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Reviewing: Binary Search Trees

• Binary Search Trees (BSTs) are an important data structure for 
dynamic sets

– Each node has at most two children

• Each node contains: 
– key and data

– left: points to the left child

– right: points to the right child

– p(parent): point to parent

• Binary-search-tree property: 
– y is a node in the left subtree of x:

– y is a node in the right subtree of x:

– Height: h
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Review: Inorder Tree Walk

• An inorder walk prints the set in sorted order:
TreeWalk(x)

TreeWalk(left[x]);

print(x);

TreeWalk(right[x]);

– Easy to show by induction on the BST property

– Preorder tree walk: print root, then left, then right

– Postorder tree walk: print left, then right, then root
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Review: BST Search

TreeSearch(x, k)

if (x = NULL  or  k = key[x])

return x;

if (k < key[x]) 

return TreeSearch(left[x], k);

else

return TreeSearch(right[x], k);
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Review: Sorting With BSTs

• Basic algorithm:
– Insert elements of unsorted array from 1..n

– Do an inorder tree walk to print in sorted order

• Running time: 
– Best case: (n lg n)  (it’s a comparison sort)

– Worst case: O(n2)

– Average case: O(n lg n)  (it’s a quicksort!)
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Review: More BST Operations

• Minimum: 
– Find leftmost node in tree

• Successor: 
– x has a right subtree: successor is minimum node in right subtree

– x has no right subtree: successor is first ancestor of x whose left 
child is also ancestor of x

Intuition: As long as you move to the left up the tree, you’re 
visiting smaller nodes.  

• Predecessor: similar to successor
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Review: More BST Operations

• Delete: 
– x has no children: 

Remove x

– x has one child: 

Splice out x

– x has two children: 

Swap x with successor

Perform case 1 or 2 to delete it

F

B H

KDA

C
Example: delete K
or H or B
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Red-Black Trees

• Red-black trees:
– Binary search tree with an additional attribute for its nodes: color which can 

be red or black

– “Balanced” binary search trees guarantee an O(lgn) running time 

– Constrains the way nodes can be colored on any path from the root to a leaf:

Ensures that no path is more than twice as long as any other path 
 the tree is balanced
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Red-Black Properties

• The red-black properties:
1. Every node is either red or black

2. Every leaf (NULL pointer) is black

Note: this means every “real” node has 2 children

3. If a node is red, both children are black

Note: can’t have 2 consecutive reds on a path

4. Every path from node to descendent leaf contains the same 
number of black nodes

5. The root is always black

black-height: # black nodes on path to leaf
Label example with h and bh values

(**Satisfy the binary search tree property**)
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Example: RED-BLACK-TREE

• For convenience we use a sentinel NIL[T] to represent all the NIL 
nodes at the leafs
– NIL[T] has the same fields as an ordinary node

– Color[NIL[T]] = BLACK

– The other fields may be set to arbitrary values

26

17 41

30 47

38 50

NIL NIL

NIL

NIL NIL NIL NIL

NIL
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Black-Height of a Node

• Height of a node: the number of edges in the longest path to 
a leaf

• Black-height of a node x: bh(x) is the number of black nodes 
(including NIL) on the path from x to a leaf, 
not counting x

26

17 41

30 47

38 50

NIL NIL

NIL

NIL NIL NIL NIL

NIL

h = 4
bh = 2

h = 3
bh = 2

h = 2
bh = 1

h = 1
bh = 1

h = 1
bh = 1

h = 2
bh = 1 h = 1

bh = 1
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Height of Red-Black Trees

• What is the minimum black-height of a node with 
height h?

• A: a height-h node has black-height  h/2

• Theorem: A red-black tree with n internal nodes has 
height h  2 lg(n + 1)

• How do you suppose we’ll prove this?

• Need to prove two claims first!!!
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Claim 1

• Any node x with height h(x) has bh(x) ≥ h(x)/2
• Proof

– By property 4, at most h/2 red nodes on the path from the node to a 
leaf

– Hence at least h/2 are black

26

17 41

30 47

38 50

NIL NIL

NIL

NIL NIL NIL NIL

NIL

h = 4
bh = 2

h = 3
bh = 2

h = 2
bh = 1

h = 1
bh = 1

h = 1
bh = 1

h = 2
bh = 1 h = 1

bh = 1

4. If  a node is red, then both its children are black

• No two consecutive red nodes on a simple path from the 

root to a leaf
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Claim 2

• A subtree rooted at a node x contains at least 2bh(x) - 1 
internal nodes

• Proof:
– Proof by induction on height h 

– Base step: x has height 0 (i.e., NULL leaf node)

What is bh(x)?
A: 0

So…subtree contains 2bh(x) - 1 
= 20 - 1 
= 0 internal nodes   (TRUE)
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Claim 2: cont’d

• Inductive proof that subtree at node x
contains at least 2bh(x) - 1 internal nodes
– Inductive step: x has positive height and 2 

children

Each child has black-height of bh(x)  (if the 
child is red) or bh(x)-1  (if the child is black)

The height of a child = (height of x) - 1

So the subtrees rooted at each child contain 
at least 2bh(x) - 1 - 1 internal nodes

Thus subtree at x contains 
(2bh(x) - 1 - 1) + (2bh(x) - 1 - 1) + 1
= 2•2bh(x)-1 - 1 = 2bh(x) - 1 nodes  

x

l r h-1

bh(l)≥bh(x)-1

bh(r)≥bh(x)-1

h
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Height of Red-Black-Trees

Lemma: A red-black tree with n internal nodes has height at 
most 2 lg(n + 1).

Proof:

n

• Add 1 to both sides and then take logs: 

n + 1 ≥ 2bh ≥ 2h/2

lg(n + 1) ≥ h/2 
h ≤ 2 lg(n + 1)

root

l r

height(root) = h
bh(root) = bh

number n of  
internal nodes

≥ 2bh - 1 ≥ 2h/2 - 1

since bh  h/2
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RB Trees: Worst-Case Time

• So we’ve proved that a red-black tree has O(lg n) 
height

• Corollary: These operations take O(lg n) time:
– Minimum(), Maximum()

– Successor(), Predecessor()

– Search()

• Insert() and Delete():
– Will also take O(lg n) time

– But will need special care since they modify tree

– We have to guarantee that the modified tree will still be a red-black tree
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Red-Black Tree

• Recall binary search tree
– Key values in the left subtree <= the node value

– Key values in the right subtree >= the node value

• Operations: 
– insertion, deletion

– Search, maximum, minimum, successor, predecessor.

– O(h), h is the height of the tree.
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Red-black trees

• Definition: a binary tree, satisfying:
1. Every node is red or black
2. The root is black
3. Every leaf is NIL and is black
4. If a node is red, then both its children are black
5. For each node, all paths from the node to descendant leaves 

contain the same number of black nodes.

• Purpose: keep the tree balanced.
• Other balanced search tree:

– AVL tree, 2-3-4 tree, Splay tree, Treap
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INSERT

INSERT: what color to make the new node?
• Red? Let’s insert 35!

– Property 4 is violated: if a node is red, then both its children are 
black

• Black? Let’s insert 14!

– Property 5 is violated: all paths from a node to its leaves contain 
the same number of black nodes

26

17 41

30 47

38 50
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DELETE

DELETE: what color was the 

node that was removed? Black?

1. Every node is either red or black

2. The root is black

3. Every leaf (NIL) is black

4. If a node is red, then both its children are black

5. For each node, all paths from the node to descendant leaves contain 

the same number of black nodes

OK!

OK!

Not OK! Could create
two red nodes in a row

Not OK! Could change the
black heights of  some nodes

26

17 41

30 47

38 50

Not OK! If  removing the 
root and the child that 
replaces it is red
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Rotations

• Operations for re-structuring the tree after insert and 

delete operations on red-black trees

• Rotations take a red-black-tree and a node within the 

tree and:

– Together with some node re-coloring they help restore the red-

black-tree property

– Change some of the pointer structure

– Do not change the binary-search tree property

• Two types of rotations:

– Left & right rotations
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Left Rotations

• Assumptions for a left rotation on a node x:
– The right child of x (y) is not NIL

• Idea:
– Pivots around the link from x to y

– Makes y the new root of the subtree

– x becomes y’s left child

– y’s left child becomes x’s right child
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Example: LEFT-ROTATE
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LEFT-ROTATE(T, x)

1. y ← right[x] ►Set y

2. right[x] ← left[y] ► y’s left subtree becomes x’s right subtree

3. if left[y]  NIL
4. then p[left[y]] ← x ► Set the parent relation from left[y] to x

5. p[y] ← p[x] ► The parent of x becomes the parent of y

6. if p[x] = NIL
7. then root[T] ← y
8. else if x = left[p[x]]
9. then left[p[x]] ← y
10. else right[p[x]] ← y
11. left[y] ← x ► Put x on y’s left

12. p[x] ← y ► y becomes x’s parent



CSE5311 Design and Analysis of  Algorithms 26Dept. CSE, UT Arlington

Right Rotations

• Assumptions for a right rotation on a node x:
– The left child of y (x) is not NIL

• Idea:
– Pivots around the link from y to x

– Makes x the new root of the subtree

– y becomes x’s right child

– x’s right child becomes y’s left child
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Insertion

• Goal:

– Insert a new node z into a red-black-tree

• Idea:

– Insert node z into the tree as for an ordinary binary search tree

– Color the node red

– Restore the red-black-tree properties

Use an auxiliary procedure RB-INSERT-FIXUP
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RB Properties Affected by Insert

1. Every node is either red or black

2. The root is black

3. Every leaf (NIL) is black

4. If a node is red, then both its children are black

5. For each node, all paths 

from the node to descendant 

leaves contain the same number 

of black nodes

OK!
If z is the root 
 not OKOK!

26

17 41

4738

50

If p(z) is red  not OK
z and p(z) are both redOK!
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RB-INSERT-FIXUP – Case 1

z’s “uncle” (y) is red

Idea: (z is a right child)

• p[p[z]] (z’s grandparent) must be 

black: z and p[z] are both red 

• Color p[z] black

• Color y black

• Color p[p[z]] red

• z = p[p[z]]

– Push the “red” violation up the tree
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z’s “uncle” (y) is red

Idea: (z is a left child)

• p[p[z]] (z’s grandparent) must be 

black: z and p[z] are both red 

• color p[z]  black

• color y  black

• color p[p[z]]  red

• z = p[p[z]]

– Push the “red” violation up the tree

RB-INSERT-FIXUP – Case 1
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RB-INSERT-FIXUP – Case 3

Case 3: 

• z’s “uncle” (y) is black

• z is a left child

Case 3

Idea:

• color p[z]  black

• color p[p[z]]  red

• RIGHT-ROTATE(T, p[p[z]])

• No longer have 2 reds in a row

• p[z] is now black
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RB-INSERT-FIXUP – Case 2

Case 2: 

• z’s “uncle” (y) is black

• z is a right child

Idea:

• z  p[z]

• LEFT-ROTATE(T, z) 

 now z is a left child, and both z and p[z] are red  case 3
Case 2 Case 3
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RB-INSERT-FIXUP(T, z)

1. while color[p[z]] = RED

2. do if p[z] = left[p[p[z]]]

3. then y ← right[p[p[z]]]

4. if color[y] = RED

5. then Case1

6. else if z = right[p[z]]

7. then Case2

8. Case3

9. else (same as then clause with “right” and “left” exchanged)

10. color[root[T]] ← BLACK

The while loop repeats only when
case1 is executed: O(lgn) times

Set the value of  x’s “uncle”

We just inserted the root, or
The red violation reached the 
root
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Example

11Insert 4

2 14

1 157

85

4

y

11

2 14

1 157

85

4

z

Case 1

y

z and p[z] are both red
z’s uncle y is redz

z and p[z] are both red
z’s uncle y is black
z is a right child

Case 2

11

2

14

1

15

7

8

5

4

z
y

Case 3

z and p[z] are red
z’s uncle y is black
z is a left child

112

141

15

7

85

4

z
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RB-INSERT(T, z)

1. y ← NIL

2. x ← root[T]

3. while x  NIL

4. do y ← x

5. if key[z] < key[x]

6. then x ← left[x]

7. else x ← right[x]

8. p[z] ← y

• Initialize nodes x and y
• Throughout the algorithm y points 

to the parent of  x 

• Go down the tree until
reaching a leaf
• At that point y is the
parent of  the node to be
inserted

• Sets the parent of  z to be y

26

17 41

30 47

38 50
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9. if y = NIL

10. then root[T] ← z

11. else if key[z] < key[y]

12. then left[y] ← z

13. else right[y] ← z

14. left[z] ← NIL

15. right[z] ← NIL

16. color[z] ← RED

17. RB-INSERT-FIXUP(T, z)

The tree was empty: 
set the new node to be the root

Otherwise, set z to be the left or
right child of  y, depending on whether 
the inserted node is smaller or larger 
than y’s key

Set the fields of  the newly added node

Fix any inconsistencies that could have
been introduced by adding this new red
node

26

17 41

30 47

38 50

RB-INSERT(T, z)
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Analysis of RB-INSERT

• Inserting the new element into the tree O(lgn)

• RB-INSERT-FIXUP

– The while loop repeats only if CASE 1 is executed

– The number of times the while loop can be executed is O(lgn)

• Total running time of RB-INSERT: O(lgn)
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Red-Black Trees - Summary

• Operations on red-black-trees:
– SEARCH O(h)

– PREDECESSOR O(h)

– SUCCESOR O(h)

– MINIMUM O(h)

– MAXIMUM O(h)

– INSERT O(h)

– DELETE O(h)

• Red-black-trees guarantee that the height of the tree 
will be O(lgn)
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Problems

• What is the ratio between the longest path and the 
shortest path in a red-black tree?

- The shortest path is at least bh(root)

- The longest path is equal to h(root)

- We know that  h(root)≤2bh(root)

- Therefore, the ratio is ≤2
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• What red-black tree property is violated in the tree below? How 
would you restore the red-black tree property in this case?
– Property violated: if a node is red, both its children are black

– Fixup: color 7 black, 11 red, then right-rotate around 11 

112

141

15

7

85

4

z

Problems


