Design and Analysis of Algorithms

CSE 5311
Lecture 11 Red-Black Trees

Junzhou Huang, Ph.D.
Department of Computer Science and Engineering
Reviewing: Binary Search Trees

• **Binary Search Trees** (BSTs) are an important data structure for dynamic sets
 – Each node has at most two children

• Each node contains:
 – key and data
 – left: points to the left child
 – right: points to the right child
 – p(parent): point to parent

• Binary-search-tree property:
 – y is a node in the left subtree of x: \(y.key \leq x.key \)
 – y is a node in the right subtree of x: \(y.key \geq x.key \)

 – Height: \(h \)
Review: Inorder Tree Walk

- An *inorder walk* prints the set in sorted order:

  ```
  TreeWalk(x)
  TreeWalk(left[x]);
  print(x);
  TreeWalk(right[x]);
  ```

- Easy to show by induction on the BST property
- *Preorder tree walk*: print root, then left, then right
- *Postorder tree walk*: print left, then right, then root
Review: BST Search

TreeSearch(x, k)
 if (x = NULL or k = key[x])
 return x;
 if (k < key[x])
 return TreeSearch(left[x], k);
 else
 return TreeSearch(right[x], k);
Review: Sorting With BSTs

• **Basic algorithm:**
 - Insert elements of unsorted array from $1..n$
 - Do an inorder tree walk to print in sorted order

• **Running time:**
 - Best case: $\Omega(n \lg n)$ (it’s a comparison sort)
 - Worst case: $O(n^2)$
 - Average case: $O(n \lg n)$ (it’s a quicksort!)
Review: More BST Operations

- **Minimum:**
 - Find leftmost node in tree

- **Successor:**
 - x has a right subtree: successor is minimum node in right subtree
 - x has no right subtree: successor is first ancestor of x whose left child is also ancestor of x

 ➢ Intuition: As long as you move to the left up the tree, you’re visiting smaller nodes.

- **Predecessor:** similar to successor
Review: More BST Operations

• Delete:
 – x has no children:
 ➢ Remove x
 – x has one child:
 ➢ Splice out x
 – x has two children:
 ➢ Swap x with successor
 ➢ Perform case 1 or 2 to delete it

Example: delete K or H or B
Red-Black Trees

• *Red-black trees*:
 – Binary search tree with an additional attribute for its nodes: color which can be red or black
 – “Balanced” binary search trees guarantee an O(lgn) running time
 – Constrains the way nodes can be colored on any path from the root to a leaf:

Ensures that no path is more than twice as long as any other path
⇒ the tree is balanced
Red-Black Properties (**Satisfy the binary search tree property**)

- The *red-black properties*:
 1. Every node is either red or black
 2. Every leaf (NULL pointer) is black
 - Note: this means every “real” node has 2 children
 3. If a node is red, both children are black
 - Note: can’t have 2 consecutive reds on a path
 4. Every path from node to descendant leaf contains the same number of black nodes
 5. The root is always black

black-height: # black nodes on path to leaf
Label example with b and bh values
Example: RED-BLACK-TREE

- For convenience we use a sentinel NIL[T] to represent all the NIL nodes at the leafs
 - NIL[T] has the same fields as an ordinary node
 - Color[NIL[T]] = BLACK
 - The other fields may be set to arbitrary values
Black-Height of a Node

- **Height of a node**: the number of edges in the *longest* path to a leaf
- **Black-height** of a node x: $bh(x)$ is the number of black nodes (including NIL) on the path from x to a leaf, *not counting* x
Height of Red-Black Trees

• What is the minimum black-height of a node with height h?
• A: a height-h node has black-height $\geq h/2$
• Theorem: A red-black tree with n internal nodes has height $h \leq 2 \lg(n + 1)$
• How do you suppose we’ll prove this?

• Need to prove two claims first!!!
Claim 1

• Any node \(x \) with height \(h(x) \) has \(bh(x) \geq h(x)/2 \)

• Proof
 – By property 4, at most \(h/2 \) red nodes on the path from the node to a leaf
 – Hence at least \(h/2 \) are black

4. If a node is red, then both its children are black

- No two consecutive red nodes on a simple path from the root to a leaf
Claim 2

• A subtree rooted at a node x contains at least $2^{bh(x)} - 1$ internal nodes

• Proof:
 – Proof by induction on height h
 – Base step: x has height 0 (i.e., NULL leaf node)

 ➢ What is $bh(x)$?
 ➢ A: 0
 ➢ So…subtree contains $2^{bh(x)} - 1$
 $= 2^0 - 1$
 $= 0$ internal nodes (TRUE)
Claim 2: cont’d

- Inductive proof that subtree at node \(x \) contains at least \(2^{bh(x)} - 1 \) internal nodes
 - Inductive step: \(x \) has positive height and 2 children
 - Each child has black-height of \(bh(x) \) (if the child is red) or \(bh(x)-1 \) (if the child is black)
 - The height of a child = (height of \(x \)) - 1
 - So the subtrees rooted at each child contain at least \(2^{bh(x)} - 1 - 1 \) internal nodes
 - Thus subtree at \(x \) contains
 \[
 (2^{bh(x)} - 1 - 1) + (2^{bh(x)} - 1 - 1) + 1
 = 2 \cdot 2^{bh(x)} - 1 - 1 = 2^{bh(x)} - 1 \text{ nodes}
 \]
Height of Red-Black-Trees

Lemma: A red-black tree with n internal nodes has height at most $2 \log(n + 1)$.

Proof:

1. Add 1 to both sides and then take logs:

 \[
 n + 1 \geq 2^{bh} - 1 \geq 2^{h/2} - 1
 \]

 - Add 1 to both sides and then take logs:

 \[
 \log(n + 1) \geq h/2 \Rightarrow \\
 h \leq 2 \log(n + 1)
 \]
RB Trees: Worst-Case Time

• So we’ve proved that a red-black tree has $O(\lg n)$ height

• Corollary: These operations take $O(\lg n)$ time:
 – Minimum(), Maximum()
 – Successor(), Predecessor()
 – Search()

• Insert() and Delete():
 – Will also take $O(\lg n)$ time
 – But will need special care since they modify tree
 – We have to guarantee that the modified tree will still be a red-black tree
Red-Black Tree

• Recall binary search tree
 – Key values in the left subtree <= the node value
 – Key values in the right subtree >= the node value

• Operations:
 – insertion, deletion
 – Search, maximum, minimum, successor, predecessor.
 – $O(h)$, h is the height of the tree.
Red-black trees

- **Definition:** a binary tree, satisfying:
 1. Every node is red or black
 2. The root is black
 3. Every leaf is NIL and is black
 4. If a node is red, then both its children are black
 5. For each node, all paths from the node to descendant leaves contain the same number of black nodes.

- **Purpose:** keep the tree balanced.

- **Other balanced search tree:**
 - AVL tree, 2-3-4 tree, Splay tree, Treap
INSERT

INSERT: what color to make the new node?

• Red? Let’s insert 35!
 – Property 4 is violated: if a node is red, then both its children are black

• Black? Let’s insert 14!
 – Property 5 is violated: all paths from a node to its leaves contain the same number of black nodes
DELETE

DELETE: what color was the node that was removed? **Black**?

1. Every node is either red or black **OK!**
2. The root is black **Not OK!** If removing the root and the child that replaces it is red
3. Every leaf (NIL) is black **OK!**
4. If a node is red, then both its children are black **Not OK!** Could change the black heights of some nodes
5. For each node, all paths from the node to descendant leaves contain the same number of black nodes **Not OK!** Could create two red nodes in a row
Rotations

• Operations for re-structuring the tree after insert and delete operations on red-black trees

• **Rotations take a red-black-tree and a node within the tree and:**
 – Together with some node re-coloring they help restore the red-black-tree property
 – Change some of the pointer structure
 – **Do not** change the binary-search tree property

• **Two types of rotations:**
 – Left & right rotations
Left Rotations

• Assumptions for a left rotation on a node x:
 – The right child of x (y) is not NIL

\[
\text{LEFT-ROTATE}(T, x)
\]

• Idea:
 – Pivots around the link from x to y
 – Makes y the new root of the subtree
 – x becomes y’s left child
 – y’s left child becomes x’s right child
Example: LEFT-ROTATE
LEFT-ROTATE(T, x)

1. y ← right[x] ▶ Set y
2. right[x] ← left[y] ▶ y’s left subtree becomes x’s right subtree
3. if left[y] ≠ NIL
4. then p[left[y]] ← x ▶ Set the parent relation from left[y] to x
5. p[y] ← p[x] ▶ The parent of x becomes the parent of y
6. if p[x] = NIL
7. then root[T] ← y
8. else if x = left[p[x]]
9. then left[p[x]] ← y
10. else right[p[x]] ← y
11. left[y] ← x ▶ Put x on y’s left
12. p[x] ← y ▶ y becomes x’s parent
Right Rotations

Assumptions for a right rotation on a node x:
- The left child of x is not NIL

Idea:
- Pivots around the link from y to x
- Makes x the new root of the subtree
- y becomes x’s right child
- x’s right child becomes y’s left child
Insertion

- **Goal:**
 - Insert a new node z into a red-black-tree

- **Idea:**
 - Insert node z into the tree as for an ordinary binary search tree
 - Color the node **red**
 - Restore the red-black-tree properties

 ➢ Use an auxiliary procedure RB-INSERT-FIXUP
RB Properties Affected by Insert

1. Every node is either red or black

2. The root is black

3. Every leaf (NIL) is black

4. If a node is red, then both its children are black

5. For each node, all paths from the node to descendant leaves contain the same number of black nodes

If z is the root
⇒ not OK

If p(z) is red
⇒ not OK

z and p(z) are both red

OK!

OK!
RB-INSERT-FIXUP – Case 1

z’s “uncle” (y) is **red**

Idea: (z is a right child)

- p[p[z]] (z’s grandparent) must be black: z and p[z] are both red
 - Color p[z] black
 - Color y black
 - Color p[p[z]] **red**
 - z = p[p[z]]

 Push the “**red**” violation up the tree
z’s “uncle” (y) is red

Idea: (z is a left child)

- p[p[z]] (z’s grandparent) must be black: z and p[z] are both red
 - color p[z] ← black
 - color y ← black
 - color p[p[z]] ← red
 - z = p[p[z]]

 – Push the “red” violation up the tree
RB-INSERT-FIXUP – Case 3

Case 3:
• z’s “uncle” (y) is black
• z is a left child

Idea:
• color p[z] ← black
• color p[p[z]] ← red
• RIGHT-ROTATE(T, p[p[z]])
• No longer have 2 reds in a row
• p[z] is now black
RB-INSERT-FIXUP – Case 2

Case 2:
- z’s “uncle” (y) is black
- z is a right child

Idea:
- \(z \leftarrow p[z] \)
- \(\text{LEFT-ROTATE}(T, z) \)

⇒ now z is a left child, and both z and \(p[z] \) are red ⇒ case 3
RB-INSERT-FIXUP(T, z)

1. while color[p[z]] = RED The while loop repeats only when case1 is executed: O(\log n) times
2. do if p[z] = left[p[p[z]]]
3. then y ← right[p[p[z]]] \{ Set the value of x’s “uncle” \}
4. if color[y] = RED
5. then Case1
6. else if z = right[p[z]]
7. then Case2
8. Case3
9. else (same as then clause with “right” and “left” exchanged)
10. color[root[T]] ← BLACK We just inserted the root, or The red violation reached the root
Example

Insert 4

Case 1

Case 2

Case 3

z and p[z] are both red
z's uncle y is red

z and p[z] are both red
z's uncle y is black
z is a right child

z and p[z] are red
z's uncle y is black
z is a left child
RB-INSERT(T, z)

1. $y \leftarrow \text{NIL}$ \quad \text{\footnotesize \begin{itemize} \item Initialize nodes x and y \item Throughout the algorithm y points to the parent of x \end{itemize}}
2. $x \leftarrow \text{root}[T]$ \quad \text{\footnotesize \begin{itemize} \item Go down the tree until reaching a leaf \item At that point y is the parent of the node to be inserted \end{itemize}}
3. \textbf{while} $x \neq \text{NIL}$
4. \hspace{1em} \textbf{do} $y \leftarrow x$
5. \hspace{1em} \textbf{if} key[z] < key[x]
6. \hspace{2em} \textbf{then} $x \leftarrow \text{left}[x]$
7. \hspace{2em} \textbf{else} $x \leftarrow \text{right}[x]$
8. $p[z] \leftarrow y$ \quad \text{\footnotesize \begin{itemize} \item Sets the parent of z to be y \end{itemize}}
RB-INSERT(T, z)

9. if \(y = \text{NIL} \) \[
\begin{align*}
10. & \quad \text{then } \text{root}[T] \leftarrow z \\
11. & \quad \text{else if } \text{key}[z] < \text{key}[y] \\
12. & \quad \text{then } \text{left}[y] \leftarrow z \\
13. & \quad \text{else } \text{right}[y] \leftarrow z \\
14. & \quad \text{left}[z] \leftarrow \text{NIL} \\
15. & \quad \text{right}[z] \leftarrow \text{NIL} \\
16. & \quad \text{color}[z] \leftarrow \text{RED} \\
17. & \quad \text{RB-INSERT-FIXUP}(T, z)
\end{align*}
\]

The tree was empty: set the new node to be the root

Otherwise, set \(z \) to be the left or right child of \(y \), depending on whether the inserted node is smaller or larger than \(y \)'s key

Set the fields of the newly added node

Fix any inconsistencies that could have been introduced by adding this new red node
Analysis of RB-INSERT

- Inserting the new element into the tree \(O(\log n)\)

- RB-INSERT-FIXUP
 - The while loop repeats only if CASE 1 is executed
 - The number of times the while loop can be executed is \(O(\log n)\)

- Total running time of RB-INSERT: \(O(\log n)\)
Red-Black Trees - Summary

- Operations on red-black-trees:
 - SEARCH \(O(h) \)
 - PREDECESSOR \(O(h) \)
 - SUCCESOR \(O(h) \)
 - MINIMUM \(O(h) \)
 - MAXIMUM \(O(h) \)
 - INSERT \(O(h) \)
 - DELETE \(O(h) \)

- Red-black-trees guarantee that the height of the tree will be \(O(\log n) \)
Problems

- What is the ratio between the longest path and the shortest path in a red-black tree?

 - The shortest path is at least $bh(root)$
 - The longest path is equal to $h(root)$
 - We know that $h(root) \leq 2bh(root)$

 - Therefore, the ratio is ≤ 2
Problems

• What red-black tree property is violated in the tree below? How would you restore the red-black tree property in this case?
 – Property violated: if a node is red, both its children are black
 – Fixup: color 7 black, 11 red, then right-rotate around 11