Design and Analysis of Algorithms

CSE 5311

Lecture 14 Dynamic Programming

Junzhou Huang, Ph.D.

Department of Computer Science and Engineering

The General Dynamic Programming Technique

- Applies to a problem that at first seems to require a lot of time (possibly exponential), provided we have:
 - Subproblem optimality: the global optimum value can be defined in terms of optimal subproblems
 - **Subproblem overlap:** the subproblems are not independent, but instead they overlap (hence, should be constructed bottom-up).

Longest Common Subsequence

• **Problem:** Given 2 sequences, $X = \langle x_1, ..., x_m \rangle$ and $Y = \langle y_1, ..., y_n \rangle$, find a common subsequence whose length is maximum.

Subsequence need not be consecutive, but must be in order.

Other Sequence Questions

- *Edit distance:* Given 2 sequences, $X = \langle x_1, ..., x_m \rangle$ and $Y = \langle y_1, ..., y_n \rangle$, what is the minimum number of deletions, insertions, and changes that you must do to change one to another?
- **Protein sequence alignment:** Given a score matrix on amino acid pairs, s(a,b) for $a,b \in \{\Lambda\} \cup A$, and 2 amino acid sequences, $X = \langle x_1,...,x_m \rangle \in A^m$ and $Y = \langle y_1,...,y_n \rangle \in A^n$, find the alignment with lowest score...

More Problems

Optimal BST: Given sequence $K = k_1 < k_2 < \cdots < k_n$ of n sorted keys, with a search probability p_i for each key k_i , build a binary search tree (BST) with minimum expected search cost.

Minimum convex decomposition of a polygon,

Hydrogen placement in protein structures, ...

Dynamic Programming

- Dynamic Programming is an algorithm design technique for optimization problems: often minimizing or maximizing.
- Like divide and conquer, DP solves problems by combining solutions to subproblems.
- Unlike divide and conquer, subproblems are not independent.
 - Subproblems may share subsubproblems,
 - However, solution to one subproblem may not affect the solutions to other subproblems of the same problem. (More on this later.)
- DP reduces computation by
 - Solving subproblems in a bottom-up fashion.
 - Storing solution to a subproblem the first time it is solved.
 - Looking up the solution when subproblem is encountered again.
- Key: determine structure of optimal solutions

Recalling: Steps in Dynamic Programming

- 1. Characterize structure of an optimal solution.
- 2. Define value of optimal solution recursively.
- 3. Compute optimal solution values either top-down with caching or bottom-up in a table.
- 4. Construct an optimal solution from computed values.

Naïve Algorithm

- For every subsequence of $X = \langle x_1, ..., x_m \rangle$, check whether it's a subsequence of $Y = \langle y_1, ..., y_n \rangle$.
- Time: $\Theta(n2^m)$.
 - -2^m subsequences of X to check.
 - Each subsequence takes $\Theta(n)$ time to check: scan Y for first letter, for second, and so on.

Optimal Substructure

Theorem

Let $Z = \langle z_1, \dots, z_k \rangle$ be any LCS of X and Y.

- 1. If $x_m = y_n$, then $z_k = x_m = y_n$ and Z_{k-1} is an LCS of X_{m-1} and Y_{n-1} .
- 2. If $x_m \neq y_n$, then either $z_k \neq x_m$ and Z is an LCS of X_{m-1} and Y.
- 3. or $z_k \neq y_n$ and Z is an LCS of X and Y_{n-1} .

Notation:

prefix $X_i = \langle x_1, ..., x_i \rangle$ is the first *i* letters of X.

This says what any longest common subsequence must look like; do you believe it?

Optimal Substructure

Theorem

Let $Z = \langle \chi_1, \dots, \chi_k \rangle$ be any LCS of X and Y.

- 1. If $x_m = y_n$, then $z_k = x_m = y_n$ and Z_{k-1} is an LCS of X_{m-1} and Y_{n-1} .
- 2. If $x_m \neq y_n$, then either $z_k \neq x_m$ and Z is an LCS of X_{m-1} and Y.
- 3. or $z_k \neq y_n$ and Z is an LCS of X and Y_{n-1} .

Proof: (case 1: $x_m = y_n$)

Any sequence Z' that does not end in $x_m = y_n$ can be made longer by adding $x_m = y_n$ to the end. Therefore,

- (1) longest common subsequence (LCS) Z must end in $x_m = y_n$.
- (2) Z_{k-1} is a common subsequence of X_{m-1} and Y_{n-1} , and
- (3) there is no longer CS of X_{m-1} and Y_{n-1} , or Z would not be an LCS.

Optimal Substructure

Theorem

Let $Z = \langle \chi_1, \dots, \chi_k \rangle$ be any LCS of X and Y.

- 1. If $x_m = y_n$, then $z_k = x_m = y_n$ and Z_{k-1} is an LCS of X_{m-1} and Y_{n-1} .
- 2. If $x_m \neq y_n$, then either $z_k \neq x_m$ and Z is an LCS of X_{m-1} and Y.
- 3. or $z_k \neq y_n$ and Z is an LCS of X and Y_{n-1} .

Proof: (case 2: $x_m \neq y_n$, and $z_k \neq x_m$)

Since Z does not end in x_m ,

- (1) Z is a common subsequence of X_{m-1} and Y, and
- (2) there is no longer CS of X_{m-1} and Y, or Z would not be an LCS.

Recursive Solution

- Define $c[i, j] = \text{length of LCS of } X_i \text{ and } Y_j$.
- We want c[m,n].

$$c[i, j] = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0, \\ c[i-1, j-1] + 1 & \text{if } i, j > 0 \text{ and } x_i = y_j, \\ \max(c[i-1, j], c[i, j-1]) & \text{if } i, j > 0 \text{ and } x_i \neq y_j. \end{cases}$$

This gives a recursive algorithm and solves the problem. But does it solve it well?

Recursive Solution

$$c[\alpha, \beta] = \begin{cases} 0 & \text{if } \alpha \text{ empty or } \beta \text{ empty,} \\ c[\alpha, \beta] = \begin{cases} c[prefix\alpha, prefix\beta] + 1 & \text{if } \text{end}(\alpha) = \text{end}(\beta), \\ \max(c[prefix\alpha, \beta], c[\alpha, prefix\beta]) & \text{if } \text{end}(\alpha) \neq \text{end}(\beta). \end{cases}$$

Recursive Solution

$$c[\alpha, \beta] = \begin{cases} 0 & \text{if } \alpha \text{ empty or } \beta \text{ empty,} \\ c[\text{prefix } \alpha, \text{prefix } \beta] + 1 & \text{if } \text{end}(\alpha) = \text{end}(\beta), \\ \max(c[\text{prefix } \alpha, \beta], c[\alpha, \text{prefix } \beta]) & \text{if } \text{end}(\alpha) \neq \text{end}(\beta). \end{cases}$$

- •Keep track of c[a,b] in a table of nm entries:
 - •top/down
 - •bottom/up

		p	r	i	n	t	i	n	g
S									
P									
r									
i									
n									
g									
t									
i									
m									
e	-	_	_	-	-	_	_	_	_

Computing the length of an LCS

```
LCS-LENGTH (X, Y)
1. m \leftarrow length[X]
2. n \leftarrow length[Y]
3. for i \leftarrow 1 to m
   do c[i, 0] \leftarrow 0
5. for j \leftarrow 0 to n
    do c[0, j] \leftarrow 0
7. for i \leftarrow 1 to m
         do for j \leftarrow 1 to n
8.
9.
              do if x_i = y_i
10.
                      then c[i, j] \leftarrow c[i-1, j-1] + 1
                             b[i, i] ← "\"
11.
12.
                      else if c[i-1, j] \ge c[i, j-1]
13.
                            then c[i, j] \leftarrow c[i-1, j]
14.
                                    b[i, j] \leftarrow "\uparrow"
15.
                             else c[i, j] \leftarrow c[i, j-1]
                                   b[i, j] \leftarrow "\leftarrow"
16.
17.return c and b
```

b[i, j] points to table entry whose subproblem we used in solving LCS of X_i and Y_j .

c[m,n] contains the length of an LCS of X and Y.

Time: O(mn)

gorithms

Constructing an LCS

```
PRINT-LCS (b, X, i, j)
1. if i = 0 or j = 0
   then return
3. if b[i, j] = "
      then PRINT-LCS(b, X, i-1, j-1)
5.
            print x_i
6. elseif b[i, j] = "\uparrow"
            then PRINT-LCS(b, X, i-1, j)
8. else PRINT-LCS(b, X, i, j–1)
```

- •Initial call is PRINT-LCS (b, X,m, n).
- •When $b[i, j] = \$, we have extended LCS by one character. So LCS = entries with \(\) in them.
- •Time: O(m+n)

LCS Example

We'll see how LCS algorithm works on the following example:

- X = ABCB
- Y = BDCAB

What is the Longest Common Subsequence of X and Y?

$$LCS(X, Y) = BCB$$

 $X = A B C B$
 $Y = B D C A B$

$$X = ABCB$$
; $m = |X| = 4$
 $Y = BDCAB$; $n = |Y| = 5$
Allocate array c[5,4]

LCS Example (1)

ABCB BDCAB

	j	0	1	2	3	4	5	SDCAE
i		Yj	В	D	С	Α	В	
0	Xi	0	0	0	0	0	0	
1	A	0						
2	В	0						
3	С	0						
4	В	0						

for i = 1 to m
$$c[i,0] = 0$$

for j = 1 to n $c[0,j] = 0$

LCS Example (2)

ABCB BDCAB

if
$$(X_i == Y_j)$$

 $c[i,j] = c[i-1,j-1] + 1$
else $c[i,j] = max(c[i-1,j], c[i,j-1])$

LCS Example (3)

ABCB BDCAB

	j	0	1	2	3	4	5	SUCAB
i		Yj	В	D	С	Α	В	1
0	Xi	0	0	0	0	0	0	
1	A	0	0	0	0			
2	В	0						
3	С	0						
4	В	0						

if
$$(X_i == Y_j)$$

 $c[i,j] = c[i-1,j-1] + 1$
else $c[i,j] = max(c[i-1,j],c[i,j-1])$

LCS Example (4)

ABCB

			Λ	
_		C_{A}	H	D

if
$$(X_i == Y_j)$$

 $c[i,j] = c[i-1,j-1] + 1$
else $c[i,j] = max(c[i-1,j],c[i,j-1])$

LCS Example (5)

if (
$$X_i == Y_j$$
)
 $c[i,j] = c[i-1,j-1] + 1$
else $c[i,j] = max(c[i-1,j],c[i,j-1])$

LCS Example (6)

	j	0	1	2	3	4	5	BDCAB
i		Υj	(B)	D	С	Α	В	
0	Xi	0	0	0	0	0	0	
1	A	0	0	0	0	1	1	
2	B	0	1					
3	С	0						
4	В	0						

if
$$(X_i == Y_j)$$

 $c[i,j] = c[i-1,j-1] + 1$
else $c[i,j] = max(c[i-1,j],c[i,j-1])$

LCS Example (7)

if
$$(X_i == Y_j)$$

 $c[i,j] = c[i-1,j-1] + 1$
else $c[i,j] = max(c[i-1,j],c[i,j-1])$

LCS Example (8)

	j	0	1	2	3	4
i		Υj	В	D	С	Α

0

B

0	Xi	0	0	0	0	0	0
1	A	0	0	0	0	1 ,	1
2	B	0	1	1	1	1	2

if
$$(X_i == Y_j)$$

 $c[i,j] = c[i-1,j-1] + 1$
else $c[i,j] = max(c[i-1,j],c[i,j-1])$

LCS Example (10)

if
$$(X_i == Y_j)$$

 $c[i,j] = c[i-1,j-1] + 1$
else $c[i,j] = max(c[i-1,j],c[i,j-1])$

LCS Example (11)

	j	0	1	2	3	4	5 E	BUCAB
i		Yj	В	D	(C)	Α	В	
0	Xi	0	0	0	0	0	0	
1	A	0	0	0	0	1	1	
2	В	0	1	1,	1	1	2	
3	C	0	1	1	2			
4	В	0						

if
$$(X_i == Y_j)$$

 $c[i,j] = c[i-1,j-1] + 1$
else $c[i,j] = max(c[i-1,j],c[i,j-1])$

LCS Example (12)

	j	0	1	2	3	4		BDCAB
i		Yj	В	D	С	A	В	
0	Xi	0	0	0	0	0	0	
1	A	0	0	0	0	1	1	
2	В	0	1	1	1	1	2	
3	C	0	1	1	2 -	→ ₂ −	2	
4	В	0						

if
$$(X_i == Y_j)$$

 $c[i,j] = c[i-1,j-1] + 1$
else $c[i,j] = max(c[i-1,j],c[i,j-1])$

LCS Example (13)

BDCAB

	j	0	1	2	3	4	5	DUCAB
i		Yj	(B)	D	С	Α	В	
0	Xi	0	0	0	0	0	0	
1	Α	0	0	0	0	1	1	
2	В	0	1	1	1	1	2	
3	C	0、	1	1	2	2	2	
4	В	0	1					

if
$$(X_i == Y_j)$$

 $c[i,j] = c[i-1,j-1] + 1$
else $c[i,j] = max(c[i-1,j],c[i,j-1])$

LCS Example (14)

	j	0	1	2	3	4	5 E	BUCAB
i		Yj	В	(D	С	Α	В	
0	Xi	0	0	0	0	0	0	
1	Α	0	0	0	0	1	1	
2	В	0	1	1	1	1	2	
3	C	0	1	ុ1	_2	2	2	
4	В	0	1 -	1	2 -	2		

if
$$(X_i == Y_j)$$

 $c[i,j] = c[i-1,j-1] + 1$
else $c[i,j] = max(c[i-1,j], c[i,j-1])$

LCS Example (15)

ABCB	
BDCAE	3

	j	0	1	2	3	4	5 BDC	AB
i	_	Yj	В	D	С	Α	В	
0	Xi	0	0	0	0	0	0	
1	A	0	0	0	0	1	1	
2	В	0	1	1	1	1	2	
3	C	0	1	1	2	2 、	2	
4	B	0	1	1	2	2	3	

if
$$(X_i == Y_j)$$

 $c[i,j] = c[i-1,j-1] + 1$
else $c[i,j] = max(c[i-1,j],c[i,j-1])$

LCS Algorithm Running Time

- LCS algorithm calculates the values of each entry of the array c[m,n]
- So what is the running time?

O(m*n)

since each c[i,j] is calculated in constant time, and there are m*n elements in the array

How to find actual LCS

- So far, we have just found the *length* of LCS, but not LCS itself.
- We want to modify this algorithm to make it output Longest Common Subsequence of X and Y

Each c[i,j] depends on c[i-1,j] and c[i,j-1] or c[i-1,j-1]

For each c[i,j] we can say how it was acquired:

For example, here c[i,j] = c[i-1,j-1] + 1 = 2+1=3

How to find actual LCS - continued

Remember that

$$c[i,j] = \begin{cases} c[i-1,j-1]+1 & \text{if } x[i] = y[j], \\ \max(c[i,j-1],c[i-1,j]) & \text{otherwise} \end{cases}$$

So we can start from c[m,n] and go backwards

Whenever c[i,j] = c[i-1, j-1]+1, remember x[i] (because x[i] is a part of LCS)

When i=0 or j=0 (i.e. we reached the beginning), output remembered letters in reverse order

Finding LCS

Finding LCS (2)

LCS (reversed order): B C B

LCS (straight order): B C B

(this string turned out to be a palindrome)