Design and Analysis of Algorithms

CSE 5311

Lecture 12 Dynamic Programming

Junzhou Huang, Ph.D.
Department of Computer Science and Engineering

Optimization Problems

- In which a set of choices must be made in order to arrive at an optimal (min/max) solution, subject to some constraints. (There may be several solutions to achieve an optimal value.)
- Two common techniques:
- Dynamic Programming (global)
- Greedy Algorithms (local)

Dynamic Programming (DP)

- Like divide-and-conquer, solve problem by combining the solutions to sub-problems.
- Differences between divide-and-conquer and DP:
- Independent sub-problems, solve sub-problems independently and recursively, (so same sub(sub)problems solved repeatedly)
- DP is applicable when the sub-problems are not independent, i.e. when sub-problems share sub-sub-problems. It solves every sub-sub-problem just once and save the results in a table to avoid duplicated computation.

Application domain of DP

- Optimization problem
- Find a solution with optimal (maximum or minimum) value.
- An optimal solution, not the optimal solution, since may more than one optimal solution, any one is OK.
- Typical steps
- Characterize the structure of an optimal solution.
- Recursively define the value of an optimal solution.
- Compute the value of an optimal solution in a bottom-up fashion.
- Compute an optimal solution from computed/stored information.

Elements of DP Algorithms

- Sub-structure: decompose problem into smaller subproblems. Express the solution of the original problem in terms of solutions for smaller problems.
- Table-structure: Store the answers to the sub-problem in a table, because sub-problem solutions may be used many times.
- Bottom-up computation: combine solutions on smaller sub-problems to solve larger sub-problems, and eventually arrive at a solution to the complete problem.

Applicability to Optimization Problems

- Optimal sub-structure (principle of optimality): for the global problem to be solved optimally, each sub-problem should be solved optimally. This is often violated due to subproblem overlaps. Often by being "less optimal" on one problem, we may make a big savings on another sub-problem.
- Small number of sub-problems: Many NP-hard problems can be formulated as DP problems, but these formulations are not efficient, because the number of sub-problems is exponentially large. Ideally, the number of sub-problems should be at most a polynomial number.

Optimized Chain Operations

- Determine the optimal sequence for performing a series of operations. (the general class of the problem is important in compiler design for code optimization \& in databases for query optimization)
- For example: given a series of matrices: $A_{1} \ldots A_{n}$, we can "parenthesize" this expression however we like, since matrix multiplication is associative (but not commutative).
- Multiply a $p \mathrm{x} q$ matrix A times a $q \times r$ matrix B, the result will be a $p \times r$ matrix C. (\# of columns of A must be equal to \# of rows of B.)

Matrix Chain-Products

- Dynamic Programming is a general algorithm design paradigm.
- Rather than give the general structure, let us first give a motivating example:
- Matrix Chain-Products
- Review: Matrix Multiplication.
$-\boldsymbol{C}=\boldsymbol{A}^{*} \boldsymbol{B}$
$-\boldsymbol{A}$ is $\boldsymbol{d} \times \boldsymbol{e}$ and \boldsymbol{B} is $\boldsymbol{e} \times \boldsymbol{f}$
$-\boldsymbol{O}(\boldsymbol{d} \cdot \boldsymbol{e} \cdot \boldsymbol{f})$ time
$C[i, j]=\sum_{k=0}^{e-1} A[i, k] * B[k, j]$

Matrix Chain-Products

- Matrix Chain-Product:
- Compute $\mathrm{A}=\mathrm{A}_{0} * \mathrm{~A}_{1}{ }^{*} \ldots * \mathrm{~A}_{\mathrm{n}-1}$
$-A_{i}$ is $d_{i} \times d_{i+1}$
- Problem: How to parenthesize?
- Example
-B is 3×100
-C is 100×5
-D is 5×5
- (B*C)*D takes $1500+75=1575 \mathrm{ops}$
$-\mathrm{B}^{*}(\mathrm{C} * \mathrm{D})$ takes $1500+2500=4000 \mathrm{ops}$

Enumeration Approach

- Matrix Chain-Product Algorithm.:
- Try all possible ways to parenthesize $\mathrm{A}=\mathrm{A}_{0} * \mathrm{~A}_{1} * \ldots * \mathrm{~A}_{\mathrm{n}-1}$
- Calculate number of ops for each one
- Pick the one that is best
- Running time:

- The number of parenthesizations is equal to the number of binary trees with n nodes
- This is exponential!
- It is called the Catalan number, and it is almost 4^{n}.
- This is a terrible algorithm!

Greedy Approach

- Idea \#1: repeatedly select the product that uses the fewest operations.
- Counter-example:
-A is 101×11
-B is 11×9
-C is 9×100
-D is 100×99
- Greedy idea \#1 gives $\mathrm{A}^{*}\left((\mathrm{~B} * \mathrm{C})^{*} \mathrm{D}\right)$), which takes $109989+9900+108900=228789 \mathrm{ops}$
$-(\mathrm{A} * \mathrm{~B}) *(\mathrm{C} * \mathrm{D})$ takes $9999+89991+89100=189090$ ops
- The greedy approach is not giving us the optimal value.

"Recursive" Approach

- Define subproblems:
- Find the best parenthesization of $\mathrm{A}_{\mathrm{i}}{ }^{*} \mathrm{~A}_{\mathrm{i}+1} * \ldots * \mathrm{~A}_{\mathrm{j}}$.
- Let $\mathrm{N}_{\mathrm{i}, \mathrm{j}}$ denote the number of operations done by this subproblem.
- The optimal solution for the whole problem is $\mathrm{N}_{0, \mathrm{n}-1}$.
- Subproblem optimality: The optimal solution can be defined in terms of optimal subproblems
- There has to be a final multiplication (root of the expression tree) for the optimal solution.
- Say, the final multiplication is at index $\mathrm{i}:\left(\mathrm{A}_{0} * \ldots * \mathrm{~A}_{\mathrm{i}}\right) *\left(\mathrm{~A}_{\mathrm{i}+1} * \ldots * \mathrm{~A}_{\mathrm{n}-1}\right)$.
- Then the optimal solution $\mathrm{N}_{0, \mathrm{n}-1}$ is the sum of two optimal subproblems, $\mathrm{N}_{0, \mathrm{i}}$ and $\mathrm{N}_{\mathrm{i}+1, \mathrm{n}-1}$ plus the time for the last multiplication.

Characterizing Equation

- The global optimal has to be defined in terms of optimal subproblems, depending on where the final multiplication is at.
- Let us consider all possible places for that final multiplication:
- Recall that A_{i} is a $\mathrm{d}_{\mathrm{i}} \times \mathrm{d}_{\mathrm{i}+1}$ dimensional matrix.
- So, a characterizing equation for $\mathrm{N}_{\mathrm{i}, \mathrm{j}}$ is the following:

$$
N_{i, j}=\min _{i \leq k<j}\left\{N_{i, k}+N_{k+1, j}+d_{i} d_{k+1} d_{j+1}\right\}
$$

- Note that subproblems are not independent-the subproblems overlap.

Subproblem Overlap

```
Algorithm RecursiveMatrixChain( \(\mathbf{S}, \boldsymbol{i}, \boldsymbol{j}\) ):
    Input: sequence \(\boldsymbol{S}\) of \(\boldsymbol{n}\) matrices to be multiplied
    Output: number of operations in an optimal parenthesization of \(\boldsymbol{S}\)
    if \(i=j\)
        then return 0
    for \(\boldsymbol{k} \leftarrow \mathrm{i}\) to \(\boldsymbol{j}\) do
        \(N_{i, j} \leftarrow \min \left\{N_{i, j}\right.\), RecursiveMatrixChain\((\boldsymbol{S}, \boldsymbol{i}, \boldsymbol{k})+\)
    RecursiveMatrixChain \(\left.(\boldsymbol{S}, \boldsymbol{k}+\mathbf{1}, \boldsymbol{j})+d_{i} d_{k+1} d_{j+1}\right\}\)
    return \(N_{i, j}\)
```


Subproblem Overlap

Recursion tree for the computation of RECURSIVE-MATRIX-CHAIN $(p, 1,4)$

This divide-and-conquer recursive algorithm solves the overlapping problems over and over.

In contrast, DP solves the same (overlapping) subproblems only once (at the first time), then store the result in a table, when the same subproblem is encountered later, just look up the table to get the result.

The computations in green color are replaced by table look up in MEMOIZED-MATRIX-CHAIN $(p, 1,4)$ The divide-and-conquer is better for the problem which generates brand-new problems at each step of recursion.

Dynamic Programming Algorithm

- Since subproblems overlap, we don't use recursion.
- Instead, we construct optimal subproblems "bottom-up."
- $\mathrm{N}_{\mathrm{i}, \mathrm{i}}$'s are easy, so start with them
- Then do problems of "length" $2,3, \ldots$ subproblems, and so on.
- Running time: $\mathrm{O}\left(\mathrm{n}^{3}\right)$

Algorithm matrixChain(\boldsymbol{S}):

Input: sequence \boldsymbol{S} of \boldsymbol{n} matrices to be multiplied
Output: number of operations in an optimal parenthesization of \boldsymbol{S}
for $\boldsymbol{i} \leftarrow 1$ to $\boldsymbol{n}-1$ do

$$
N_{i, i} \leftarrow \mathbf{0}
$$

for $\boldsymbol{b} \leftarrow 1$ to $\boldsymbol{n}-1$ do
$\{b=\boldsymbol{j}-\boldsymbol{i}$ is the length of the problem $\}$

$$
\text { for } i \leftarrow 0 \text { to } n-b-1 \text { do }
$$

$$
j \leftarrow i+b
$$

$$
N_{i, j} \leftarrow+\infty
$$

$$
\text { for } k \leftarrow \boldsymbol{i} \text { to } \boldsymbol{j}-1 \text { do }
$$

$$
N_{i, j} \leftarrow \min \left\{N_{i, j}, N_{i, k}+N_{k+1, j}+d_{i} d_{k+1} d_{j+1}\right\}
$$

return $N_{0, n-1}$

Dynamic Programming Algorithm Visualization

- The bottom-up construction fills in the N array by diagonals
- $\mathrm{N}_{\mathrm{i}, \mathrm{j}}$ gets values from previous entries in i-th row and j-th column
- Filling in each entry in the N table takes $\mathrm{O}(\mathrm{n})$ time.
- Total run time: $\mathrm{O}\left(\mathrm{n}^{3}\right)$
- Getting actual parenthesization can be done by remembering " k " for each N entry

Dynamic Programming Algorithm Visualization

- $\mathrm{A}_{0}: 30 \times 35 ; \mathrm{A}_{1}: 35 \times 15 ; \mathrm{A}_{2}: 15 \times 5$;
$A_{3}: 5 \times 10 ; \quad A_{4}: 10 \times 20 ; A_{5}: 20 \times 25$

$$
N_{i, j}=\min _{i \leq k<j}\left\{N_{i, k}+N_{k+1, j}+d_{i} d_{k+1} d_{j+1}\right\}
$$

$$
\begin{aligned}
& N_{1,4}=\min \{ \\
& N_{1,1}+N_{2,4}+d_{1} d_{2} d_{5}=0+2500+35 * 15 * 20=13000, \\
& N_{1,2}+N_{3,4}+d_{1} d_{3} d_{5}=2625+1000+35 * 5 * 20=7125,
\end{aligned}
$$

$$
N_{1,3}+N_{4,4}+d_{1} d_{4} d_{5}=4375+0+35 * 10 * 20=11375
$$

$$
\text { \} }
$$

$$
=7125
$$

Dynamic Programming Algorithm Visualization

$$
\left(\mathrm{A}_{0} *\left(\mathrm{~A}_{1} * \mathrm{~A}_{2}\right)\right) *\left(\left(\mathrm{~A}_{3} * \mathrm{~A}_{4}\right) * \mathrm{~A}_{5}\right)
$$

Assembly-Line Scheduling

- Two parallel assembly lines in a factory, lines 1 and 2
- Each line has n stations $S_{i, 1} \ldots S_{i, n}$
- For each $j, S_{1, j}$ does the same thing as $S_{2, j}$, but it may take a different amount of assembly time $a_{i, j}$
- Transferring away from line i after stage j costs $t_{i, j}$
- Also entry time e_{i} and exit time x_{i} at beginning and end

Assembly Line Scheduling (ALS)

Figure 15.1 A manufacturing problem to find the fastest way through a factory. There are two assembly lines, each with n stations; the j th station on line i is denoted $S_{i, j}$ and the assembly time at that station is $a_{i, j}$. An automobile chassis enters the factory, and goes onto line i (where $i=1$ or 2), taking e_{i} time. After going through the j th station on a line, the chassis goes on to the $(j+1) \mathrm{st}$ station on either line. There is no transfer cost if it stays on the same line, but it takes time $t_{i, j}$ to transfer to the other line after station $S_{i, j}$. After exiting the nth station on a line, it takes x_{i} time for the completed auto to exit the factory. The problem is to determine which stations to choose from line 1 and which to choose from line 2 in order to minimize the total time through the factory for one auto.

Concrete Instance of ALS

(b)

Figure 15.2 (a) An instance of the assembly-line problem with costs $e_{i}, a_{i, j}, t_{i, j}$, and x_{i} indicated. The heavily shaded path indicates the fastest way through the factory. (b) The values of $f_{i}[j], f^{*}$, $l_{i}[j]$, and l^{*} for the instance in part (a).

Brute Force Solution

- List all possible sequences,
- For each sequence of n stations, compute the passing time. (the computation takes $\Theta(n)$ time.)
- Record the sequence with smaller passing time.
- However, there are total 2^{n} possible sequences.

ALS --DP steps: Step 1

- Step 1: find the structure of the fastest way through factory
- Consider the fastest way from starting point through station $\mathrm{S}_{1, j}$ (same for $\mathrm{S}_{2, j}$)
$>j=1$, only one possibility
$>j=2,3, \ldots, n$, two possibilities: from $\mathrm{S}_{1, j-1}$ or $\mathrm{S}_{2, j-1}$
- from $\mathrm{S}_{1, j-1}$, additional time $\mathrm{a}_{1, j}$
- from $\mathrm{S}_{2, j-1}$, additional time $\mathrm{t}_{2, j-1}+\mathrm{a}_{1, j}$
$>$ suppose the fastest way through $\mathrm{S}_{1, j}$ is through $\mathrm{S}_{1, j-1}$, then the chassis must have taken a fastest way from starting point through $\mathrm{S}_{1, j-1}$. Why???
$>$ Similarly for $\mathrm{S}_{2, j-1}$.

DP step 1: Find Optimal Structure

- An optimal solution to a problem contains within it an optimal solution to subproblems.
- the fastest way through station $\mathrm{S}_{i j}$ contains within it the fastest way through station $\mathrm{S}_{1, j-1}$ or $\mathrm{S}_{2, j-1}$.
- Thus can construct an optimal solution to a problem from the optimal solutions to subproblems.

ALS --DP steps: Step 2

- Step 2: A recursive solution
- Let $f_{i}[]$ ($i=1,2$ and $j=1,2, \ldots, n$) denote the fastest possible time to get a chassis from starting point through $S_{i,}$.
- Let f^{*} denote the fastest time for a chassis all the way through the factory. Then
- $f^{*}=\min \left(f_{1}[n]+x_{1}, f_{2}[n]+x_{2}\right)$
- $f_{1}[1]=e_{1}+a_{1,1}$, fastest time to get through $S_{1,1}$
- $f_{1}[j]=\min \left(f_{1}[j-1]+a_{1, j} f_{2}[j-1]+t_{2, j-1}+a_{1, j}\right)$
- Similarly to $f_{2}[]$.

ALS --DP steps: Step 2

- Recursive solution:

$$
\begin{aligned}
& -f^{*}=\min \left(f_{1}[n]+x_{1}, f_{2}[n]+x_{2}\right) \\
& -f_{1}[j]=e_{1}\left(+a_{1,1}\right. \\
& -\quad \min \left(f_{1}[j-1]+a_{1, j}, f_{2}[j-1]+t_{2, j-1}+a_{1, j}\right) \\
& \text { if } j>1 \\
& -f_{2}[j]=1 \\
& -\quad e_{2}\left[+a_{2,1}\right. \\
& \min \left(f_{2}[j-1]+a_{2, j}, f_{1}[j-1]+t_{1, j-1}+a_{2, j}\right) \\
& \text { if } j>1
\end{aligned}
$$

- $\left.f_{i}[]\right](i=1,2 ; j=1,2, \ldots, n)$ records optimal values to the subproblems.
- To keep track of the fastest way, introduce $l_{i[j]}$ to record the line number (1 or 2), whose station $j-1$ is used in a fastest way through $S_{i,}$.
- Introduce L^{*} to be the line whose station n is used in a fastest way through the factory.

ALS --DP steps: Step 3

- Step 3: Computing the fastest time
- One option: a recursive algorithm.
$>$ Let $r_{i}(j)$ be the number of references made to $f_{i}[j]$
$-r_{1}(n)=r_{2}(n)=1$
$-r_{1}(j)=r_{2}(j)=r_{1}(j+1)+r_{2}(j+1)$
$-r_{i}(j)=2^{n-j}$.
-So $f_{1}[1]$ is referred to 2^{n-1} times.
- Total references to all $f_{i}[j]$ is $\Theta\left(2^{n}\right)$.
$>$ Thus, the running time is exponential.
- Non-recursive algorithm.

ALS FAST-WAY Algorithm

```
FASTEST-WAY \((a, t, e, x, n)\)
```



```
```

if $f_{1}[n]+x_{1} \leq f_{2}[n]+x_{2}$

```
```

if $f_{1}[n]+x_{1} \leq f_{2}[n]+x_{2}$
then $f^{*}=f_{1}[n]+x_{1}$
then $f^{*}=f_{1}[n]+x_{1}$
$l^{*}=1$
$l^{*}=1$
else $\begin{aligned} & f^{*}=f_{2}[n]+x_{2} \\ & l^{*}=2\end{aligned}$
else $\begin{aligned} & f^{*}=f_{2}[n]+x_{2} \\ & l^{*}=2\end{aligned}$
18

```
```

18

```
```

Running time: $O(n)$.

ALS --DP steps: Step 4

- Step 4: Construct the fastest way through the factory

PRint-Stations (l, n)

$1 \quad i \leftarrow l^{*}$
2 print "line " i ", station " n
3 for $j \leftarrow n$ downto 2
$4 \quad$ do $i \leftarrow l_{i}[j]$
5 print "line " i ", station " $j-1$

Optimal Substructure Varies in Two Ways

- How many subproblems
- In assembly-line schedule, one subproblem
- In matrix-chain multiplication: two subproblems
- How many choices
- In assembly-line schedule, two choices
- In matrix-chain multiplication: j - i choices
- DP solve the problem in bottom-up manner.

Running Time for DP Programs

- \#overall subproblems \times \#choices.
- In assembly-line scheduling, $O(n) \times O(1)=O(n)$.
- In matrix-chain multiplication, $O\left(n^{2}\right) \times O(n)=O\left(n^{3}\right)$
- The cost $=$ costs of solving subproblems + cost of making choice.
- In assembly-line scheduling, choice cost is
$>a_{i, j}$ if stay in the same line, $t_{i^{\prime},-1}+a_{i, j}\left(i^{\prime} \neq i\right)$ otherwise.
- In matrix-chain multiplication, choice cost is $p_{i-1} p_{k} p_{j}$.

