
CSE5311 Design and Analysis of Algorithms 1Dept. CSE, UT Arlington CSE5311 Design and Analysis of Algorithms 1

CSE 5311
Lecture 11 Red-Black Trees

Junzhou Huang, Ph.D.

Department of Computer Science and Engineering

Design and Analysis of Algorithms

CSE5311 Design and Analysis of Algorithms 2Dept. CSE, UT Arlington

Reviewing: Binary Search Trees

• Binary Search Trees (BSTs) are an important data structure for
dynamic sets

– Each node has at most two children

• Each node contains:
– key and data

– left: points to the left child

– right: points to the right child

– p(parent): point to parent

• Binary-search-tree property:
– y is a node in the left subtree of x:

– y is a node in the right subtree of x:

– Height: h

CSE5311 Design and Analysis of Algorithms 3Dept. CSE, UT Arlington

Review: Inorder Tree Walk

• An inorder walk prints the set in sorted order:
TreeWalk(x)

TreeWalk(left[x]);

print(x);

TreeWalk(right[x]);

– Easy to show by induction on the BST property

– Preorder tree walk: print root, then left, then right

– Postorder tree walk: print left, then right, then root

CSE5311 Design and Analysis of Algorithms 4Dept. CSE, UT Arlington

Review: BST Search

TreeSearch(x, k)

if (x = NULL or k = key[x])

return x;

if (k < key[x])

return TreeSearch(left[x], k);

else

return TreeSearch(right[x], k);

CSE5311 Design and Analysis of Algorithms 5Dept. CSE, UT Arlington

Review: Sorting With BSTs

• Basic algorithm:
– Insert elements of unsorted array from 1..n

– Do an inorder tree walk to print in sorted order

• Running time:
– Best case: (n lg n) (it’s a comparison sort)

– Worst case: O(n2)

– Average case: O(n lg n) (it’s a quicksort!)

CSE5311 Design and Analysis of Algorithms 6Dept. CSE, UT Arlington

Review: More BST Operations

• Minimum:
– Find leftmost node in tree

• Successor:
– x has a right subtree: successor is minimum node in right subtree

– x has no right subtree: successor is first ancestor of x whose left
child is also ancestor of x

Intuition: As long as you move to the left up the tree, you’re
visiting smaller nodes.

• Predecessor: similar to successor

CSE5311 Design and Analysis of Algorithms 7Dept. CSE, UT Arlington

Review: More BST Operations

• Delete:
– x has no children:

Remove x

– x has one child:

Splice out x

– x has two children:

Swap x with successor

Perform case 1 or 2 to delete it

F

B H

KDA

C
Example: delete K
or H or B

CSE5311 Design and Analysis of Algorithms 8Dept. CSE, UT Arlington

Red-Black Trees

• Red-black trees:
– Binary search tree with an additional attribute for its nodes: color which can

be red or black

– “Balanced” binary search trees guarantee an O(lgn) running time

– Constrains the way nodes can be colored on any path from the root to a leaf:

Ensures that no path is more than twice as long as any other path
 the tree is balanced

CSE5311 Design and Analysis of Algorithms 9Dept. CSE, UT Arlington

Red-Black Properties

• The red-black properties:
1. Every node is either red or black

2. Every leaf (NULL pointer) is black

Note: this means every “real” node has 2 children

3. If a node is red, both children are black

Note: can’t have 2 consecutive reds on a path

4. Every path from node to descendent leaf contains the same
number of black nodes

5. The root is always black

black-height: # black nodes on path to leaf
Label example with h and bh values

(**Satisfy the binary search tree property**)

CSE5311 Design and Analysis of Algorithms 10Dept. CSE, UT Arlington

Example: RED-BLACK-TREE

• For convenience we use a sentinel NIL[T] to represent all the NIL
nodes at the leafs
– NIL[T] has the same fields as an ordinary node

– Color[NIL[T]] = BLACK

– The other fields may be set to arbitrary values

26

17 41

30 47

38 50

NIL NIL

NIL

NIL NIL NIL NIL

NIL

CSE5311 Design and Analysis of Algorithms 11Dept. CSE, UT Arlington

Black-Height of a Node

• Height of a node: the number of edges in the longest path to
a leaf

• Black-height of a node x: bh(x) is the number of black nodes
(including NIL) on the path from x to a leaf,
not counting x

26

17 41

30 47

38 50

NIL NIL

NIL

NIL NIL NIL NIL

NIL

h = 4
bh = 2

h = 3
bh = 2

h = 2
bh = 1

h = 1
bh = 1

h = 1
bh = 1

h = 2
bh = 1 h = 1

bh = 1

CSE5311 Design and Analysis of Algorithms 12Dept. CSE, UT Arlington

Height of Red-Black Trees

• What is the minimum black-height of a node with
height h?

• A: a height-h node has black-height  h/2

• Theorem: A red-black tree with n internal nodes has
height h  2 lg(n + 1)

• How do you suppose we’ll prove this?

• Need to prove two claims first!!!

CSE5311 Design and Analysis of Algorithms 13Dept. CSE, UT Arlington

Claim 1

• Any node x with height h(x) has bh(x) ≥ h(x)/2
• Proof

– By property 4, at most h/2 red nodes on the path from the node to a
leaf

– Hence at least h/2 are black

26

17 41

30 47

38 50

NIL NIL

NIL

NIL NIL NIL NIL

NIL

h = 4
bh = 2

h = 3
bh = 2

h = 2
bh = 1

h = 1
bh = 1

h = 1
bh = 1

h = 2
bh = 1 h = 1

bh = 1

4. If a node is red, then both its children are black

• No two consecutive red nodes on a simple path from the

root to a leaf

CSE5311 Design and Analysis of Algorithms 14Dept. CSE, UT Arlington

Claim 2

• A subtree rooted at a node x contains at least 2bh(x) - 1
internal nodes

• Proof:
– Proof by induction on height h

– Base step: x has height 0 (i.e., NULL leaf node)

What is bh(x)?
A: 0

So…subtree contains 2bh(x) - 1
= 20 - 1
= 0 internal nodes (TRUE)

CSE5311 Design and Analysis of Algorithms 15Dept. CSE, UT Arlington

Claim 2: cont’d

• Inductive proof that subtree at node x
contains at least 2bh(x) - 1 internal nodes
– Inductive step: x has positive height and 2

children

Each child has black-height of bh(x) (if the
child is red) or bh(x)-1 (if the child is black)

The height of a child = (height of x) - 1

So the subtrees rooted at each child contain
at least 2bh(x) - 1 - 1 internal nodes

Thus subtree at x contains
(2bh(x) - 1 - 1) + (2bh(x) - 1 - 1) + 1
= 2•2bh(x)-1 - 1 = 2bh(x) - 1 nodes

x

l r h-1

bh(l)≥bh(x)-1

bh(r)≥bh(x)-1

h

CSE5311 Design and Analysis of Algorithms 16Dept. CSE, UT Arlington

Height of Red-Black-Trees

Lemma: A red-black tree with n internal nodes has height at
most 2 lg(n + 1).

Proof:

n

• Add 1 to both sides and then take logs:

n + 1 ≥ 2bh ≥ 2h/2

lg(n + 1) ≥ h/2 
h ≤ 2 lg(n + 1)

root

l r

height(root) = h
bh(root) = bh

number n of
internal nodes

≥ 2bh - 1 ≥ 2h/2 - 1

since bh  h/2

CSE5311 Design and Analysis of Algorithms 17Dept. CSE, UT Arlington

RB Trees: Worst-Case Time

• So we’ve proved that a red-black tree has O(lg n)
height

• Corollary: These operations take O(lg n) time:
– Minimum(), Maximum()

– Successor(), Predecessor()

– Search()

• Insert() and Delete():
– Will also take O(lg n) time

– But will need special care since they modify tree

– We have to guarantee that the modified tree will still be a red-black tree

CSE5311 Design and Analysis of Algorithms 18Dept. CSE, UT Arlington

Red-Black Tree

• Recall binary search tree
– Key values in the left subtree <= the node value

– Key values in the right subtree >= the node value

• Operations:
– insertion, deletion

– Search, maximum, minimum, successor, predecessor.

– O(h), h is the height of the tree.

CSE5311 Design and Analysis of Algorithms 19Dept. CSE, UT Arlington

Red-black trees

• Definition: a binary tree, satisfying:
1. Every node is red or black
2. The root is black
3. Every leaf is NIL and is black
4. If a node is red, then both its children are black
5. For each node, all paths from the node to descendant leaves

contain the same number of black nodes.

• Purpose: keep the tree balanced.
• Other balanced search tree:

– AVL tree, 2-3-4 tree, Splay tree, Treap

CSE5311 Design and Analysis of Algorithms 20Dept. CSE, UT Arlington

INSERT

INSERT: what color to make the new node?
• Red? Let’s insert 35!

– Property 4 is violated: if a node is red, then both its children are
black

• Black? Let’s insert 14!

– Property 5 is violated: all paths from a node to its leaves contain
the same number of black nodes

26

17 41

30 47

38 50

CSE5311 Design and Analysis of Algorithms 21Dept. CSE, UT Arlington

DELETE

DELETE: what color was the

node that was removed? Black?

1. Every node is either red or black

2. The root is black

3. Every leaf (NIL) is black

4. If a node is red, then both its children are black

5. For each node, all paths from the node to descendant leaves contain

the same number of black nodes

OK!

OK!

Not OK! Could create
two red nodes in a row

Not OK! Could change the
black heights of some nodes

26

17 41

30 47

38 50

Not OK! If removing the
root and the child that
replaces it is red

CSE5311 Design and Analysis of Algorithms 22Dept. CSE, UT Arlington

Rotations

• Operations for re-structuring the tree after insert and

delete operations on red-black trees

• Rotations take a red-black-tree and a node within the

tree and:

– Together with some node re-coloring they help restore the red-

black-tree property

– Change some of the pointer structure

– Do not change the binary-search tree property

• Two types of rotations:

– Left & right rotations

CSE5311 Design and Analysis of Algorithms 23Dept. CSE, UT Arlington

Left Rotations

• Assumptions for a left rotation on a node x:
– The right child of x (y) is not NIL

• Idea:
– Pivots around the link from x to y

– Makes y the new root of the subtree

– x becomes y’s left child

– y’s left child becomes x’s right child

CSE5311 Design and Analysis of Algorithms 24Dept. CSE, UT Arlington

Example: LEFT-ROTATE

CSE5311 Design and Analysis of Algorithms 25Dept. CSE, UT Arlington

LEFT-ROTATE(T, x)

1. y ← right[x] ►Set y

2. right[x] ← left[y] ► y’s left subtree becomes x’s right subtree

3. if left[y]  NIL
4. then p[left[y]] ← x ► Set the parent relation from left[y] to x

5. p[y] ← p[x] ► The parent of x becomes the parent of y

6. if p[x] = NIL
7. then root[T] ← y
8. else if x = left[p[x]]
9. then left[p[x]] ← y
10. else right[p[x]] ← y
11. left[y] ← x ► Put x on y’s left

12. p[x] ← y ► y becomes x’s parent

CSE5311 Design and Analysis of Algorithms 26Dept. CSE, UT Arlington

Right Rotations

• Assumptions for a right rotation on a node x:
– The left child of y (x) is not NIL

• Idea:
– Pivots around the link from y to x

– Makes x the new root of the subtree

– y becomes x’s right child

– x’s right child becomes y’s left child

CSE5311 Design and Analysis of Algorithms 27Dept. CSE, UT Arlington

Insertion

• Goal:

– Insert a new node z into a red-black-tree

• Idea:

– Insert node z into the tree as for an ordinary binary search tree

– Color the node red

– Restore the red-black-tree properties

Use an auxiliary procedure RB-INSERT-FIXUP

CSE5311 Design and Analysis of Algorithms 28Dept. CSE, UT Arlington

RB Properties Affected by Insert

1. Every node is either red or black

2. The root is black

3. Every leaf (NIL) is black

4. If a node is red, then both its children are black

5. For each node, all paths

from the node to descendant

leaves contain the same number

of black nodes

OK!
If z is the root
 not OKOK!

26

17 41

4738

50

If p(z) is red  not OK
z and p(z) are both redOK!

CSE5311 Design and Analysis of Algorithms 29Dept. CSE, UT Arlington

RB-INSERT-FIXUP – Case 1

z’s “uncle” (y) is red

Idea: (z is a right child)

• p[p[z]] (z’s grandparent) must be

black: z and p[z] are both red

• Color p[z] black

• Color y black

• Color p[p[z]] red

• z = p[p[z]]

– Push the “red” violation up the tree

CSE5311 Design and Analysis of Algorithms 30Dept. CSE, UT Arlington

z’s “uncle” (y) is red

Idea: (z is a left child)

• p[p[z]] (z’s grandparent) must be

black: z and p[z] are both red

• color p[z]  black

• color y  black

• color p[p[z]]  red

• z = p[p[z]]

– Push the “red” violation up the tree

RB-INSERT-FIXUP – Case 1

CSE5311 Design and Analysis of Algorithms 31Dept. CSE, UT Arlington

RB-INSERT-FIXUP – Case 3

Case 3:

• z’s “uncle” (y) is black

• z is a left child

Case 3

Idea:

• color p[z]  black

• color p[p[z]]  red

• RIGHT-ROTATE(T, p[p[z]])

• No longer have 2 reds in a row

• p[z] is now black

CSE5311 Design and Analysis of Algorithms 32Dept. CSE, UT Arlington

RB-INSERT-FIXUP – Case 2

Case 2:

• z’s “uncle” (y) is black

• z is a right child

Idea:

• z  p[z]

• LEFT-ROTATE(T, z)

 now z is a left child, and both z and p[z] are red  case 3
Case 2 Case 3

CSE5311 Design and Analysis of Algorithms 33Dept. CSE, UT Arlington

RB-INSERT-FIXUP(T, z)

1. while color[p[z]] = RED

2. do if p[z] = left[p[p[z]]]

3. then y ← right[p[p[z]]]

4. if color[y] = RED

5. then Case1

6. else if z = right[p[z]]

7. then Case2

8. Case3

9. else (same as then clause with “right” and “left” exchanged)

10. color[root[T]] ← BLACK

The while loop repeats only when
case1 is executed: O(lgn) times

Set the value of x’s “uncle”

We just inserted the root, or
The red violation reached the
root

CSE5311 Design and Analysis of Algorithms 34Dept. CSE, UT Arlington

Example

11Insert 4

2 14

1 157

85

4

y

11

2 14

1 157

85

4

z

Case 1

y

z and p[z] are both red
z’s uncle y is redz

z and p[z] are both red
z’s uncle y is black
z is a right child

Case 2

11

2

14

1

15

7

8

5

4

z
y

Case 3

z and p[z] are red
z’s uncle y is black
z is a left child

112

141

15

7

85

4

z

CSE5311 Design and Analysis of Algorithms 35Dept. CSE, UT Arlington

RB-INSERT(T, z)

1. y ← NIL

2. x ← root[T]

3. while x  NIL

4. do y ← x

5. if key[z] < key[x]

6. then x ← left[x]

7. else x ← right[x]

8. p[z] ← y

• Initialize nodes x and y
• Throughout the algorithm y points

to the parent of x

• Go down the tree until
reaching a leaf
• At that point y is the
parent of the node to be
inserted

• Sets the parent of z to be y

26

17 41

30 47

38 50

CSE5311 Design and Analysis of Algorithms 36Dept. CSE, UT Arlington

9. if y = NIL

10. then root[T] ← z

11. else if key[z] < key[y]

12. then left[y] ← z

13. else right[y] ← z

14. left[z] ← NIL

15. right[z] ← NIL

16. color[z] ← RED

17. RB-INSERT-FIXUP(T, z)

The tree was empty:
set the new node to be the root

Otherwise, set z to be the left or
right child of y, depending on whether
the inserted node is smaller or larger
than y’s key

Set the fields of the newly added node

Fix any inconsistencies that could have
been introduced by adding this new red
node

26

17 41

30 47

38 50

RB-INSERT(T, z)

CSE5311 Design and Analysis of Algorithms 37Dept. CSE, UT Arlington

Analysis of RB-INSERT

• Inserting the new element into the tree O(lgn)

• RB-INSERT-FIXUP

– The while loop repeats only if CASE 1 is executed

– The number of times the while loop can be executed is O(lgn)

• Total running time of RB-INSERT: O(lgn)

CSE5311 Design and Analysis of Algorithms 38Dept. CSE, UT Arlington

Red-Black Trees - Summary

• Operations on red-black-trees:
– SEARCH O(h)

– PREDECESSOR O(h)

– SUCCESOR O(h)

– MINIMUM O(h)

– MAXIMUM O(h)

– INSERT O(h)

– DELETE O(h)

• Red-black-trees guarantee that the height of the tree
will be O(lgn)

CSE5311 Design and Analysis of Algorithms 39Dept. CSE, UT Arlington

Problems

• What is the ratio between the longest path and the
shortest path in a red-black tree?

- The shortest path is at least bh(root)

- The longest path is equal to h(root)

- We know that h(root)≤2bh(root)

- Therefore, the ratio is ≤2

CSE5311 Design and Analysis of Algorithms 40Dept. CSE, UT Arlington

• What red-black tree property is violated in the tree below? How
would you restore the red-black tree property in this case?
– Property violated: if a node is red, both its children are black

– Fixup: color 7 black, 11 red, then right-rotate around 11

112

141

15

7

85

4

z

Problems

