Design and Analysis of Algorithms

CSE 5311

Lecture 14 Dynamic Programming

Junzhou Huang, Ph.D.
Department of Computer Science and Engineering

The General Dynamic Programming Technique

- Applies to a problem that at first seems to require a lot of time (possibly exponential), provided we have:
- Subproblem optimality: the global optimum value can be defined in terms of optimal subproblems
- Subproblem overlap: the subproblems are not independent, but instead they overlap (hence, should be constructed bottom-up).

Longest Common Subsequence

- Problem: Given 2 sequences, $X=\left\langle x_{1}, \ldots, x_{m}\right\rangle$ and $Y=\left\langle y_{1}, \ldots, y_{n}\right\rangle$, find a common subsequence whose length is maximum.

Subsequence need not be consecutive, but must be in order.

Other Sequence Questions

- Edit distance: Given 2 sequences, $X=\left\langle x_{1}, \ldots, x_{m}\right\rangle$ and $Y=$ $\left\langle y_{1}, \ldots, y_{n}\right\rangle$, what is the minimum number of deletions, insertions, and changes that you must do to change one to another?
- Protein sequence alignment: Given a score matrix on amino acid pairs, $s(a, b)$ for $a, b \in\{\Lambda\} \cup A$, and 2 amino acid sequences, $X=\left\langle x_{1}, \ldots, x_{m}\right\rangle \in A^{m}$ and $Y=$ $\left\langle y_{1}, \ldots, y_{n}\right\rangle \in A^{n}$, find the alignment with lowest score...

More Problems

Optimal BST: Given sequence $K=k_{1}<k_{2}<\cdots<k_{\text {n }}$ of n sorted keys, with a search probability p_{i} for each key k_{i}, build a binary search tree (BST) with minimum expected search cost.

Minimum convex decomposition of a polygon, Hydrogen placement in protein structures, ...

Dynamic Programming

- Dynamic Programming is an algorithm design technique for optimization problems: often minimizing or maximizing.
- Like divide and conquer, DP solves problems by combining solutions to subproblems.
- Unlike divide and conquer, subproblems are not independent.
- Subproblems may share subsubproblems,
- However, solution to one subproblem may not affect the solutions to other subproblems of the same problem. (More on this later.)
- DP reduces computation by
- Solving subproblems in a bottom-up fashion.
- Storing solution to a subproblem the first time it is solved.
- Looking up the solution when subproblem is encountered again.
- Key: determine structure of optimal solutions

Recalling: Steps in Dynamic Programming

1. Characterize structure of an optimal solution.
2. Define value of optimal solution recursively.
3. Compute optimal solution values either top-down with caching or bottom-up in a table.
4. Construct an optimal solution from computed values.

Naïve Algorithm

- For every subsequence of $X=\left\langle x_{1}, \ldots, x_{m}\right\rangle$, check whether it's a subsequence of $Y=\left\langle y_{1}, \ldots, y_{n}\right\rangle$.
- Time: $\Theta\left(n 2^{\prime \prime \prime}\right)$.
- 2^{m} subsequences of X to check.
- Each subsequence takes $\Theta(n)$ time to check: scan Y for first letter, for second, and so on.

Optimal Substructure

Theorem

Let $Z=\left\langle z_{1}, \ldots, z_{k}\right\rangle$ be any LCS of X and Y.

1. If $x_{m}=y_{n}$, then $\tau_{k}=x_{m}=y_{n}$ and Z_{k-1} is an LCS of X_{m-1} and Y_{n-1}.
2. If $x_{m} \neq y_{n}$, then either $\tau_{k} \neq x_{m}$ and Z is an LCS of X_{m-1} and Y.
3.

or $\tau_{k} \neq y_{n}$ and Z is an LCS of X and Y_{n-1}.

Notation:

$$
\text { prefix } X_{i}=\left\langle x_{1}, \ldots, x_{i}\right\rangle \text { is the first } i \text { letters of } X .
$$

This says what any longest common subsequence must look like; do you believe it?

Optimal Substructure

Theorem

Let $Z=\left\langle z_{1}, \ldots, z_{k}\right\rangle$ be any LCS of X and Y.

1. If $x_{m}=y_{n}$, then $\varepsilon_{k}=x_{m}=y_{n}$ and Z_{k-1} is an LCS of X_{m-1} and Y_{n-1}.
2. If $x_{m} \neq y_{n}$, then either $\tau_{k} \neq x_{m}$ and Z is an LCS of X_{m-1} and Y.
3. or $\tau_{k} \neq y_{n}$ and Z is an LCS of X and Y_{n-1}.

Proof: (case 1: $x_{m}=y_{n}$)
Any sequence Z ' that does not end in $x_{m}=y_{n}$ can be made longer by adding $x_{m}=y_{n}$ to the end. Therefore,
(1) longest common subsequence (LCS) Z must end in $x_{m}=y_{n}$.
(2) Z_{k-1} is a common subsequence of X_{m-1} and Y_{n-1}, and
(3) there is no longer CS of X_{m-1} and Y_{n-1}, or Z would not be an LCS.

Optimal Substructure

Theorem

Let $Z=\left\langle z_{1}, \ldots, z_{k}\right\rangle$ be any LCS of X and Y.

1. If $x_{m}=y_{n}$, then $\gamma_{k}=x_{m}=y_{n}$ and Z_{k-1} is an LCS of X_{m-1} and Y_{n-1}.
2. If $x_{m} \neq y_{n}$, then either $\tau_{k} \neq x_{m}$ and Z is an LCS of X_{m-1} and Y.
3. or $\tau_{k} \neq y_{n}$ and Z is an LCS of X and Y_{n-1}.

Proof: (case 2: $x_{m} \neq y_{n}$, and $\tau_{k} \neq x_{m}$)
Since Z does not end in x_{m},
(1) Z is a common subsequence of X_{m-1} and Y, and
(2) there is no longer CS of X_{m-1} and Y, or Z would not be an LCS.

Recursive Solution

- Define $c[i, j]=$ length of LCS of X_{i} and Y_{j}.
- We want $c[m, n]$.

$$
c[i, j]=\left\{\begin{array}{ll|}
0 & \text { if } i=0 \text { or } j=0, \\
c[i-1, j-1]+1 & \text { if } i, j>0 \text { and } x_{i}=y_{j} \\
\max (c[i-1, j], c[i, j-1]) & \text { if } i, j>0 \text { and } x_{i} \neq y_{j}
\end{array}\right.
$$

This gives a recursive algorithm and solves the problem.
But does it solve it well?

Recursive Solution

$c[\alpha, \beta]= \begin{cases}0 & \text { if } \alpha \text { empty or } \beta \text { empty, } \\ c[\text { prefix } \alpha, \text { prefix } \beta]+1 & \text { if } \operatorname{end}(\alpha)=\operatorname{end}(\beta), \\ \max (c[\text { prefix } \alpha, \beta], c[\alpha, \text { prefix } \beta]) & \text { if } \operatorname{end}(\alpha) \neq \operatorname{end}(\beta) .\end{cases}$
c [springtime, printing]
c [springtim, printing] \quad [springtime, printin]
[springti, printing] [springtim, printin] [spring: n, printin] [springtime, printi]
[springt, printing] [springti, printin] [springtim, printi] [springtime, print]

Recursive Solution

$$
c[\alpha, \beta]= \begin{cases}0 & \text { if } \alpha \text { empty or } \beta \text { empty }, \\ c[\text { prefix } \alpha, \text { prefix } \beta]+1 & \text { if } \operatorname{end}(\alpha)=\operatorname{end}(\beta), \\ \max (c[\text { prefix } \alpha, \beta], c[\alpha, \text { prefix } \beta]) & \text { if } \operatorname{end}(\alpha) \neq \operatorname{end}(\beta) .\end{cases}
$$

- Keep track of $c[a, b]$ in a table of $n m$ entries:
-top/down
-bottom/up

		p	r	i	n	t	i	n	g
S									
p									
r									
i									
n									
g									
t									
i									
m									
e									

Computing the length of an LCS

LCS-LENGTH (x, η)

1. $m \leftarrow$ length $[X]$
2. $n \leftarrow$ length $[Y]$
3. for $i \leftarrow 1$ to m
4. do $c[i, 0] \leftarrow 0$
5. for $j \leftarrow 0$ to n
6. do $c[0, j] \leftarrow 0$
7. for $i \leftarrow 1$ to m
8. do for $j \leftarrow 1$ to n
9. do if $x_{i}=y_{j}$
10. \quad then $c[i, j] \leftarrow c[i-1, j-1]+1$
11. $b[i, j] \leftarrow$
12. else if $c[i-1, j] \geq c[i, j-1]$
13.
14.
15.
16. then $c[i, j] \leftarrow c[i-1, j]$ $b[i, j] \leftarrow " \uparrow "$
else $c[i, j] \leftarrow c[i, j-1]$
17. return c and b

Constructing an LCS

PRINT-LCS (b, X, i, j)

1. if $i=0$ or $j=0$
2. then return
3. if $b[i, j]=" \backslash "$
4. then PRINT-LCS $(b, X, i-1, j-1)$
5. print x_{i}
6. elseif $b[i, j]=$ " \uparrow "
7. then PRINT-LCS $(b, X, i-1, j)$
8. else PRINT-LCS(b, $X, i, j-1)$
-Initial call is PRINT-LCS (b, X, m, n).
-When $b[i, j]=\backslash$, we have extended LCS by one character. So LCS $=$ entries with \backslash in them.

- Time: $O(m+n)$

LCS Example

We'll see how LCS algorithm works on the following example:

- $\mathrm{X}=\mathrm{ABCB}$
- $\mathrm{Y}=\mathrm{BDCAB}$

What is the Longest Common Subsequence of X and Y ?

$$
\begin{aligned}
& \mathrm{LCS}(\mathrm{X}, \mathrm{Y})=\mathrm{BCB} \\
& \mathrm{X}=\mathrm{A} \mathbf{B} \quad \mathbf{C} \quad \mathbf{B} \\
& \mathrm{Y}=\quad \mathbf{B} \mathrm{C} \mathbf{C} \mathbf{B}
\end{aligned}
$$

LCS Example (0)

	j	2	3	4	5
i		D	C	A	B
0	Xi				
1	A				
2	B				
3	C				
4	B				

$X=A B C B ; \quad m=|X|=4$ $Y=B D C A B ; n=|Y|=5$
Allocate array c[5,4]

LCS Example (1)

	j	0	1	2	3	4	5	BDCAB
I		Yj	B	D	C	A	B	
0	Xi	0	0	0	0	0	0	
1	A	0						
2	B	0						
3	C	0						
4	B	0						

for $\mathrm{i}=1$ to m
$\mathrm{c}[\mathrm{i}, 0]=0$
for $\mathrm{j}=1$ to n
$\mathrm{c}[0, \mathrm{j}]=0$

LCS Example (2)

ABCB

$$
\begin{aligned}
& \text { if }\left(X_{i}==Y_{j}\right) \\
& c[i, j]=c[i-1, j-1]+1 \\
& \text { else } c[i, j]=\max (c[i-1, j], c[i, j-1])
\end{aligned}
$$

LCS Example (3)

	j	0	1	2	3	4	5	BDCAB
i		Yj	B	D	C	A	B	
0	Xi	0	0	0	0	0	0	
1	A	0	0	0	0			
2	B	0						
3	C	0						
4	B	0						

$$
\begin{aligned}
& \text { if }\left(X_{i}==Y_{j}\right) \\
& c[i, j]=c[i-1, j-1]+1 \\
& \text { else } c[i, j]=\max (c[i-1, j], c[i, j-1])
\end{aligned}
$$

LCS Example (4)

$$
\begin{aligned}
& \text { if }\left(X_{i}==Y_{j}\right) \\
& c[i, j]=c[i-1, j-1]+1 \\
& \text { else } c[i, j]=\max (c[i-1, j], c[i, j-1])
\end{aligned}
$$

LCS Example (5)

$$
\begin{aligned}
& \text { if }\left(X_{i}==Y_{j}\right) \\
& c[i, j]=c[i-1, j-1]+1 \\
& \text { else } c[i, j]=\max (c[i-1, j], c[i, j-1])
\end{aligned}
$$

LCS Example (6)

	j	0	1	2	3	4	5	BDCAB
i		Yj	B	D	C	A	B	
0	Xi	0	${ }_{0}$	0	0	0	0	
1	A	0	0	0	0	1	1	
2	B	0	1					
3	C	0						
4	B	0						

$$
\begin{aligned}
& \text { if }\left(X_{i}==Y_{j}\right) \\
& c[i, j]=c[i-1, j-1]+1 \\
& \text { else } c[i, j]=\max (c[i-1, j], c[i, j-1])
\end{aligned}
$$

LCS Example (7)

j				2	$3 \quad 4$		\int^{5}	
I		Yj	B	D		A		
0	Xi	0	0	0	0	0		
1	A	0	0	0	0	1		
2	(B)	0	1	1	1	1		
3	c	0						
4	B	0						

$$
\begin{aligned}
& \text { if }\left(X_{i}==Y_{j}\right) \\
& c[i, j]=c[i-1, j-1]+1 \\
& \text { else } c[i, j]=\max (c[i-1, j], c[i, j-1])
\end{aligned}
$$

LCS Example (8)

j		0	1	2	3	4	$\sum^{\text {B }}$	
		Yj	B	D	C	A		
0	Xi	0	0	0	0	0	0	
1	A	0	0	0	0	1	1	
2	(B)	0	1	1	1	1	2	
3	c	0						
4	B	0						

$$
\begin{aligned}
& \text { if }\left(X_{i}==Y_{j}\right) \\
& c[i, j]=c[i-1, j-1]+1 \\
& \text { else } c[i, j]=\max (c[i-1, j], c[i, j-1])
\end{aligned}
$$

LCS Example (10)

ABCB

	j	,		2	3	4	BDCAB
		Yj	B	D	C	A	
0	Xi	0	0	0	0	0	
1	A	0	0	0	0	1	
2	B	0	1	1	1	1	
3	(c)	0	${ }_{1}$				
4	B	0					

$$
\begin{aligned}
& \text { if }\left(X_{i}==Y_{j}\right) \\
& c[i, j]=c[i-1, j-1]+1 \\
& \text { else } c[i, j]=\max (c[i-1, j], c[i, j-1])
\end{aligned}
$$

LCS Example (11)

ABCB

$$
\begin{aligned}
& \text { if }\left(X_{i}==Y_{j}\right) \\
& c[i, j]=c[i-1, j-1]+1 \\
& \text { else } c[i, j]=\max (c[i-1, j], c[i, j-1])
\end{aligned}
$$

LCS Example (12)

ABCB

$$
\begin{aligned}
& \text { if }\left(X_{i}==Y_{j}\right) \\
& c[i, j]=c[i-1, j-1]+1 \\
& \text { else } c[i, j]=\max (c[i-1, j], c[i, j-1])
\end{aligned}
$$

LCS Example (13)

$$
\begin{aligned}
& \text { if }\left(X_{i}==Y_{j}\right) \\
& c[i, j]=c[i-1, j-1]+1 \\
& \text { else } c[i, j]=\max (c[i-1, j], c[i, j-1])
\end{aligned}
$$

LCS Example (14)
ABCB

> if $\left(X_{i}==Y_{j}\right)$ $c[i, j]=c[i-1, j-1]+1$
> else $c[i, j]=\max (c[i-1, j], c[i, j-1])$

LCS Example (15)

ABCB

j		0	1	2	3	4	${ }_{5} \mathrm{BDCAB}$	
		Yj	B	D	C	A	B	
0	Xi	0	0	0	0	0	0	
1	A	0	0	0	0	1	1	
2	B	0	1	1	1	1	2	
3	c	0	1	1	2			
4	(B)	0	1	1	2	2		

$$
\begin{aligned}
& \text { if }\left(X_{i}==Y_{j}\right) \\
& c[i, j]=c[i-1, j-1]+1 \\
& \text { else } c[i, j]=\max (c[i-1, j], c[i, j-1])
\end{aligned}
$$

LCS Algorithm Running Time

- LCS algorithm calculates the values of each entry of the array $c[m, n]$
- So what is the running time?
$\mathrm{O}\left(\mathrm{m}^{*} \mathrm{n}\right)$
since each $c[i, j]$ is calculated in constant time, and there are $\mathrm{m}^{*} \mathrm{n}$ elements in the array

How to find actual LCS

- So far, we have just found the length of LCS, but not LCS itself.
- We want to modify this algorithm to make it output Longest Common Subsequence of X and Y
Each $c[i, j]$ depends on $c[i-1, j]$ and $c[i, j-1]$ or $c[i-1, j-1]$
For each c[i,j] we can say how it was acquired:

How to find actual LCS - continued

- Remember that

$$
c[i, j]= \begin{cases}c[i-1, j-1]+1 & \text { if } x[i]=y[j], \\ \max (c[i, j-1], c[i-1, j]) & \text { otherwise }\end{cases}
$$

So we can start from $c[m, n]$ and go backwards Whenever $c[i, j]=c[i-1, j-1]+1$, remember $x[i]$ (because $x[i]$ is a part of LCS)
When $\mathrm{i}=0$ or $\mathrm{j}=0$ (i.e. we reached the beginning), output remembered letters in reverse order

Finding LCS

	j	0	1	2	3	4	5
i		Yj	B	D	C	A	B
0	Xi	0	0	0	0	0	0
1	A	0	0	0	0	1	1
2	B	0	1-1		1	1	2
3	C	0	1	1	$2 \leftarrow 2 \sim 2$		
4	B	0	1	1	2	2	3

Finding LCS (2)

	j	0		2	3	4	5
		Yj	B	D	C	A	B
0	Xi	0	0	0	0	0	0
1	A	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	0	0	0	1	1
2	B		1 -1			1	2
3	c	0	1	1	$2-2-2$		
4	B	0	1	1	2	2	3

LCS (reversed order): B C B
LCS (straight order): B C B
(this string turned out to be a palindrome)

