disk and CD has the constant angular velocity. F
 – The heads of the magnetic disk actually touch the diskettes F
 – Both of RAID 0 and RAID 4 work with strips. T
 – If the program is rerun a million times with the same input, the traps will reoccur in the same place each time but the interrupts may vary. T
 – Speculative LOADs make it possible to fetch operands in advance, without penalty if it turns out later that they are not needed after all. T
Practices

- **True and False**
 - The computer can only deal only with numbers that can be represented in a fixed number of digits. **T**
 - The algebra of finite-precision numbers is different from normal algebra. **T**
 - The floating number 01000101.000011 is a normalized floating number. **F**
 - \((1011)_2*(110)_2 = (1000010)_2\) **T**
 - The assembler is a translator while the compiler is not. **F**
 - Macros can call other macros, but cannot call themselves. **F**
 - Macro expansion occurs during the execution of the program. **F**
 - If the program counter has value 0, then it refers to the absolute memory address zero. **F**
Multiple Choices

• Which of following is true
 – (a) In both of them, the computer carried out instructions in L1 by executing equivalent sequences of instructions in L0
 – (b) In translation, the entire L1 program is converted to a L0 program.
 – (c) In interpretation, after each L1 instruction is examined and decoded, it is carried out immediately.
 – (d) Interpretation is more efficient than Translation

• What are the design principles for modern computers?
 – (a) Instructions directly executed by hardware
 – (b) Minimize rate at which instructions are issued
 – (c) Instructions should be easy to decode
 – (d) Only loads, stores should reference memory
 – (e) Provide plenty of registers
Multiple Choices

- **Which** Level 5 Problem-oriented language level
 - (a) Instruction Set Architecture Level lay between Digital Logic Level and Microarchitecture Level.
 - (b) Assembly Language Level lay between Instruction Set Architecture Level and Operating System Level.
 - (c) Operating System Level lay between Assembly Language Level and Instruction Set Architecture Level.
 - (d) Microarchitecture Level lay between Digital Logic Level and Instruction Set Architecture Level.

<table>
<thead>
<tr>
<th>Level</th>
<th>Description</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Problem-oriented language level</td>
<td>Translate (compiler)</td>
</tr>
<tr>
<td>4</td>
<td>Assembly language level</td>
<td>Translated language</td>
</tr>
<tr>
<td>3</td>
<td>Operating system machine level</td>
<td>Partial interpretation (operating system)</td>
</tr>
<tr>
<td>2</td>
<td>Instruction set architecture level</td>
<td>Interpretation (microprogram) or direct execution</td>
</tr>
<tr>
<td>1</td>
<td>Microarchitecture level</td>
<td>Hardware</td>
</tr>
<tr>
<td>0</td>
<td>Digital logic level</td>
<td></td>
</tr>
</tbody>
</table>
Multiple Choices

• Which of following is true
 – (a) CD has constant linear velocity
 – (b) CD has constant angular velocity
 – (c) Magnetic Disk has constant linear velocity
 – (d) Magnetic Disk has constant angular velocity

• Which of following is the problem of Pentium 4?
 – (a) The CISC-ISA with variable-length instructions and different formats.
 – (b) The IA-32 is a two-address memory-oriented ISA.
 – (c) The IA-32 has a small and irregular register set.
 – (d) Deep pipeline is needed for complex tasks
Multiple Choices

• For a decimal number 9. Which of the following is true?
 – (a) Its binary version is 00001001
 – (b) The signed version of decimal number -9 is 10001001
 – (c) The 1’s complement version of decimal number -9 is 11110110
 – (d) The 2’s complement version of decimal number -9 is 11110111

• Which of following is true?
 – (a) The Assembly Language layer is implemented by interpretation rather than by translation
 – (b) Translator is the programs that convert a user’s program written in some language to another language
 – (c) Translation is used when a processor (either hardware or an interpreter) is available for the target language but not for the source language.
 – (d) Correct translation will give precisely the same results as the execution of the source program
Short Answers

• How many bits are sufficient for an address to reference the memory of Figure (a), (b), (c) ?

– Solution: 4, 3, 3
Computations

- Compute the hash code for the following symbols by adding up the letters and taking the result module the hash table size.
 - els, jan, jelle, maaike
 - Here, a=1, e = 5, j=10, l=12, m=13, n=14, s=19
 - The hash table has 19 slots, numbered 0 to 18.
 - Does each of them generate unique hash code?
 - If not, how to deal with the collision?

- Solution
 - els = (5 + 12 + 19) mod 19 = 17
 - jan = (10 + 1 + 14) mod 19 = 6
 - jelle = (10 + 5 + 12 + 12 + 5) mod 19 = 6
 - maaike = (13 + 1 + 1 + 9 + 11 + 5) mod 19 = 2
 - jan and jelle hash to the same value.
 - We can maintain a linked list in the slots that contain all the elements. (e.g. 6 will contain both jan and jelle).
Computations

• Please fill the following symbol table after the following Pentium 4 statements have been encountered. The first statement is assigned to address 1000.

<table>
<thead>
<tr>
<th>Label</th>
<th>Instruction</th>
<th>Length</th>
<th>Instruction Location Counter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Everest:</td>
<td>POP BX</td>
<td>1 byte</td>
<td>1000</td>
</tr>
<tr>
<td>K2:</td>
<td>PUSH BP</td>
<td>1 byte</td>
<td>1001</td>
</tr>
<tr>
<td>WHITNEY:</td>
<td>MOV BP, SP</td>
<td>2 byte</td>
<td>1002</td>
</tr>
<tr>
<td>MCKINLEY:</td>
<td>PUSH X</td>
<td>3 byte</td>
<td>1004</td>
</tr>
<tr>
<td>FUJI:</td>
<td>PUSH SI</td>
<td>1 byte</td>
<td>1007</td>
</tr>
<tr>
<td>KIBO:</td>
<td>SUB SI, 300</td>
<td>3 byte</td>
<td>1008</td>
</tr>
</tbody>
</table>
Official Feedback Surveys

• Official Feedback Surveys for This Course
 – Beginning with the fall semester 2011, end-of-term Student Feedback Surveys (SFSs) will be conducted online in MyMav.
 – Each student enrolled in the course will be issued an e-mail message inviting him/her to complete an online Student Feedback Survey for the class.
 – These e-mail messages will be sent to the student’s official UT Arlington e-mail account (“mavs.uta.edu”) from the following sender: UT Arlington Student Feedback System.
 – Each invitation will direct students to the SFS link for the course’s survey, a password to access the survey, and a deadline by which the survey must be completed. Students who have not responded to the initial invitation after one week will receive a reminder.

Thanks for providing feedback!
Thank you!!!